
Construction of all Polynomial Relations among

Dedekind Eta Functions of Level N ∗

Ralf Hemmecke† Silviu Radu‡

03-Oct-2018

Abstract

We describe an algorithm that, given a positive integer N , computes
a Gröbner basis of the ideal of polynomial relations among Dedekind η-
functions of level N , i. e., among the elements of {η(δ1τ), . . . , η(δnτ)} where
1 = δ1 < δ2 < · · · < δn = N are the positive divisors of N .

More precisely, we find a finite generating set (which is also a Gröbner
basis) of the ideal kerφ where

φ : Q[E1, . . . , En]→ Q[η(δ1τ), . . . , η(δnτ)], Ek 7→ η(δkτ), k = 1, . . . , n.

1 Introduction

In many publications one finds directly or indirectly lists of relations among
Dedekind η-functions, see, for example, [Köh11]. Somos on his website http:

//eta.math.georgetown.edu/index.html gives quite a huge number of such
relations together with references to the literature. In this article, we not only
provide means to compute or check new relations, but rather describe a method to
compute a basis for the ideal of all possible polynomial relations among Dedekind
η-functions of a certain level.

Since our basis will be a Gröbner basis, it is easy to express a given relation
as a combination of the Gröbner basis elements by merely reducing the relation
to zero and keeping track of the reduction steps.

Our method adapts the ideas of [KZ08] to η-functions. Kauers and Zim-
mermann reduce the problem of finding polynomial relations among C-finite se-
quences mi to (1) expressing the mi in terms of certain geometric sequences zj ,
(2) finding polynomial relations among those zj , and (3) computing polynomial
relations among the mi from their representation in terms of the zj and the poly-
nomial relations among the zj by means of computating a Gröbner basis with an
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2 NOTATION

elimination ordering. In our case, the mi and zj are quotients of η-functions of
level N that are modular functions with a pole at most at infinity. The zj are
computed (by algorithm samba) in such a way that they generate (as a module)
the algebra that is generated by the mi. From this module structure of the al-
gebra, we can easily derive all relations among the zj and then get the relations
among the mi like Kauers and Zimmermann. Since the goal of this paper is to
find all relations among η-functions of level N , we first reduce the problem to
finding all relations among quotients of η-functions of level N that are modular
functions with a pole at most at infinity. We then extract the relations among
η-functions from the relations among η-quotients by means of a Gröbner basis
computation.

After listing the notations used in this article and the exact problem speci-
fication, we continue in Section 4 with four reduction steps of the problem that
roughly show that any relation among η-functions can be expressed by a relation
among η-quotients that are modular functions. In Section 5, we reduce further
and then can say that any η-relation can be expressed by a relation among η-
quotients that are modular functions and have at most a pole at infinity. In
Section 6, we show that the quotients of η-functions of a certain level that are
modular functions and only have at most a pole at infinity, can be generated
by only finitely many elements of this kind and that finding such generators is
constructive. Finally, we show in Section 7 how these finitely many elements can
be turned in finitely many steps into a Gröbner basis for the ideal of relations
among η-functions. We demonstrate our method by an example in Section 8, and
show how our findings relate to the table given by Somos.

Our article does not primarily focus on efficiency of the computation, but
rather on its effectiveness, i. e., that there exists an algorithm to compute a
Gröbner basis for the relations among Dedekind η-functions.

2 Notation

For a set E = {E1, . . . , En} of indeterminates let us abbreviate the polynomial
ring Q[E1, . . . , En] by Q[E]. Let L = Q[E,E−1] denote the Laurent polynomial
ring in the variables E. Furthermore, we use multi-index notation, i. e., if α =
(α1, . . . , αn) ∈ Zn, then we simply write Eα instead of Eα1

1 · · ·Eαnn .
Let H = {c ∈ C | =(c) > 0} denote the complex upper half-plane.
Let

η : H→ C, τ 7→ exp

(
πiτ

12

) ∞∏
n=1

(1− qn) with q = q(τ) = exp(2πiτ)

denote the Dedekind eta function.
In the following N denotes a positive integer and 1 = δ1 < δ2 < · · · < δn = N

are the positive divisors of N . Let ∆ := {δ1, . . . , δn}. For convenience, we allow
to index n-dimensional vectors by the divisors of N , instead of the usual index
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3 THE PROBLEM

set {1, . . . , n}. For δ ∈ ∆ we consider the functions

ηδ : H→ C, τ 7→ η(δτ)

None of these functions is identically zero. We denote for any integer k by ηkδ the
function

ηkδ : H→ C, τ 7→ η(δτ)k.

We define R(N) to be the set of integer tuples r = (rδ1 , . . . , rδn) ∈ Zn. By
R∗(N) we denote the subset of all tuples r = (rδ)δ∈∆ of R(N) that fulfil the
following conditions. ∑

δ∈∆

rδ = 0 (1)∑
δ∈∆

δrδ ≡ 0 (mod 24) (2)∑
δ∈∆

(N/δ)rδ ≡ 0 (mod 24) (3)√∏
δ∈∆

δrδ ∈ Q (4)

Note that R∗(N) is an additive monoid.
If L is a ring and S is a subset of an L-module, we denote by 〈S〉L the set

of L-linear combinations of elements of S. If L is a field, then 〈S〉L is a vector
space. If S ⊂ L, then 〈S〉L is an ideal of L.

We, furthermore, define the following groups.

SL2(Z) =

{(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ Z ∧ ad− bc = 1

}
Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)

}

3 The Problem

We are interested in computing a generating set of the kernel of the homomor-
phism

φ : Q[Eδ1 , . . . , Eδn ]→ Q[ηδ1 , . . . , ηδn ], ∀δ ∈ ∆ : Eδ 7→ ηδ.

kerφ is an ideal of Q[Eδ1 , . . . , Eδn ].
In this article, we call an element of kerφ a polynomial relation or just rela-

tion, i. e., a relation is a polynomial that when the variables are replaced by the
respective (η-)functions gives zero.

By Hilbert’s basis theorem, the ideal kerφ is finitely generated. In the follow-
ing, we show how to compute a list of generators.
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4 REDUCTION OF THE PROBLEM

In order to do this, we extend φ to Laurent polynomials.

Φ : Q[Eδ1 , . . . , Eδn , E
−1
δ1
, . . . , E−1

δn
]→ Q[ηδ1 , . . . , ηδn , η

−1
δ1
, . . . , η−1

δn
]

∀δ ∈ ∆ : Eδ 7→ ηδ.

In order to ease notation, we let E = {Eδ1 , . . . , Eδn}, and let L = Q[E,E−1]
denote the Laurent polynomial ring in the variables E.

First, we focus on the kernel of Φ. Note that Φ|Q[E] = φ and kerφ = ker Φ ∩
Q[E].

4 Reduction of the problem

Let L∗ be the set of Q-linear combinations of monomials Er ∈ L with r ∈ R∗(N).
In this section we show that ker Φ = 〈L∗ ∩ ker Φ〉L. The stepwise reduction
below heavily builds on results from Sections 2-4 of [Rad18]. In fact, this section
concentrates on a reformulation of Radu’s results in the language of Laurent
polynomials in ker Φ. We want to show the main idea of the reduction. For the
lengthy technical details of the proof we refer to Radu’s work.

In his article, Radu uses the transformation properties of the Dedekind η-
function in order to set up certain Vandermonde matrices that together with
their invertibility prove that polynomial relations among Dedekind η-quotients
are “linear” combinations of “basic” relations among Dedekind η-quotients. Here
“linear” refers to L-linear in our language and “basic” means that each η-quotient
in such a relation is a modular function for Γ0(N).

Note that elements of L of the form Er for some r ∈ R(N) are not elements of
ker Φ, because η does not have zeros or poles inside the complex upper half-plane.

Let L
(1)
k ⊂ L denote the Q-vector space generated by the monomials Er with∑

δ∈∆

rδ = k.

Claim 1.

ker Φ =
〈
L

(1)
0 ∩ ker Φ

〉
L
.

Proof. An element p ∈ ker Φ can be written as a finite sum of elements, i. e.,

p =

k2∑
k=k1

pk

where pk ∈ L
(1)
k . By [Rad18, Section 2] it follows that Φ(p) = 0 if and only

if Φ(pk) = 0 for every k1 ≤ k ≤ k2. Thus, it is sufficient to prove for all

k1 ≤ k ≤ k2 that if pk ∈ L(1)
k ∩ ker Φ, then pk ∈

〈
L

(1)
0 ∩ ker Φ

〉
L

. Let k be such

that k1 ≤ k ≤ k2, r ∈ R(N), Er ∈ L(1)
k , and pk ∈ L(1)

k ∩ ker Φ. Then E−r ∈ L(1)
−k

and E−rpk ∈ L(1)
0 ∩ ker Φ. Therefore, pk = Er(E−rpk) ∈

〈
L

(1)
0 ∩ ker Φ

〉
L

.
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4 REDUCTION OF THE PROBLEM

Note that elements in L
(1)
0 are Q-linear combinations of monomials of the form

Er such that r ∈ R(N) fulfils (1).

For k ∈ {0, . . . , 23} we define L
(2)
k to be the Q-vector subspace of L

(1)
0 spanned

by those monomials Er which satisfy∑
δ∈∆

δ rδ ≡ k (mod 24).

Claim 2.

ker Φ =
〈
L

(2)
0 ∩ ker Φ

〉
L
.

Proof. By Claim 1 it is sufficient to show that if p ∈ L
(1)
0 ∩ ker Φ, then p ∈〈

L
(2)
0 ∩ ker Φ

〉
L

. Let p =
∑23
k=0 pk ∈ L

(1)
0 ∩ker Φ where pk ∈ L(2)

k . Since p ∈ ker Φ,

it follows by [Rad18, Section 3] that pk ∈ ker Φ for every k ∈ {0, . . . , 23}.
Let k ∈ {0, . . . , 23}, r ∈ R(N), Er ∈ L(2)

k , and pk ∈ L(1)
k ∩ ker Φ. Then E−r ∈

L
(2)
23−k and E−rpk ∈ L(2)

0 ∩ ker Φ. Thus, pk = Er(E−rpk) ∈
〈
L

(2)
0 ∩ ker Φ

〉
L

.

Note that elements in L
(2)
0 are Q-linear combinations of monomials of the form

Er such that r ∈ R(N) fulfils (1) and (2).

For k ∈ {0, . . . , 23} we define L
(3)
k to be the Q-vector subspace of L

(2)
0 spanned

by those monomials Er which satisfy∑
δ∈∆

N

δ
rδ ≡ k (mod 24).

Then the following claim and its proof are nearly identical to what has been

shown above, only that we replace L
(2)
k by L

(3)
k and L

(1)
0 by L

(2)
0 .

Claim 3.

ker Φ =
〈
L

(3)
0 ∩ ker Φ

〉
L
.

Proof. By Claim 2 it is sufficient to show that if p ∈ L
(2)
0 ∩ ker Φ, then p ∈〈

L
(3)
0 ∩ ker Φ

〉
L

. Let p =
∑23
k=0 pk ∈ L

(2)
0 ∩ker Φ where pk ∈ L(3)

k . Since p ∈ ker Φ,

it follows by [Rad18, Section 3] that pk ∈ ker Φ.

Let k ∈ {0, . . . , 23}, r ∈ R(N), Er ∈ L(3)
k , and pk ∈ L(2)

k ∩ ker Φ. Then E−r ∈
L

(3)
23−k and E−rpk ∈ L(3)

0 ∩ ker Φ. Thus, pk = Er(E−rpk) ∈
〈
L

(3)
0 ∩ ker Φ

〉
L

.

Note that elements in L
(3)
0 are Q-linear combinations of monomials of the form

Er such that r ∈ R(N) fulfils (1), (2), and (3).
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5 FROM R∗(N) TO R∞(N)

Let π1, . . . , πs be the primes dividing N and let uδj ∈ N for δ ∈ ∆ and

j ∈ {1, . . . , s} be defined by the prime factorization of δ, i. e., δ =
∏l
j=1 π

uδj
j . We

define functions εj : R(N)→ Z2 from R(N) into the Galois field Z2 of order 2 by

r 7→
∑
δ∈∆

rδ uδj mod 2.

The function ε : R(N)→ Zs2 is defined by r 7→ (ε1(r), . . . , εs(r)).

For e ∈ Zs2 we denote by L
(4)
e the Q-vector subspace of L

(3)
0 generated by

those terms Er ∈ L(3)
0 , with the property r ∈ R(N) and e = ε(r). Clearly, for

r, r′ ∈ R(N) it holds ε(r + r′) = ε(r) + ε(r′).

Note that L
(4)
e corresponds to the set S3(e) as defined in [Rad18, Section 4].

By L
(4)
0 we denote L

(4)
e for e = (0, . . . , 0) ∈ Zs2.

Claim 4.

ker Φ =
〈
L

(4)
0 ∩ ker Φ

〉
L
.

Proof. By Claim 3 it is sufficient to show that if p ∈ L
(3)
0 ∩ ker Φ, then p ∈〈

L
(4)
0 ∩ ker Φ

〉
L

. Let p =
∑
e∈Zs2

pe ∈ L(3)
0 ∩ ker Φ with pe ∈ L(4)

e . By [Rad18,

Section 4] it follows that pe ∈ ker Φ for all e ∈ Zs2. Now fix e ∈ Zs2 and let

Er, Er
′ ∈ L

(4)
e be two monomials. By additivity of ε, we conclude Er+r

′ ∈
L

(4)
0 . Let r ∈ R(N), Er ∈ L

(4)
e . Then Erpe ∈ L

(4)
0 ∩ ker Φ. Therefore, pe =

E−r(Erpe) ∈
〈
L

(4)
0 ∩ ker Φ

〉
L

.

Note that L
(4)
0 is a Q-linear combination of monomials of the form Er such

that r ∈ R(N) fulfils (1), (2), (3), and (4), i. e., r ∈ R∗(N), therefore, we define

L∗ := L
(4)
0 = 〈Er | r ∈ R∗(N) 〉Q ⊂ L.

5 From R∗(N) to R∞(N)

SinceR∗(N) is an additive monoid, L∗ is a ring and we can write L∗ = Q[Er | r ∈ R∗(N) ].
In this section we are going to define a (finitely generated) submonoid R∞(N) ⊂
R∗(N) such that

ker Φ = 〈L∞ ∩ ker Φ〉L

where L∞ := Q[Er | r ∈ R∞(N) ]. The motivation for passing from R∗(N) to
R∞(N) is that it eventually allows us to feed Laurent series that are related to
R∞(N) into a computer algebra system and actually compute a basis of all the
relations among the η-functions of level N .

Informally speaking, R∞(N) corresponds to the set of η-quotients that have
poles (if any) only at infinity.
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5 FROM R∗(N) TO R∞(N)

Definition 5.1. For any c, δ ∈ ∆, r ∈ R(N) let us define

aN (c, δ) :=
N/c

gcd(N/c, c)

gcd(c, δ)2

δ
,

ordNc (r) :=
1

24

∑
δ∈∆

aN (c, δ) rδ, (5)

and

gr(τ) :=
∏
δ∈∆

η(δτ)rδ . (6)

In [Rad15, Def. 1], ordNγ (f) is defined for a modular function f : H→ C and

γ =
(
a b
c d

)
∈ SL2(Z) to be nγ such that aγ(nγ) 6= 0 in the expansion

f(γτ) =

∞∑
n=nγ

aγ(n)e2πinτ gcd(c2,N)/N .

Theorem 23 of [Rad15] is important to find the order nγ of gr(γτ) simply from
r and c without explicitly expanding it into a series. It is used in the proof of
Lemma 5.7. In our notation it can be formulated as follows.

Lemma 5.2. Let γ =
(
a b
c d

)
∈ SL2(Z) with c ∈ ∆. If r ∈ R∗(N), then

ordNγ (gr) = ordNc (r).

Similar to the “valence matrix” in [New57], we define an (integer) matrix that
is indexed by the positive divisors of N . The rows (indexed by c) correspond to
cusps a

c for some a ∈ Z with gcd(a, c) = 1.

AN :=
(
aN (c, δ)

)
c,δ∈∆

.

Note that Newman only deals with N that are squarefree. The non-squarefree
case is compensated by the additional quotient gcd(N/c, c), compare with Nota-
tion 3.2.6 in [Lig75].

According to [Rad18, Lemma 5.3], there are ϕ(gcd(N/c, c)) different cusps a
c

of Γ0(N) that correspond to a divisor c of N (i.e., to the row with index c in
AN ) where ϕ is Euler’s totient function. As a preparation for Lemma 5.7, we
introduce a row vector

VN = (ϕ(gcd(N/c, c)))c∈∆

and functions

vδ(N, c) := ϕ(gcd(N/c, c)) aN (c, δ)

such that VNAN = (
∑
c∈∆ vδ(N, c))δ∈∆.

For the proof of Lemma 5.4, we need an auxiliary result.
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5 FROM R∗(N) TO R∞(N)

Lemma 5.3. For any 0 6= α ∈ N, 0 ≤ m ≤ α, we have
∑
d|pα vpm(pα, d) =

pα + pα−1.

Proof.

α∑
k=0

vpm(pα, pk) = vpm(pα, 1) + vpm(pα, pα) +

α−1∑
k=1

Vpm(pα, pk)

= pα−m + pm +

α−1∑
k=1

ϕ(gcd(pα−k, pk))
pα−k

gcd(pα−k, pk)

gcd(pk, pm)2

pm

= pα−m + pm +

α−1∑
k=1

ϕ(pmin(α−k,k))pα−k−min(α−k,k)+2 min(k,m)−m

= pα−m + pm +

α−1∑
k=1

(p− 1)pα−1−k+2 min(k,m)−m

For m = 0 we get
∑α
k=0 vpm(pα, pk) = pα + 1 +

∑α−1
k=1 (p− 1)pα−1−k = pα + pα−1.

If 0 < m ≤ α, then

α∑
k=0

vpm(pα, pk) = pα−m + pm +

m−1∑
k=1

(p− 1)pα−1+k−m +

α−1∑
k=m

(p− 1)pα−1−k+m

= pα−m + pm + (p− 1)pα−m
m−2∑
k=0

pk + (p− 1)pm
α−m−1∑
k=0

pk

= pα−m + pm + pα−m(pm−1 − 1) + pm(pα−m − 1)

= pα−m + pm + pα−1 − pα−m + pα − pm = pα + pα−1

Lemma 5.4. VNAN = N
∏
p|N
(
1 + 1

p

)
· (1, . . . , 1).

Proof. We have to show that the value of
∑
c∈∆ vδ(N, c) is independent of δ.

Clearly, if p is a prime that divides N , i. e., N = N ′pα for some α > 0, and
δ = δ′pm, c = c′pk with gcd(p,N ′) = gcd(p, δ′) = gcd(p, c′) = 1, then vδ(N, c) =
vδ′(N

′, c′) vpm(pα, pk).
Since the divisors of N can be written as a disjoint union according to the

respective power of p they contain, we can write∑
c|N

vδ(N, c) =
∑
c′|N ′

∑
d|pα

vδ(N, c
′d) =

∑
c′|N ′

∑
d|pα

vδ′(N
′, c′)vpm(pα, d)

=
∑
c′|N ′

vδ′(N
′, c′) ·

∑
d|pα

vpm(pα, d).

Together with
∑
d|pα vpm(pα, d) = pα(1 + 1

p ), 0 ≤ m ≤ α, the result follows
by induction over the number of prime divisors of N .
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6 L∞ IS FINITELY GENERATED

For the proof of Lemma 5.7 we need two results from the work of Newman.

Lemma 5.5. [New59, Theorem 1] If r ∈ R∗(N), then gr(τ) is a modular function
on Γ0(N).

Lemma 5.6. [New57, Theorem 4] Let r ∈ R(N), then gr(τ) = 1 for all τ ∈ H if
and only if r = (0, . . . , 0).

Lemma 5.7. The matrix AN is invertible.

Proof. The proof is along the lines of the proof of Lemma 3 in [New57]. Suppose
det(AN ) = 0. Then there is a vector r ∈ R(N) such that ANr = 0 and rδ 6= 0
for at least one δ ∈ ∆. Since VNANr = 0, we conclude from Lemma 5.4 that (1)
holds for such an r. We may assume that each component of r is a multiple of
24, thus, we can take r ∈ R∗(N). Then, by Lemma 5.5, gr is a modular function
on Γ0(N). The function gr does not have zeroes or poles on the complex upper
half-plane, since η does not have zeroes or poles. The cusps of Γ0(N) can be
assumed to be of the form a

c with a, c ∈ Z, gcd(a, c) = 1, c ∈ ∆, cf. [Rad18,
Lemma 5.3]. Note that c = N corresponds to the cusp at infinity. From ANr = 0,
(5) and Lemma 5.2 it follows that the function gr has zero order at all the cusps.
Thus, it must be constant, i. e., gr(τ) = 1 for all τ ∈ H. By Lemma 5.6 it follows
that r is the zero vector and, thus, the Lemma is proved.

Let

R∞(N) :=
{
r ∈ R∗(N)

∣∣∣ ∀c ∈ N : (0 < c < N ∧ c|N =⇒ ordNc (r) ≥ 0)
}
.

Note that the set {gr | r ∈ R∞(N)} is the same as E∞(N) in [Rad15].
Let K ∈ N be the (positive) least common multiple of all denominators of

the entries of A−1
N . Let % = 24KA−1

N (1, . . . , 1, 0)T . Obviously, % ∈ R∗(N) and by

construction ordNc (%) = K for every c ∈ ∆ with c 6= N and ordNN (%) = 0. Thus,
% ∈ R∞(N) and for any r ∈ R∗(N) there exists d ∈ N such that

r + d% ∈ R∞(N). (7)

Lemma 5.8.

ker Φ = 〈L∞ ∩ ker Φ〉L

Proof. It is sufficient to show that if p ∈ L∗ ∩ ker Φ, then p ∈ 〈L∞ ∩ ker Φ〉L. Let
Er be a monomial of p. Then by (7) there is dr ∈ N such that (E%)drEr ∈ L∞.
If we choose d as the maximum of all such dr for all monomials of p, then clearly,
(E%)dp ∈ L∞ ∩ ker Φ. Therefore, p = E−d%(Ed%p) ∈ 〈L∞ ∩ ker Φ〉L

6 L∞ is finitely generated

We have shown that ker Φ is generated by elements of L∞ = Q[Er | r ∈ R∞(N) ].
Now we show that L∞ can be generated (as a polynomial ring over Q) by finitely
many elements. We can prove this statement by means of the following lemma.
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6 L∞ IS FINITELY GENERATED

Lemma 6.1. [DLHK13, Lemma 2.6.8]. Let A ∈ Qm×n be an m × n matrix,
b ∈ Qm be a column vector, P = {z ∈ Rn | Az ≤ b}, and C = {z ∈ Rn | Az ≤ 0}.
If P ∩ Zn 6= ∅, then there exist finitely many points z1, . . . , zs ∈ P ∩ Zn and
h1, . . . , hk ∈ C ∩ Zn such that every solution z ∈ P ∩ Zn can be written as
z = zi +

∑k
j=1 njhj for some i ∈ {1, . . . , s} and nj ∈ N for all j = 1, . . . , k.

Moreover C ∩ Zn = 〈h1, . . . , hk〉N.

Lemma 6.2. R∞(N) is a finitely generated (additive) monoid.

Proof. In order to apply Lemma 6.1, we construct a matrix A by stacking matrices
BN , −BN , and −A∞N on top of each other.

The matrix BN encodes the conditions for r ∈ R∗(N) and A∞N encodes the
conditions about the orders for cusps not at infinity, i. e., that r ∈ R∞(N).

For the conditions (2), (3), and (4) we introduce additional variables b∞,
b0, and b1, . . . , bs in order to turn the “mod 24” and the square root condi-
tion into an integer problem. These additional variables enter our problem
transformation for Lemma 6.1, but are otherwise irrelevant for us. Let z =
(rδ1 , . . . , rδn , b∞, b0, b1, . . . bs)

T be the column vector that corresponds to the r-
variables and the additional variables. We transform the question about a finite
generating set for R∞(N) into a problem about the (integer) solutions of the
system Az ≤ 0.

We define

BN :=



1 · · · 1 0 0 0 . . . 0
δ1 · · · δn 24 0 0 . . . 0

N/δ1 · · · N/δn 0 24 0 . . . 0
uδ11 · · · uδn1 0 0 2 . . . 0

...
... 0 0 0

. . . 0
uδ1s · · · uδns 0 0 0 . . . 2


(8)

where s and the uδj are defined as in the text before Claim 4 by the prime
factorization of the divisors of N . Then BNz = 0 corresponds to the condition
r ∈ R∗(N) from Section 2. Furthermore, with

A∞N :=

 aN (δ1, δ1) . . . aN (δ1, δN ) 0 . . . 0
...

...
...

...
aN (δn−1, δ1) . . . aN (δn−1, δN ) 0 . . . 0

 (9)

the inequality A∞N z ≥ 0 for r ∈ R∗(N) encodes ordNc (r) ≥ 0 for every c ∈ ∆ with
c 6= N .

By Lemma 6.1 we can conclude that there are finitely many %1, . . . , %k ∈
R∞(N) such that 〈%1, . . . , %k〉N = R∞(N).

Let %1, . . . , %k be such that 〈%1, . . . , %k〉N = R∞(N). For κ ∈ {1, . . . , k} let
mκ := E%κ . Then L∞ = Q[Er | r ∈ R∞(N) ] = Q[m1, . . . ,mk].
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7 From ring to ideal

By Lemma 5.8 we now have ker Φ = 〈Q[m1, . . . ,mk] ∩ ker Φ〉L, i. e., any relation
among η-functions of a certain level can be expressed as an L-linear combination
of polynomials of a finite number of η-quotients corresponding to m1, . . . ,mk

whose coefficients are in Q. In other words, we would like to find polynomials
p ∈ Q[m1, . . . ,mk] such that Φ(p) = 0. In order to do this, we first transform the
problem in such a way that we can employ the algorithm samba from [Hem18].
It leads to temporarily working with an ideal in the polynomial ring Q[Z,M ]
only to later eliminate the Z-variables to obtain an ideal J (M) along the lines
of the ideas from [KZ08]. Substitution of the indeterminates M1, . . . ,Mk by the
respective m1, . . . ,mk eventually gives a better representation for ker Φ.

Note that any element of Φ(L∞) can be expressed in the ring Q((q)) of Lau-
rent series in q = exp(2πiτ). Let S ⊂ Q((q)) be the set of all Laurent series
corresponding to Φ(L∞). In the following, we identify Φ(L∞) with S. We denote
by ordq(f) the smallest power of q that appears in f ∈ Q((q)) with a non-zero
coefficient.

In [Hem18], samba works with a ring C of coefficients being a Euclidean
domain. In case that C is a field, which applies here with C = Q, samba can be
presented in the following, slightly simpler, form.

Input: m1, . . . ,mr ∈ S \ {0} ⊂ Q((q)), ordq(m1) < 0.
Output: B = {z1, . . . , zl} ⊂ A = Q[m1, . . . ,mr] such that for f ∈ S holds
reducem1,B(f) = 0 iff f ∈ A.

1 B := {1}
2 Bcrit := {m1, . . . ,mr}
3 d := − ordq(m1)

4 P := ∅
5 while Bcrit ∪ P 6= ∅ do

6 u := “take one element from Bcrit ∪ P and remove it from Bcrit and P”
7 u′ := reducem1,B

(u)

8 if u′ 6= 0 then

9 Bcrit := Bcrit ∪ {b ∈ B | u′ Ed b}
10 B := (B \Bcrit) ∪ {u′}
11 P := {b1b2 | b1, b2 ∈ B \ {1}}
12 return B

In our case, the relation Ed is for some positive natural number d defined by

f Ed b ⇐⇒ ordq(f) ≡d ordq(b) ∧ ordq(f) > ordq(b)

where ≡d stands for “congruent modulo d”.
The function application reducem1,B(u) finds an element b ∈ B such that

b Ed u (if there is any) and computes u′ := u− cmk1 b (for an appropriate c ∈ Q,
k ∈ N such that the term of lowest order in u vanishes) and repeats these steps
with u := u′ until u′ = 0 or no appropriate b ∈ B can be found. Note that
although Laurent series (infinite objects) are involved in such a reduction, it is
a finite process. Since all elements of S correspond to modular functions with a

[November 11, 2019 (14:44)] 11
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pole (if any) at infinity, we have the following property:

f ∈ S ∧ ordq(f) > 0 =⇒ f = 0. (10)

Thus, the reduction process for u can stop, if ordq(u
′) > 0 and conclude that

u′ = 0. We get u′ = 0 or u′ Ed u, i. e., the order (weakly) increases during the
reduction.

For κ ∈ {1, . . . , k} let mκ := Φ(mκ). Since %κ ∈ R∞(N), mκ can be
identified with the respective Laurent series from S. Note that ordq(mκ) =

ordNN (%κ). Q[m1, . . . ,mk] is a subring of S. Thus, we can apply algorithm samba
to m1, . . . ,mk and obtain elements z1, . . . , zl ∈ Q[m1, . . . ,mk] with z1 = 1 such
that

Q[m1, . . . ,mk] = 〈z1, . . . , zl〉Q[m1] . (11)

Furthermore, the treatment of Bcrit in samba ensures ordq(zi) 6≡d ordq(zj) for
any 1 ≤ i < j ≤ l, in other words, there are no non-trivial Q[m1]-linear relations
among the z1, . . . , zl, i. e.,

v1, . . . , vl ∈ Q[M1] ∧ v1(m1)z1 + · · ·+ vl(m1)zl = 0 =⇒ v1 = · · · = vl = 0. (12)

Let Q[Z,M ] denote the polynomial ring Q[Z1, . . . , Zl,M1, . . . ,Mk]. As a con-
sequence of (11), there are polynomials (κ ∈ {1, . . . , k}, j, j′, λ ∈ {1, . . . , l})

vκλ, vjj′λ ∈ Q[M1], (13)

pκ := Mκ −
l∑

λ=1

vκλ(M1)Zλ ∈ Q[Z,M ], (14)

pjj′ := ZjZj′ −
l∑

λ=1

vjj′λ(M1)Zλ ∈ Q[Z,M ] (15)

such that (by plugging in the corresponding Laurent series)

pκ(z,m) = 0, pjj′(z,m) = 0.

The polynomials vκλ, vjj′λ can easily be obtained by reducing mκ and zjzj′ to zero
by the module basis elements z1, . . . , zl and keeping track of the cofactors in this
reduction. Note that even though this reduction to zero deals with Laurent series,
these are Laurent series coming from R∞(N) and, thus, it is a finite process. The
reduction can stop, as soon as an element of positive order is obtained.

We can form the ideal J (Z,M) in Q[Z,M ] generated by

{p1, . . . , pk} ∪ {pjj′ | j, j′ ∈ {1, . . . , l}} . (16)

This ideal contains every relation among the mκ and zj . For a proof, suppose
f ∈ Q[Z,M ] with f(z,m) = 0. Then, using (14) and (15), we can reduce f to a
polynomial f ′ of the form f ′ = v1(M1)Z1 +· · ·+vl(M1)Zl with v1, . . . , vl ∈ Q[M1]
and f ′(z,m) = 0. By (12), we conclude v1 = · · · = vl = 0 and thus f ∈ J (Z,M).
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The intersection of J (Z,M) with Q[M ] gives an ideal J (M) that represents
all relations among the mκ. In principle, generators for the ideal J (M) can be
obtained by computing a Gröbner basis (see [Buc65] or [BW93]) of (16) with
respect to an elimination term ordering. However, employing an extended form
of the algorithm samba allows us to avoid such a Gröbner basis computation. The
extended form of samba keeps track of all the transformations during its run and
thus yields not only z1, . . . , zl, but also polynomials fλ ∈ Q[M ] such that

zλ = fλ(m) = fλ(m1, . . . ,mk) (17)

for every λ ∈ {1, . . . , l}. By replacing each indeterminate Zλ by fλ (λ ∈ {1, . . . , l}),
we can transform (14) and (15) into

hκ := Mκ −
l∑

λ=1

vκλfλ ∈ Q[M ], (18)

hjj′ := fjfj′ −
l∑

λ=1

vjj′λfλ ∈ Q[M ]. (19)

Then,

H(M) := {h1, . . . , hk} ∪ {hjj′ | j, j′ ∈ {1, . . . , l}} ⊆ Q[M ] (20)

is a set of generators for the ideal of relations among the mκ. In other words,
h(m) = 0 for every h ∈

〈
H(M)

〉
Q[M ]

. Clearly,
〈
H(M)

〉
Q[M ]

⊆ J (M). In order to

show
〈
H(M)

〉
Q[M ]

⊇ J (M), take h ∈ J (M). Because J (M) ⊂ J (Z,M), there exist

polynomials wk, wjj′ ∈ Q[Z,M ] (κ ∈ {1, . . . , k}, j, j′ ∈ {1, . . . , l}) such that

h =

k∑
κ=1

wκpκ +

l∑
j=1

l∑
j′=1

wjj′pjj′ . (21)

Because of (17), each indeterminate Zλ in (21) can be replaced by fλ (λ ∈
{1, . . . , l}). Since with this replacements pκ becomes hκ and pjj′ becomes hjj′ ,
(21) turns into an equation that shows h ∈

〈
H(M)

〉
Q[M ]

. Therefore, J (M) =〈
H(M)

〉
Q[M ]

.

If we plug in the mκ(= E%κ) for the Mκ in the polynomials of H(M), we
obtain the set

HL := {h1(m), . . . , hk(m)} ∪ {hjj′(m) | j, j′ ∈ {1, . . . , l}} ⊆ L. (22)

Clearly, HL ⊂ ker Φ. By construction of HL and from Lemma 5.8, we get

ker Φ = 〈Q[m1, . . . ,mk] ∩ ker Φ〉L =
〈
HL
〉
L
.

We are left with the problem of computing a generating set for the intersection
ker Φ ∩ Q[E] = kerφ. A solution to this problem is well-known in the computer
algebra community.
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Let us denote by P = Q[E, Y ] the polynomial ring in the variables E =
{Eδ | δ ∈ ∆} and Y = {Yδ | δ ∈ ∆}. Let U = {1− EδYδ | δ ∈ ∆} and I = 〈U〉P
be the ideal generated by the elements of U . By [Sim94, Proposition 7.1], kerχ =
I for the surjective homomorphism χ : P → L with χ(Eδ) = Eδ and χ(Yδ) = E−1

δ

for every δ ∈ ∆, i. e., P/I ∼= L.
Let χ′ : L → P be such that χ′(Eδ) = Eδ, χ

′(E−1
δ ) = Yδ, i. e., χ(χ′(f)) = f

for every f ∈ L. Then kerφ = ker Φ ∩Q[E] =
〈
χ′(HL) ∪ U

〉
P
∩Q[E].

A generating set for the latter intersection can be computed by Buchberger’s
algorithm applied to χ′(HL)∪U with respect to a term ordering such that mono-
mials with variables exclusively from the set E are smaller than any monomial
involving variables from Y . Then by [BW93, Cor. 5.51] the polynomials g1, . . . , gt
in this Gröbner basis that only involve variables from the set E form a Gröbner
basis G of all the relations among the η-functions of level N .

8 Implementation and Computation

We have implemented all the above steps in the computer algebra system FriCAS1.
The computation of a basis of R∞(N) can be done by 4ti22. For (bigger) Gröbner
basis computations, we have used the slimgb implementation of Singular3 via its
interface through SageMath4.

Somos presents on the website http://eta.math.georgetown.edu/etal/eta07.
gp a list of identities for η-functions for various levels. For example, there
are 120 identities for level 8. In our approach, we compute 5 polynomials in
Q[E1, E2, E4, E8], namely

g1 = E8
1E

6
2E

10
4 − E12

1 E8
2E

4
8 − 4E4

1E
8
2E

8
4E

4
8 + 32E10

2 E6
4E

8
8 − 16E12

1 E12
8 − 256E4

1E
8
4E

12
8 ,

g2 = E10
2 E8

4 − E12
1 E2

4E
4
8 − 8E4

1E
10
4 E4

8 − 4E8
1E

2
2E

8
8 ,

g3 = E8
2E

10
4 − E4

1E
10
2 E4

8 − 4E8
1E

2
4E

8
8 − 32E4

1E
2
2E

12
8 ,

g4 = E12
2 − E8

1E
4
4 − 8E4

1E
2
2E

2
4E

4
8 ,

g5 = E12
4 − E4

1E
2
2E

2
4E

4
8 − 4E4

2E
8
8 ,

such that by substituting ηδ for the respective Eδ, the function gk(η1, η2, η4, η8)
is the zero function on H for every k ∈ {1, 2, 3, 4, 5}.

Let us demonstrate the steps to arrive at these polynomials. In order to
compute a basis for R∞(8) we set up the matrices B8 and A∞N .

B8 =


1 1 1 1 0 0 0
1 2 4 8 24 0 0
8 4 2 1 0 24 0
0 1 2 3 0 0 2

 A∞8 =

8 4 2 1 0 0 0
2 4 2 1 0 0 0
1 2 4 2 0 0 0


1FriCAS 1.3.2 [Fri17]
24ti2 1.6.7 [4ti15]
3Singular 4.1.0 [DGPS16]
4SageMath 8.0 [Dev17]
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8 IMPLEMENTATION AND COMPUTATION

Then give the system B8z = 0, A∞8 z ≥ 0 to 4ti2-zsolve and obtain the (truncated)
vectors

%1 = (4,−2, 2,−4)T %2 = (−4, 10,−2,−4)T %3 = (0,−4, 12,−8)T

which represent the η-quotients according to (6) with the following Laurent series
expansions at τ = i∞.

m1 = q−1 − 4 + 4 q + 2 q3 − 8 q5 − q7 + 20 q9 +O(q10)

m2 = q−1 + 4 q + 2 q3 − 8 q5 − q7 + 20 q9 +O(q10)

m3 = q−1 + 4 + 4 q + 2 q3 − 8 q5 − q7 + 20 q9 +O(q10)

The application of samba yields z1 = 1 as the only generator according to
(11). Because of f1 = 1, we then get from (14), (15), (18), and (19): h1 = p1 = 0,
h2 = p2 = M2 −M1 − 8, h3 = p3 = M3 −M1 − 4 and h1,1 = p1,1 = 0. Then,
we replace every Mκ by mκ = E%κ and, by using χ′, write Y −eδ instead of Eeδ
if e := %κ,δ < 0. After removing zeros, (22) becomes χ′(HL) = {h2(m), h3(m)}
where

h2(m) = Y 4
1 E

10
2 Y 2

4 Y
4
8︸ ︷︷ ︸

m2

−E4
1Y

2
2 E

2
4Y

4
8︸ ︷︷ ︸

m1

−8, h3(m) = Y 4
2 E

12
4 Y 8

8︸ ︷︷ ︸
m3

−E4
1Y

2
2 E

2
4Y

4
8︸ ︷︷ ︸

m1

−4.

With U = {Y1E1 − 1, Y2E2 − 1, Y4E4 − 1, Y8E8 − 1}, we are left to compute a
Gröbner basis for the ideal

〈
χ′(HL) ∪ U

〉
P

. The Gröbner basis with respect to
the elimination block-ordering (degrevlex in both Y and E variables) consists
of 703 elements and (when printed) would be about 650 lines long. However,
there are only 5 polynomials among those elements, namely G = {g1, . . . , g5}
listed above that do not contain a Y indeterminate. Since G is a generating
set for kerφ, every other (polynomial) relation among η-functions of level 8 can
be expressed as a Q[E]-linear combination of the elements of G. In fact, G is
a Gröbner basis with respect to a degree reverse lexicographical term ordering,
and thus, for any given polynomial f ∈ Q[E1, E2, E4, E8], we can algorithmically
decide whether it is in kerφ by simply reducing f with the Gröbner basis G.
The polynomial f is in kerφ if and only if the reduction modulo G gives 0. By
keeping track of the cofactors in that reduction, we can express f as a Q[E]-linear
combination of g1, . . . , g5.

The identities in the table of Somos can easily be translated from their rep-
resentation in terms of q and uδ, where uδ corresponds to the Euler function∏∞
n=1(1− qδn), to polynomials in Q[E1, E2, E4, E8], and then expressed in terms

of G.
For example, Somos’ identity

q8,12,24 := −u12
2 + u8

1u
4
4 + 8qu12

4 − 32q2u4
2u

8
8

translates to

qE8,12,24 := −E12
2 + E8

1E
4
4 + 8E12

4 − 32E4
2E

8
8

[November 11, 2019 (14:44)] 15



9 CONCLUSION

and can be expressed as

qE8,12,24 = −g4 + 8g5. (23)

There are other identities in the table of Somos, namely

t8,12,24 := −u12
2 + u8

1 u
4
4 + 8 q u4

1 u
2
2 u

2
4 u

4
8,

t8,12,48 := −u12
4 + u4

1 u
2
2 u

2
4 u

4
8 + 4 q u4

2u
8
8.

They correspond to −g4 and −g5, respectively. The above relation (23) is

q8,12,24 = t8,12,24 − 8 q t8,12,48

in the notation of Somos.
The additional factor q in the above relation comes from the fact that the

identities in Somos’ table do not exactly correspond to relations in Dedekind η-
functions, but rather might have a common factor of a (fractional) power of q
cancelled.

We can do such a reduction for all the 120 identities from the table of Somos,
i. e., express them in terms of G. In fact, at http://www.risc.jku.at/people/
hemmecke we give a list of the respective Gröbner basis elements for various levels
and how relations from Somos’ table can be expressed by them.

We can use the 120 identities from the table of Somos and compute a (deg-
revlex) Gröbner basis in Q[E] of them. That also leads to 5 polynomials, namely,
E4

1E
4
8g1, g2, g3, g4, g5. In other words, these 120 identities do not generate (in

Q[E]) the ideal of all relations. For this case, dividing the first polynomial by
E4

1E
4
8 would lead to a Gröbner basis of all relations. However, in general, such a

postprocessing would not be a proof that the full ideal of relations is obtained.
Clearly, we can apply Buchberger’s algorithm over Q[E] or (with the respective

elements of U added) over Q[Y,E] also to the relations of Somos’ tables of other
levels. However, although it might give relations that are not in the table, they
are not essentially new, since a Gröbner basis computation does not change the
ideal that is already given by the input polynomials. Furthermore, in contrast to
our derivation, it would not prove that the ideal of all relations has been found.

For example, for level 34, our method produces a Gröbner basis G34 of 59
elements, whereas in Somos’ table is only one element, namely x34,14,129. x34,14,129

corresponds to the element of smallest degree of G34. In other words, G34 contains
essentially new relations.

9 Conclusion

Our method, theoretically, solves the problem of finding polynomial relations
among Dedekind η-functions completely. Furthermore, all steps can be pro-
grammed on a computer, i. e., the method is constructive.

Unfortunately, the more divisors are involved in the computation, the bigger
is the effort to compute the respective Gröbner basis. The relations for levels 4,

[November 11, 2019 (14:44)] 16

http://www.risc.jku.at/people/hemmecke
http://www.risc.jku.at/people/hemmecke


REFERENCES REFERENCES

6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 25, 26, 27, 28, 32, 34, 35, 36, 40, 44,
45, 49, 50, 54, 63, 64, 121, 169 are relatively easy to compute, i. e., in less than
5 hours and often much faster. For 24, 30, 56 the Gröbner basis computation is
quite lengthy. It took 12.2, 59.9, 16.6 hours, respectively. The computation, in
particular the elimination of the Y variables may be quite memory consuming.
For level 56 more than 100 GB where used during the computation, although the
final Gröbner basis can be stored in about 1 MB.
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