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Introduction

• The Mutual Exclusion problem in general subsums

any problems regarding the concurrent use of a single

resource by many processes

• We present two algorithms that solve the problem

with Lamport’s LogicalTime concept:

– Logical Time Mutual Exclusion

– Ricart Agrawala Mutual Exclusion
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Assumptions

• Asynchronous Network System

• Communication via reliable FIFO channels

• Algorithms can be used in:

– Singlecast/Broadcast systems (broadcast can be

emulated by point to point channels)

– Broadcast only systems
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The Problem (1)

• n users, U1, ..., Un, defined to be I/O automata

• The system A being used to solve the problem in an

asynchronous network system

• Process Pi corresponds to user Ui

• tryi, criti, exiti and remi are used for

communication between Ui and Pi

• Communication system contains a combination of

send/receive and broadcast channels
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The Problem (2)

P1

Pi

Pn

Ui

try

crit

exit
rem

Interactions between components for the mutual

exclusion problem
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Correctness Conditions (1)

Mutual exclusion: There is no reachable system state

in which more than one user is in the critical region C

Progress: At any point in a fair execution,

1. If at least one user is in T and no user is in C,

then at some later point some user enters C

2. If at least one user is in E, then at some later

point some user enters R
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Correctness Conditions (2)

Lockout-freedom: In any fair execution, the

following hold:

1. If all users always return the resource, then any

user that reaches T eventually enters C

2. Any user that reaches E eventually enters R

Well-formedness: In any execution and for any i, the

subseqence describing the interaction between Ui and

A is well-formed for Ui
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Mutual exclusion - LogicalTimeME (1)

• Generates logical times for events using the

LamportTime strategy

• Logical time is a pair (c, i), where c ∈ N and i is a

process index

• Logical time pairs are ordered lexicographically

• Broadcast and send/receive communication between

processes

8



Mutual exclusion - LogicalTimeME (2)

• Each process Pi maintains a single history data

structure

• For each j, history(j)i records all the messages Pi

has ever received from Pj

• The try and exit messages are broadcasted

• A try message is acknowledged by an ack message.

• Pi can perform a criti when its latest try request has

reached its history(i)
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Mutual exclusion - LogicalTimeME (3)

• Every other request that Pi has heard of with a

smaller logical time has already been granted

• Pi has received a message with a greater logical time

from every other process

• Pi can perform a remi as soon as its latest exit

request has reached its history(i)
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The Proof - Mutual Exclusion (1)

To see that the algorithm guarantees mutual exclusion,

we proceed by contradiction:

• Suppose two processes Pi and Pj are in C at the

same time

• ti < tj (latest try message of Pi and Pj)

• In order to perform critj and enter C, Pj had to see

a message from Pi with logical time greater than tj

and hence greater than ti
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The Proof - Mutual Exclusion (2)

• FIFO property implies that Pj must have seen Pi’s

try message when it performed critj.

• critj implies that Pj must have seen a subseqent exit

message from Pi.

• This implies that Pi must have already left C at the

time Pj performed critj.

• → Contradiction!
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The Proof - Mutual Exclusion (3)

Pi Pj

try

try
crit

ack

crit ack

exit

Impossible communication scenario.
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The Proof - Lockout-Freedom (1)

• Lockout-Freedom implies system progress.

• All the preconditions for criti must eventually

become satisfied, because

– if Pi is in region T and has a try message with the

smallest logical time ti among those for current

requests

– then fair execution implies that eventually Pi

receives its own try message and places it in

history(i)i.
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The Proof - Lockout-Freedom (2)

– Also since try message receive corresponding ack

messages and the clock variables are managed

using the LT discipline, Pi eventually receives a

message from each of the other processes with LT

greater than ti.

– Finally, since Pi’s request is the current request

with the smallest LT, any request with a smaller

LT must have already had a corresponding exit

event. (Delivery of the messages is implied by the

fairness properties of the broadcast channel.)
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Complexity Analysis (1)

Communication complexity For every request:

• 1 try broadcast - (n individual messages)

• n− 1 ack messages in response to the try message

• 1 exit broadcast - (n individual messages)

• Total amount of messages: 3n− 1 messages

16



Complexity Analysis (2)

Time complexity Time from tryi to criti

• Strongly isolated request (best case)

• No residual messages arising when tryi event

occurs

• Time between tryi to criti: 2d + O(`)

• d is the upper bound on the delivery of any

message and ` is the upper bound on time for

each process task
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Improvements to LogicalTimeME -

RicartAgrawalaME

• Simple variation on the LogicalTimeME algorithm

• Reduces the communication complexity

• Needs only 2n− 1 messages per request

• Improves LogicalTimeME by acknowledging requests

in a careful manner

• Eliminates the need for exit messages

• Uses broadcast and send/receive communication
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Mutual Exclusion - RicartAgrawalaME

• Logical time events are generated as in

LogicalTimeME

• Only two messages: try and ok, each carries the

clock value

• After a tryi , Pi broadcasts try messages just as in

LogicalTimeME and can go to C after it receives

subsequent ok messages

• Interesting part of the algorithm is a rule for when a

process Pi can send an ok message to another

process Pj
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RicartAgrawalaME - ok Messages (1)

The idea is to use a priority scheme. In response to a try

message from Pj, Pi does the following:

• If Pi is in E or R, or in T prior to broadcasting the

try message for its current request, then Pi replies

with ok

• If Pi is in C, then Pi defers replying until it reaches

E and then immediately sends any deferred oks
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RicartAgrawalaME - ok Messages (2)

• If Pi is in T and its current request has already been

broadcasted, then Pi compares the logical time tj

associated with the incoming try message of Pj:

– If ti > tj, then Pi’s own request is given lower

priority and Pi replies with an ok message

– Otherwise, Pi’s own request has higher priority, so

it defers replying until it finishes its next critical

region. At that time, it immediatley sends any

deferred oks

– Pi can perform a remi at any time after it

receives an exiti
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The Proof - Mutual Exclusion (1)

To see that the algorithm guarantees mutual exclusion,

we proceed by contradiction:

• Suppose two processes Pi and Pj are in C at the

same time

• ti < tj (latest try message of Pi and Pj)

• There must have been try and ok messages sent from

each Pi and Pj to the other

• At each process the receipt of the try message

preceedes its sending of the corresponding ok

• Several possible orderings of the various events
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The Proof - Mutual Exclusion (2)

• Claim that tj < ri and ri < ti

• ⇒ tj < ti is a contradiction to the assumption

• Therefore, at the time Pi receives Pj’s try message,

Pi is either in T or in C

• Pi’s rules say that it should defer sending an ok

message until it finishes its own critical region

• Pj could not enter C before Pi leaves ⇒ contradition
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Complexity Analysis (1)

Message complexity: For every event

• 1 try broadcast - (n individual messages)

• n− 1 ok messages

• Total amount of messages: 2n− 1 messages
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Complexity Analysis (2)

Time complexity: Time from tryi to criti

• Strongly isolated request (best case)

• No residual messages arising when tryi event

occurs

• Time between tryi to criti: 2d + O(`)

• d is the upper bound on the delivery of any

message and ` is the upper bound on time for

each process task
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