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Abstract

In the frame of the Austrian Grid Phase 2, we have designed and

implemented an API for grid computing that can be used for devel-

oping grid-distributed parallel programs without leaving the level of

the language in which the core application is written. Our software

framework is able to utilize the information about heterogeneous grid

environments in order to adapt the algorithmic structure of parallel

programs to the particular situation. Since our solution hides low-

level grid-related execution details from the application by providing

an abstract execution model, it is able to eliminate some algorithmic

challenges of nowadays grid programming. In this paper, we present

on the first feature-complete prototype of our topology-aware software

system.

1 Introduction

In this paper, we present on a completed work whose goal was to design
and develop distributed programming software framework and API for grid
computing [8]. This software system is able to utilize the information about
the grid environment in order to adapt their algorithmic structures to the
particular situation.

Our solution is an advanced topology-aware programming tool which
takes into account not only the topology of the available grid resources but
also the point-to-point communication structure of parallel programs. In our
approach, a pre-defined schema is assigned to each given parallel program
that specifies preferred communication patterns of the program in heteroge-
neous network environments. The execution engine first adapts and maps
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this schema to the currently available grid resources and then starts accord-
ing to this mapping the processes on the grid. Our API contains function
calls which are able to query all the details of the mapping information which
contains both the adapted communication structure of the program and the
topological information of the allocated grid resources.

Regard an example where a user intends to execute a tree-like multi-
level parallel application on the grid. She specifies in advance that the given
application shall consist of 20 processes organized into a 3-levels tree struc-
ture. On the lowest level leaves belonging to the same parent process shall
form groups such that each group contains at least 5 processes scheduled
to the same local network environment. For this specification, our software
framework is able to determinate a suitable partition of processes on the
currently available grid resources and to start the processes according to this
scheduling. The partition is based on some heuristics, e.g.: our framework
prefers such tree structures where the sizes of the groups formed by the leaf
processes belonging to the same parents are maximal; consequently the pro-
cesses of each such group can be scheduled to a cluster. Furthermore, our
API maps at runtime the predefined roles of processes in the specified logical
hierarchy (global manager, local manager and workers) to the allocated pool
of grid nodes such that the execution time is minimized.

2 Software Architecture

In our approach, the user assigns to each given parallel program a pre-defined
schema that specifies a preferred communication pattern of the program in
heterogeneous network environments. In our system the following kinds of
communication schemas are currently employed [6]: the schema singleton
specifies a number of processes which should be scheduled to the same local
network environment; the schema groups specifies the number processes and
either the accurate size of the local groups (the number of processes in the
same local network environment) or a minimum size for the local groups and
some restriction for the number of the local groups; the schema graph is
similar, but it additionally defines edges/links between the local groups such
that they describe a communication pattern; the schema tree specifies a tree-
like multilevel parallelism with the given number of processes and the given
number of tree levels, such that the size of the local groups located on the
lowest level (the level of leaves) are not determined but some restriction are
given for it; last but not least the schema ring is similar to the schema graph,
but the local groups always compose a ring. For more detailed description
of the communication schemas, see Section 3.
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Figure 1: Overview on the Software Framework

We have finished the implementation of a first feature-complete prototype
version of our software framework [8] called “Topology-Aware API for the
Grid” (TAAG). The system is based on the pre-Web Service architecture of
the Globus Toolkit [2] and on MPICH-G2 [12] and it consists of three major
components (see Figure 1):

Scheduling Mechanism This component depends on theNetwork Weather
Service (NWS) [14], which is a performance prediction tool that has
become a de facto standard in the grid community. Since the NWS pro-
vides all necessary information concerning the utilizable grid resources,
the user needs not know any detail of the grid architecture. In addition
to these performance characteristics the scheduling algorithm needs a
communication schema of a particular application specified in an XML
format.

Before each execution of a parallel program on the grid, the scheduling
mechanism adapts and maps a preferred communication pattern of the
program to the available grid resources such that it heuristically mini-
mizes the assessed execution time (for more details see Section 4). The
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output of the algorithm is an XML-based mapping file which describes
a mapping between the grid resources and the given communication
pattern.

Deployment Mechanism This mechanism is based on the job starting
mechanism of the grid-enabled MPI implementation MPICH-G2 [12].
It expects a mapping file generated by the scheduling mechanism as
input which contains among others the name and various locations of
the executable, the designated grid resources and the partition of pro-
cesses. It then starts in two steps the processes of an application on
the grid according to the content of the mapping file:

• First, it distributes via gridFTP the mapping file into the directory
/tmp on all designated grid machines.

• Then it generates a RSL expression from the mapping file; with
the help of this RSL expression, it starts the application on the
grid via MPICH-G2.

Topology-Aware API This API is an addition to the MPI interface. Its
purpose is to query mapping files and inform parallel programs how
their processes are assigned to physical grid resources and which are
the designated roles for these processes. It provides information such
as in which local group a particular process resides or which are the
characteristics of local groups, graphs, trees or rings.

For representing the versatility of our API, we have developed some
simple distributed example applications [7, 9] (e.g.: tree-like multilevel
parallelism on the grid).

All the three major components of our software framework have com-
pletely been implemented and the entire system has already been tested
successfully on the sites altix1.uibk.ac.at (SGI Altix 350), lilli.edvz.
uni-linz.ac.at (SGI Altix 4700) and alex.jku.austriangrid.at (SGI
Altix ICE 8200) of the Austrian Grid.

3 Specifications for Heterogeneous Commu-

nication Structures

In this section, we present some schemas used for specifying heterogeneous
point-to-point communication structures for parallel programs. The par-
allel programs are classified into these schemas on the basis of the roles
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of their processes and the qualification of the used point-to-point channels
among them (often used and rarely used channels). Common features of
these schemas:

• They never include the grid client from where the programs are sub-
mitted by the user.

• They arrange processes into some groups, where each group is sup-
posed to execute on a local network environment (cluster or LAN).
The point-to-point channels among the processes of such a group are
never specified by the schemas.

• For each parallel program going to be executed via our software system
on the grid, we must define such a schema (only exception is the sin-
gleton, which is also used for scheduling pure MPI codes, see the next
section).

3.1 Single Group

This schema singleton is used for scheduling programs on the grid which were
designed for homogeneous network environments:

SINGLETON{nrOfProcs, strictRestriction}

with the arguments, we can specify the number of processes used by the
program and a condition whether all processes must be schedule to the same
local network environment. If it is not possible to find a cluster or LAN with
the given number of available CPUs and the second parameter is true, then
the scheduling will be unsuccessful. But if the second parameter is false, the
scheduling mechanism always returns a possible distribution of the processes
on some grid resources (which may belong to different local networks).

In case of an existing MPI program which does not comprise our API, the
schema singleton will be used for finding an appropriate local environment
for running the given number of processes.

3.2 Set of Groups

The schema groups is for specifying a condition how to organize a given num-
ber of concurrent processes into as few local groups as possible on an avail-
able grid environment (as was mentioned before the point-to-point structure
within a group is not interesting for us at the moment):

GROUPS{nrOfProcs,minSizeOfGroups, divisorOfGroupNr}
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Figure 2: Some Distributions satisfying Specification GROUPS{12, 4, 1}

The first argument is the number of processes and second is the minimum
number of processes in a local group. In the third argument it can be specified
a restriction for the final number of the local groups such that the given
number must be a divisor of the number of the local groups (e.g.: we can
specify that the number of the group must be an even number).

Example Let us regard the following specification,

GROUPS{12, 4, 1}

which requires to schedule 12 concurrent processes into some local groups
mapped to a heterogeneous grid environment, where each local group consists
of 4 processes at least. The third argument is 1, thus we do not specify any
restriction for the final number of the local groups.

There are many possible distributions which fulfill this requirements (some
candidates are depicted in Figure 2). The scheduling mechanism attempts
to find an available local network environment (cluster or LAN) first, where
all the processes can be executed (see Figure 2A). If it is not possible, the
scheduling mechanism attempts to find a distribution which takes into ac-
count the minimum number of groups and fits to the current physical grid
architecture (see Figure 2B and C).

3.3 Graph

The schema graph is a similar structure to the schema groups, but here we
can define the number of groups (first argument) and the precise number of
the processes in each group respectively; furthermore links between any two
groups (as edges of a graph) can be specified.

GRAPH{nrOfGroups, nrOfLinks, listOfGroupSizes, listOfLinks}
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In the case of predefined links, the scheduling mechanism takes care of
the placing of the groups compared to each other, such that the groups
supposed to be connected to each other are scheduled on the physical grid
architecture close to each other (in terms of latency and bandwidth) Of
course, this notation does not mean that only those groups can interact each
others which are bound to each other by such predefined links (it is just for
adjusting some additional preferences for the scheduling mechanism).

Example a: In the following specification, we intend to schedule 18 pro-
cesses, but we do not define any link

GRAPH{3, 0, [5, 6, 7], [[]]}

The maximum number of groups specified by the first argument is 3 in
this case. First, the scheduling mechanism attempts to schedule all processes
into same local network environment. If it is not feasible, it tries to organize
the processes either into two groups or into three groups, where the size of
groups is determined by the second, third and fourth arguments (in case of
two groups the size of the one group is correspond to the sum of any two of
these arguments).

Example b: The next specification is similar to the previous one, but this
time we define some links among some processes

GRAPH{4, 3, [5, 6, 7, 6], [[0, 1], [0, 2], [0, 3]]}

The scheduling mechanism attempts to place the first group such that it
can interact all the other groups as optimal as possible (in terms of latency).

3.4 Multi Level Parallelism – Tree

For specifying a multi-level manager-worker structure, in which there are
some local managers connected one or more global managers (e.g.: because
of some scalability issue), the schema tree is going to be used:

TREE{nrOfProcs, depth,minSizeOfLeafGroups}

The arguments are the following from left to right: number of processes
(both workers and managers), the expected depth of the tree and the mini-
mum number of worker processes in a local group.

We do not give directly a maximum number of the worker processes in
one group, but we can specify precisely depth of the tree (e.g.: in order to
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Figure 3: Some Distributions satisfying the Specification TREE{19, 3, 5}

control the scalability). For instance, in the case of depth 2, each worker
will executed under the direction of one (local) manager in one local network
environment (if such a distribution of the processes is not applicable on a
particular grid architecture, then scheduling is unsuccessful). In the case
of depth 3, the scheduler mechanism attempts to divide the workers into 2
groups at least (one local manager is included to each group additionally), in
the case of depth 4 minimum number of worker groups will be 4, etc (if the
depth is equal to 1, then we are in the same situation as in case of schema
singleton — one local group without any manager process).

Example If we take the following specification

TREE{19, 3, 5}

then we can say that similarly to the schema groups we have more than one
possible tree distribution which fulfill the given requirements (see Figure 3).
The scheduling mechanism tries to distribute this tree structure of processes
as optimal as possible (first into one local network environment and if it is
not possible then int two or three ones (as it is showed by the Figure 3A and
B). In addition, it attempts to place the global managers close (in terms of
latency and bandwidth) to its children processes.

3.5 An Addition: Ring

This schema is very similar to the schema groups presented in Section 3.2,
but this time the groups compose a ring (each group has two neighbors):

RING{nrOfProcs,minSizeOfGroups, divisorOfGroupNr}

In the case of the schema ring, the scheduling mechanism takes care of the
placing of the groups compared to each other, such that the groups supposed
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to be neighbors in the ring are scheduled on the physical grid architecture
close to each other (in terms of latency and bandwidth).

4 The Scheduling Algorithm

The task of the scheduling mechanism is to find a partition of processes
based on the given schema which can be mapped to the available hardware
resources such that the assessed use of any slow communication channel is
minimized.

This kind of communication-aware mapping is an NP-complete problem
which can be only efficiently solved by some kind of heuristic search algo-
rithm. Similar problems have already arisen three decades ago in the map-
ping of processes to parallel hardware architectures (e.g.: hypercube) [10].
Nowadays the technique of communication-aware mappings is recalled in con-
nection with heterogeneous multi-cluster and grid environments [13]. In this
Section we discuss our solution for the problem of the communication-aware
mapping in detail whose implementation was completely finished in the last
project phase.

4.1 The Scheduling Algorithm in the Case
of the Schema “Groups”

In this section, we describe how the algorithm applied by the scheduling
mechanism works in the case of the schema “Groups”. The algorithm expects
as input the list of the available hosts, a forecast for the available CPU frac-
tions on these hosts and a forecast for the latency values in milliseconds are
predicted for each pair of hosts, and finally a communication schema which
specifies the preferred heterogeneous communication patterns of a program.
The first three groups of data are provided by the NWS [14] while the schema
is given by the user. The algorithm works roughly as follows:

1. First we classify all the links between each pair of hosts according to
the order of magnitude of latencies. For the generated classes we assign
an ascending sequence of integer numbers (latency levels). To the class
which comprises the fastest links we assign the level 1, to the next one
we assign the level 2 and so forth.

2. We compose some not necessarily disjoint clusters (let us call them
latency clusters) from all the given hosts such that the latency levels
of the links between any two member hosts of such a cluster cannot
exceed a certain value (some of these latency clusters may comprise
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Figure 4: Composing Latency Clusters and Process Partitions

some others with less maximum latency level), see Figure 4a. Further-
more each host itself is regarded as a latency cluster with the latency
level 0. Each latency cluster has a capacity feature which determines
how many processes can be assigned to it at most. This capacity is
calculated from the number of CPUs in the latency cluster multiplied
with an integer coefficient. The default value of the coefficient is 1,
but one can specify a higher value via a command line interface. The
generated latency clusters are stored in a list which is sorted according
to their maximal latency levels in ascending order (and on the same
level according to their capacities in descending order).

3. We generate all those partitioning of processes (in which processes are
organized into various local groups) which fulfil the given preferred
communication pattern of a program, see Figure 4b.

4. Finally we map the generated process partitions to some latency clus-
ters according to some compound heuristic (which helps to avoid the
combinatorial explosion of possibilities) which roughly works as follows:

• The process partitions are pre-evaluated. If there exist a latency
cluster whose capacity is greater than or equal to the minimal
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size of groups (given by the schema) and less than or equal to the
maximal size of groups (calculated from the schema) then:

– only those partitions are kept for the mapping which either
contains only one group or

– they have at least one group whose size is equal to the capacity
of one of the latency clusters (independently from the latency
values the optimal mappings always contain at least one group
which fits exactly into a latency cluster).

• For the mapping the latency clusters are stored in a list in which
they are arranged according to their latency level in an ascending
order; and on the same latency levels according their capacity in
a descending order in the list. A process partition is mapped to
some latency clusters group by group (greater groups are assigned
earlier). Each group is assigned to a latency cluster whose latency
level is minimal and available capacity is large enough for the
group. According to some additional low level heuristics a group
can be assigned more than one latency cluster if their latency
levels are the same (this can result an alternative mapping for a
particular partition).

To find a reasonably efficient scheduling for the program in the space
of solutions, we associate a cost function to each mapping (between a
process partition and some latency clusters). This cost function takes
into consideration the following characteristics of the mappings:

• the maximum latency level within the local groups,

• the maximum and the average latency values of all possible links
among the local groups.

The algorithm always returns the mapping whose associated cost func-
tion is minimal.

4.2 The Scheduling Algorithm in the Case of the Schema
“Graph”

In the case of the schema “Graph” the algorithm is slightly different because
the number and sizes of local groups are fixed by the given schema. So we
count only with the given process partition and we can therefore skip the
third step of the algorithm above.

Additionally since the schema “Graph” specifies links among the local
groups, in the cost function (in step 4) we apply average and maximum
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latency values of the pre-defined connections instead of all connections among
the groups.

4.3 The Scheduling Algorithm in the Case of the “Tree”
and the “Ring” Schemas

Although the number and the sizes of the local groups are not specified in
the cases of the “Tree” and the “Ring” schema, but each possible partition
contains pre-defined connections among its local groups. Hence, we apply in
the cost function (in step 4) the average and maximum latency values of the
pre-defined connections instead of all connections among the groups.

Furthermore, in the case of the schema “Tree” we take into account that
every local manager process shall be scheduled together with the correspond-
ing leaf group (they are mapped to the same latency cluster).

4.4 Disadvantage of the Algorithm

The algorithm assumes that on each host of a grid architecture an NWS
sensor runs and the latency is measured among all sensors pairwise. This all-
to-all network sensor communication would consume a considerable amount
of resources (both on the individual host machines and on the interconnection
network). For instance, the most common way to measure the end-to-end
performances in a grid architecture comprising 15 hosts is to periodically con-
duct the 152−15 = 210 network probes required to match all possible sensor
pairs [14]. This problem can be overcome with a careful, network topology
dependent configuration of the Network Weather Service (by establishing a
corresponding clique hierarchy).

5 Installation Guide

5.1 Pre-requisites

The current version of our distributed programming tool requires the follow-
ing installed softwares and settings on each participating grid machines:

• the user must own a user certificate issued by a corresponding CA;

• the grid services belonging to Globus Toolkit pre-Web service architec-
ture [2] must be installed;

• the XML C parser library of Gnome called libxml2 [5] must be installed;
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• the MPICH-G2 [12, 11], which is a grid-enabled implementation of the
MPI standard, must be installed;

• the library bin/ of MPICH-G2 (with its full path) must be given in
the system environment variable $PATH; and

• on that grid machine where the user intends to type MPICH-G2’s
mpirun (the local grid machine where the user logged in e.g.: via SSH),
she must do one of the following at least once before running her ap-
plication(s):

– source $GLOBUS LOCATION/etc/globus-user-env.csh or

– . $GLOBUS LOCATION/etc/globus-user-env.sh

5.2 “Easy to Use” Deployment Mechanism
for Evaluation and Testing

If one cannot or does not want to deploy our programming framework per-
manently on several grid nodes, but she would like to use it (or try it out at
least), we provide for this purpose an “Easy to Use” deployment procedure.
By this procedure a user can compile and install our distributed programming
framework on the local and several remote grid sites at once. This “Easy to
Use” deployment procedure requires only a list about those machines which
fulfill the conditions described in Section 5.1.

5.2.1 Deployment Steps

After a user logged in to a machine where the Globus Toolkit is installed and
she uploaded and unpacked the tarball of our TAAG software framework
into a directory on this machine (TAAG is the abbreviation of the term
“Topology-Aware API for the Grid”), she can apply our “Easy to Use”
deployment procedure which facilitates the installation of our software on
several grid machines. This deployment procedure consists of the following
three steps (see Figure 5):

1. The user must generate her user proxy certificate with the globus com-
mand grid-proxy-init (if she has not done it before).

2. The user must enumerate some grid sites with fully specified host names
on which she intends to execute her applications (except the local ma-
chine). For this, she must enter into the directory to where our software
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Figure 5: The “Easy to Use” Deployment in Action

framework was unpacked and open the header file taag-makefile-

header.mk. The list of the grid nodes can be given in the variable
MACHINES in the opened file, e.g.:

MACHINE1 = host.name.1

MACHINE2 = host.name.2

...

MACHINE_N = host.name.n

MACHINES = $(MACHINE1) $(MACHINE2) ... $(MACHINE_N)
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Note: If the user would like to deploy her own application(s) together
with the TAAG software framework to the given grid machines, she
should place her application(s) in the directory applications located
directly under the directory to where our software was unpacked. The
directory applications must directly contain a makefile, in which
the “make target” all is responsible for the compilation of the corre-
sponding user application(s) (the specified user application(s) will be
deployed and compiled on each grid machine during the next step into
a directory called taagApps located directly under the user’s home).

3. Finally the user should issue the command make gridInstall in the
same directory where the file taag-makefile-header.mk mentioned
above resides. Then it can be followed on the screen how the TAAG
software framework is deployed first to the local machine, then to all
given remote grid machines. On each machine (including the local one),
the software is deployed into a directory taag located directly under the
user’s home. After this step the user is able to use our software frame-
work in a real grid environment and to execute the example programs
or her application(s) (based on the TAAG programming framework),
see Section 5.3 and Section 5.5.

After the user finished her work and would like to clean up the grid
resources, she can issue the command make gridClean. This command re-
moves every installed instance of our software from each grid machine.

5.3 Execution Framework “taagrun”

The software tool “taagrun” is the implementation of the Deployment Mech-
anism described in Section 2 and it is based on the starting mechanism of
the grid-enabled MPI implementation MPICH-G2 [12]. It is located under
the directory bin in the tree hierarchy of the software package. It expects
an XML-based mapping file as an argument and starts an application on the
grid according to the content of the mapping file (executable name, location,
grid resources, distribution of processes, etc) in two steps:

• First, it distributes the mapping file into the directory /tmp on all the
specified grid machines,

• Then, it generates an RSL script from the mapping file and with the
help of this script it starts the application on the grid via MPICH-G2.

If the mapping file does not specify any grid resources within the XML tag
topology, the program attempts to execute the given application on the
localhost. Additionally, the user can apply the argument -dumprsl:
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taagrun -dumprsl <mapping_file.xml>

In this case the program only generates a RSL script from the given
mapping file and prints it out on the standard output.

5.4 The Scheduler Implementation “taag”

The program requires a running NWS service on the grid. ...

taag [options...] <SCHEMA file> [program arguments...]

Options:

-help This help.

-run Run executable on the grid according

to the generated mapping.

-dumprsl Displays only the generated RSL file

on the standard output.

-ppc n Specify the maximum number of

scheduled "Processes Per CPU".

The default is 1.

-log file Create a logfile about the mapping.

-nwsns hostname NWS nameserver. The default is

localhost.

-nwsport port The port of the NWS nameserver.

The default is 8090.

[program arguments...] take effect iff the option "-run" is

given.

Some examples for the XML-based schema files can be found in the directory
examples. ...

5.5 How to Execute the Example Programs

The current distribution of our software framework comprises three example
programs which are located under directory examples (the “Easy to Use”
deployment procedure [7] deploys and compiles these sources, too):

apiTest It simply presents the usage of the statements of our API in succes-
sion (the output depends on the given mapping file). The program can
be started by the command “../../bin/taagrun test.xml” from its
directory.

16



broadcastExample It sends broadcast messages round in a ring between
neighbor groups in two steps (the ring is always composed from some
groups of processes and its structure is described in the given mapping
file). In the first step the root of every even group (local groups with
even group rank) sends broadcast to all elements of its right neigh-
bor group. In the second step the root of every odd group (local
groups with odd group rank) sends broadcast to all elements of its
right neighbor group. The program can be started by the command
“../../bin/taagrun ringWith6Groups.xml” from its directory. The
complete source code of this example is described together with some
additional information and comments in Appendix E.

tree This program establishes a tree structure of processes where numerous
tasks are distributed by the root process (via the non-leaf processes),
elaborated by the leaf processes and finally the results of task are col-
lected by the root (via the non-leaf processes again). The program
works in case of various tree structures with 2, 3, 4, ... any levels de-
pending what kind of tree structure is described in the mapping file.
The program can be started by the command “../../bin/taagrun
treeWith3levelsOnlocalhost.xml” from its directory. The complete
source code of this example is described together with some additional
information and comments in Appendix C.

Of course every example can be executed with different mapping files.
The XML-based mapping files should be written directly by the user at the
moment. In a later project phase, these XML files will be automatically
generated by the Scheduling Mechanism (see Section 2).

6 Conclusions

Summarizing the achievements of the existing topology-aware programming
tools (e.g.:MPICH-G2), we can say that they make available the given topol-
ogy information on the level of their programming API and they optimize
(only) the collective communication operations (e.g.: broadcast) with the
help of the topology information such that they minimize the usage of the
slow communication channels. But they are still not able to adapt the point-
to-point communication pattern of a parallel programs to network topologies
such that they achieve a nearly optimal execution time on the grid.

Compared to these existing topology-aware programming tools, the major
advantages of our solution are the following:
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• It takes into consideration the point-to-point communication pattern
of a MPI parallel program and tries to fit it to a heterogeneous grid
network architecture,

• It preserves the achievements of the already existing topology-aware
programming tools. This means the topology-aware collective opera-
tions of MPICH-G2 are still available, since MPICH-G2 serves as a
basis for our software framework.

• Since our system hides low-level grid-related execution details from the
application by providing an abstract execution model, it eliminates
some algorithmic challenges of the high-performance programming on
the dynamic and heterogeneous grid environments. Programmers need
to deal only with the particular problems which they are going to solve
(like in a homogeneous cluster environments).

• The distribution of the processes is always conformed to the loading of
the network resources.

A drawback of our solution is that the applicable communication patterns
cannot be retrieved from the programs. If some schema is not enclosed
to a distributed application, its effective scheduling may not be possible at
the moment. We propose to overcome this issue in a subsequent version
of our software system where the programmer will be forced by the API
library to specify a recommended schema (with defined flexibility) via some
function calls in the source of the programs. According to our conception,
the scheduling mechanism will be able to query this built-in information from
the compiled application.

As the next step, we intend to replace the MPICH-G2 in our software
framework with its successor called MPIg [4]. By this substitution, our
TAAG system will be able to submit and execute parallel programs via the
Web-Service architecture of the Globus Toolkit, too (MPIg had only one in-
ternal release at the end of 2007, which is freely available for testing and
development purposes). Besides, we also plan to develop on the basis of
our TAAG programming framework some grid-distributed parallel applica-
tions (e.g.: a distributed n-body simulation based on Barnes-Hut algorithm
and some other programs in the fields of the hierarchical distributed genetic
algorithms) in cooperation with other research groups.
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Appendix

A The Finalized Topology-Aware API

The implemented API is an addition to the MPICH [3] programming library
based on the MPI standard and its purpose is to inform a parallel program

• how its processes assigned to some physical grid resources and to certain
virtual hierarchies (e.g.:groups, tree, etc.) and

• which are the designated roles for these processes.

All these are performed according to the XML-based execution plan file
(which was generated by the scheduling mechanism). A detailed descrip-
tion of the refined API is presented below. All calls described in this chapter
are completely implemented and tested.

A.1 Header File

taag.h header file is required for all programs/routines which intend to use
any calls of our API (TAAG is the abbreviation of the term “Topology-Aware
API for the Grid”).

A.2 Format of the API Calls

int rc = TAAG Xxxxx (parameter, ...) is the general format of the
calls defined our API. All of them return an integer error code. If the call was
successful, the return value is equal to the constant TAAG SUCCESS (= 0).
The follow error codes are defined in the API at present:

• TAAG ERR INIT (= 1) TAAG library was not initialized.

• TAAG ERR MPI (= 2) MPI environment was not initialized.

• TAAG ERR FILE (= 3) Invalid file name.

• TAAG ERR ARG (= 4) Invalid argument.
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• TAAG ERR SCHEMA (= 5) Invalid schema type.

• TAAG ERR PRANK (= 6) Invalid process rank.

• TAAG ERR GRANK (= 7) Invalid group rank.

• TAAG ERR COUNT (= 9) Invalid argument count.

• TAAG ERR HWTOPOLOGY (= 10) The hardware topology is not given in
the XML mapping file.

• TAAG ERR MEMORY (= 14) Unsuccessful memory allocation.

• TAAG ERR XML (= 15) Incorrect XML mapping file.

• TAAG ERR UNKNOWN (= 20) Unknown error.

A.3 Calls wrt. Initialization and Termination

TAAG Init (char *exec plan file) allocates and initializes the corre-
sponding data structures according to the generated execution plan file given
in the argument. If the argument is null then the latest available execution
plan is taken. If there is none, then the call returns an error code which is
different as TAAG SUCCESS. This function must be called in every program,
must be called before any other TAAG functions and must be called only
once in a program.

TAAG Initialized (int *flag) indicates whether TAAG Init has been
called. It returns a flag as either logical true ( TAAG TRUE = 1 ) or false
( TAAG FALSE = 0 ).

TAAG Free () deallocates the data structures used by the API library.

A.4 Calls wrt. the Program Structure Group

Program structure called group is not correspond to object MPI Group. The
group always consists of some processes which are located on the
same local physical infrastructure (same host or same LAN). Each
group has a unique rank assigned by our library when the group is initialized.
A group rank (similarly to the process ranks) is an integer number and it can
take any value from the domain which runs from 0 to the number of groups
minus one. Processes within a group have a predefined order.
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TAAG Group number (int *nr) returns the number of the groups.

TAAG Group rank (int rank, int *grpRank) requires a process rank
as input and returns the rank of the group which belongs to this process.

TAAG Group size (int grpRank, int *nr) requires a group rank as
input and returns the number of member processes of the group.

TAAG Group members (int grpRank, int nr, int *members) re-
quires a group rank and the maximum size of the vector given in the third
argument as input and returns the ranks of all member processes of the
group.

TAAG Group MPIGroup (int nrProcs, int *ranks, int nrGroups,
int *grpRanks, MPI Group *grp) requires the number and the enumer-
ation of some process ranks; furthermore the number and the enumeration of
some group ranks as input and it composes a MPI Group structure from all
given processes (included the processes of the given groups as well). This call
is useful if some MPI collective operations are going to be used within among
the given processes and groups. The order of processes in the MPI Group
object is: given processes first (in the given order) then the members of the
given groups (in the given order of groups).

A.4.1 Convenient Calls Derived from the Call TAAG Group graph

TAAG Group degree (int grpRank, int order, int *nr) requires a
group rank and the order (distance) of the queried neighbors as input. If
the execution plan defines predefined links among the groups (which specify
the groups that are planned to interact each other) then this call returns the
number of the n-th order ”neighbor” groups of the given one. For instance,
if the second argument is equal to:

• -1 : this call returns the number of groups which are unreachable from
the given one;

• 0 : this call returns with 1 (the given group itself is the only one whose
distance is 0 - no reason for this call);

• 1 : this call returns the number of groups which are the (1st order)
neighbors of the given one;
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• 2 : this call returns the number of groups which are the 2nd order
neighbors of the given one;

• ... and so on and forth.

TAAG Groups neighbours (int grpRank, int order, int nr, int
*list) requires a group rank, the order (distance) of the queried neighbors
(see the description of the call TAAG Group degree above) and the maxi-
mum size of the vector given in the fourth argument and as input. If the
execution plan defines predefined links among the groups (which specify the
groups that are planned to interact each other) then this call returns a list
of the ranks of the n-th order ”neighbor” groups of the given one.

TAAG Group distance (int grpRank1, int grpRank2, int *nr) re-
turns the number of edges (the shortest distance) between the two groups
in the predefined graph. If there is now a predefined way between the two
groups in the graph the third argument returns the value -1.

TAAG Group way (int grpRank1, int grpRank2, int nr, int *list)
requires ranks of two groups and the maximum size of the vector given in the
forth argument as input and returns the list of the ranks of the intermediate
groups (along the shortest path) included grpRank2 at the end. If there is
now a predefined way between the two groups in the graph the forth one
returns a NULL.

A.4.2 Convenient Calls Derived from the Call TAAG Group Members

TAAG Group element (int grpRank, int index, int *rank) requ-
ires a group rank as input and integer n number (where index can be a value
taken from an integer domain runs from 0 to the number of processes in the
group minus one) and returns the rank of the index–th process in the given
group.

A.5 Calls wrt. Program Structure Tree

The following section presents some calls which are related to the program
structure tree. All these calls are convenient calls which can be implemented
by application of the calls presented in Section A.4.

In a tree, the rank of the root process (and the rank of the root group
as well) is always TAAG ROOT (= 0). The leaves which belong to the same
parent compose a group. Furthermore, each non-leaf process is wrapped into
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a one element group (but its group rank is not necessarily corresponds to
the rank of the non-leaf process). Hence, every call presented in Section A.4
above can be applied in a tree. Each execution plan can describe one tree at
most.

TAAG Tree isTree (int *flag) indicates whether given execution plan
(file) describes a tree structure. It returns a flag as either logical true (
TAAG TRUE = 1 ) or false ( TAAG FALSE = 0 ).

TAAG Tree depth (int *levels) returns the depth (number of the lev-
els) of the tree.

TAAG Tree level (int rank int *level) requires a process rank and
returns on which level the given process is located on the tree. The level of
the root is 0 and the level of the leaves is depth− 1.

TAAG Tree width (int rank, int level, int *nr) requires process rank
which specifies root of a subtree, a level in the specified subtree (or degree of
children) and it returns the width of the subtree on the given level in terms
of processes (or 0 if the given level number is not applicable on the given
subtree).

Comment: the tree structure described by the execution plan may be un-
balanced, it can therefore be useful to know e.g.: the number of the available
workers on particular subtree).

TAAG Tree children (int rank, int level, int nr, int *procs) requires
process rank which specifies root of a subtree, a level in the specified subtree
(or degree of children) and the maximum size of the vector given in the forth
argument (the maximum width of the tree on the given level) and it returns
a list of the ranks of the successor processes located on the given level in the
specified subtree.

TAAG Tree parent (int rank, int *parent) requires a process rank
and returns the rank of the parent of the given process.

A.5.1 Further Convenient Calls

The following three calls can be derived from the calls TAAG Tree level and
TAAG Get Tree depth.
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TAAG Tree root (int *rank) returns the rank of the root process.

TAAG Tree isLeaf (int rank, int *flag) requires a process rank and
indicates whether the given process is located on the level on depth − 1 in
the tree. The call returns a flag as either logical true ( TAAG TRUE = 1 ) or
false ( TAAG FALSE = 0 ).

TAAG Tree isLocalManager (int rank, int *flag) requires a process
rank and indicates whether the given process is located on the level on depth−
2 in the tree. The call returns a flag as either logical true ( TAAG TRUE = 1 )
or false ( TAAG FALSE = 0 ). The local managers are specials in the sense
that they are always located on the same local physical infrastructure (Host
or LAN) as their children.

A.6 Calls wrt. Program Structure Ring

This section contains some convenient calls wrt. program structure ring of
groups. These calls can be derived from the calls presented in Section A.4

TAAG Ring isRing (int *flag) indicates whether given execution plan
(file) describes a ring structure. It returns a flag as either logical true
( TAAG TRUE = 1 ) or false ( TAAG FALSE = 0 ).

TAAG Ring left (int grpRank1, int *grpRank) requires a group rank
and it returns rank of the left neighbor group of the given group.

TAAG Ring right (int grpRank1, int *grpRank2) requires a group
rank as input and it returns rank of the right neighbor group of the given
group.

A.7 Calls wrt. Topology Structure

TAAG Topology given (int *flag) indicates whether given execution
plan (file) describes a network topology. It returns a flag as either logical
true ( TAAG TRUE = 1 ) or false ( TAAG FALSE = 0 ).

TAAG CPU number (int *nr) returns the number of the allocated
CPUs.

TAAG Host number (int *nr) returns the number of the allocated hosts.
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TAAG Host properties (int rank, int *nrCPUs, int *nrProcs) re-
quires a process rank as input and returns the number of CPUs and the
number of processes on the host where the given process is located. NULL
pointer can be applied for the second and third arguments.

TAAG Host processes (int rank, int nr, int *ranks) requires a pro-
cess rank and the maximum number of the vector given in the third argument
as input and it returns the ranks of all the processes residing on the same
host.

TAAG Host latency (int rank1, int rank2, double *latency) re-
quires the ranks of two processes as input and returns the average latency
value between two hosts on which the given processes reside. If the given
two processes are located on the same host, then the call returns with 0.

TAAG Host address (int rank, char *address) requires a process
rank as input and returns the address of the host where the process re-
sides. The size of the given char vector should be equal to the constant
TAAG MAX HOSTNAME STRING.

TAAG LAN number (int *nr) returns the number of LANs whose re-
sources are used in the current session.

TAAG LAN properties (int rank, int *nrHosts, int *nrCPUs, int
*nrProcs) requires a process rank as input and returns the number of hosts,
the number of CPUs and the number of processes in the LAN where the given
process is located. NULL pointer can be applied for the last three arguments.

TAAG LAN processes (int rank, int nr, int *ranks) requires a pro-
cess rank and the maximum number of the vector given in the third argument
as input and it returns the ranks of those processes which are executed on
the same LAN.

TAAG Comm level (int rank1, int rank2, int *commlevel) requires
two process ranks as input and returns on which network level they can
communicate with each other.

• If the call returns with TAAG WAN LEVEL (= 0) then the two processes
can interact each other only via WAN,

25



• but if the call returns with TAAG LAN LEVEL (= 1) they are located in
the same LAN network and

• if the call returns with TAAG HOST LEVEL (= 2) they nest on the same
host.

B The XML-based Execution Plan

The scheduling mechanism performs the mapping between the generalized
communication structure of program and the topology of a physical grid
architecture and provides an XML-based execution plan as an output. This
execution plan is required for the deployment mechanism and the Topology-
Aware API.

The XML-based mapping language composed for describing execution
plans consists of the following XML tags:

<mapping> is the root element of the XML-based description.

<executable> is a child element of the element <mapping> and it contains
the file name of the executable of the corresponding application.

<applicationId> is a child element of the element <mapping> and it spec-
ifies an unique identifier for the mapping description. This identifier
should be the same if an application is executed more than once on the
same grid environment with the same parameters within a certain time
interval.

<timeStamp> is a child element of the element <mapping> and it defines
validity this particular mapping description.

<graph> is a child element of the element <mapping> and it describes how
the processes are organized into a particular logical (undirected graph)
structure.

<type> is a child element of the element <graph> and it specifies the type
of the given structure (in the current version of the program, the type
can be a “tree”, a “ring” or a “graph”).

<group> is a child element of the element <graph> and it defines a local
group of processes (a local group is always correspond to vertex of the
given logical structure of processes). Its attribute ‘‘id’’ defines a
unique rank for the group
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<process> is a child element of the element <group> and it contains a
unique process rank (this tag can occur as child element of the element
<host> as well, see below).

<edge> is a child element of the element <graph> and it has two attributes
‘‘oneEndPoint’’ and ‘‘otherEndPoint’’. This element specifies an
edge in the described logical structure of processes by connecting two
local groups (referred by their identifiers).

<topology> is a child element of the element <mapping> and it describes
how the corresponding processes are distributed on the allocated grid
resources.

<lan> is a child element of the element <topology> and it enumerates
some grid resources which belong to the same local network.

<host> is a child element of the element <lan> and it describes the fea-
tures of a particular grid site and enumerates the particular processes
scheduled to it.

<hostname> is a child element of the element <host> and it gives the
hostname of the current host.

<CPUs> is a child element of the element <host> and it gives the number
of CPUs on the current host.

<directory> is a child element of the element <host> and it gives the
home directory of the user (how requested the mapping from the schedul-
ing mechanism) on the current host.

<process> is a child element of the element <host> and it contains a
unique process rank. The given process is scheduled to the current
host.

<latency> is a child element of the element <topology> and it has two
attributes ‘‘row’’ and ‘‘column’’. This element contains a matrix
provided by NWS software which contains average latency values be-
tween any two allocated hosts.

In Appendix D an example execution plan (mapping description) is pre-
sented which has already been employed to run a simple distributed applica-
tion (based on our supercomputing API) on the architecture of the Austrian
Grid.
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C Example for Multilevel Parallelism

The following example represents the usage of the proposed tree-related calls
described in Section A.5. The source code discussed below is an updated and
corrected version of the one presented in [6]. This program has been tested
together with the prototype version of our supercomputing API with different
number of processes executed on the grid sites altix1.jku.austriangrid.at
(Altix 350) and lilli.edvz.uni-linz.ac.at (Altix 4700).

The given example program itself (without any modification in its source
code) can be used to establish different kinds of the tree-like multilevel par-
allelism on the grid

• which can be organized into arbitrary levels,

• which can comprise various number of processes and

• which can be split to local groups of processes in various manners (de-
pending of the actual available hardware resources).

For instance, one possibility for the distribution of processes is the xml-based
execution plan example described in Section D, with which this source code
can be conjugated before its execution (Mentioned example consists of 20
processes organized into a 3 level tree structured and deployed on two grid
sites).

In this program a global manager process distributes some computational
tasks among its child processes. If these processes are not a leaf/worker
processes then in turn they distribute these tasks among their children further
until the tasks reach the worker/leaf processes at the bottom of the tree
structure. After a worker accomplished a task it sends back to the global
manager through its local manager.

001: #include <stdlib.h>

002: #include <stdio.h>

003: #include <string.h>

004: #include <mpi.h>

005: #include <taag.h>

006: #define MSG_SIZE 160

007: #define NR_OF_TASKS 500

008: #define BUFFER_SIZE NR_OF_TASKS+2

009: #define EXIT_SIGNAL "EXIT"

010: #define XML_DEFAULT "first_tree.xml"
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011: void create_task(int i, char* s) {

012: sprintf(s,"TASK%d",i);

013: }

014: void process_task(int rank, char* s, char* t) {

015: int group_rank;

016: TAAG_Group_rank(rank, &group_rank);

017: sprintf(t, "%s is processed by %d in group %d.",

s, rank, group_rank);

018: }

019: int main(int argc, char *argv[]) {

020: int nrProcs, rc, flag, nrChildren;

021: int rank, root, parent;

022: int children[100];

023: char outbuff[BUFFER_SIZE][MSG_SIZE];

024: char inbuff[BUFFER_SIZE][MSG_SIZE];

025: int indx_recv = 0;

026: int child_indx = 0;

027: int indx = 0;

028: MPI_Request reqs[BUFFER_SIZE];

029: MPI_Status stats[BUFFER_SIZE];

030: MPI_Request req;

031: MPI_Status stat;

032: int triggeredExit = TAAG_FALSE;

033: rc = MPI_Init(&argc,&argv);

034: if (rc != MPI_SUCCESS) {

035: printf("Error starting MPI program.\n");

036: MPI_Abort(MPI_COMM_WORLD, rc);

037: }

038: MPI_Comm_size(MPI_COMM_WORLD,&nrProcs);

039: MPI_Comm_rank(MPI_COMM_WORLD,&rank);

040: if (argc > 1) {

041: rc = TAAG_Init(argv[1]);
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042: }

043: else {

044: rc = TAAG_Init(XML_DEFAULT);

045: }

046: if (rc != TAAG_SUCCESS) {

047: fprintf(stderr,"Error (code %d) initializing

the TAAG structure on process %d.\n",

rc, rank);

048: MPI_Finalize();

049: return rc;

050: } //if

051: TAAG_Tree_isTree(&flag);

052: if (!flag) {

053: fprintf(stderr, "Error (code %d) the given

schema is NOT a tree.\n",

TAAG_ERR_SCHEMA);

054: TAAG_Free();

055: MPI_Finalize();

056: return TAAG_ERR_SCHEMA;

057: }

058: TAAG_Tree_root(&root);

059: if (rank == root) {

060: /***** root branch *****/

061: TAAG_Tree_width(rank, 1, &nrChildren);

062: TAAG_Tree_children(rank, 1, nrChildren, children);

063: for (int i = 0; i < NR_OF_TASKS; i++) {

064: create_task(i, outbuff[i]);

065: MPI_Irecv(inbuff[i], MSG_SIZE,

MPI_CHAR, MPI_ANY_SOURCE, MPI_ANY_TAG,

MPI_COMM_WORLD, &reqs[i]);

066: MPI_Isend(outbuff[i], MSG_SIZE,

MPI_CHAR, children[child_indx], i,

MPI_COMM_WORLD, &req);

067: child_indx++;

068: if (child_indx == nrChildren) child_indx = 0;

069: }
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070: MPI_Waitall (NR_OF_TASKS, reqs, stats);

071: for (int i = 0; i < NR_OF_TASKS; i++) {

072: printf("%s\n", inbuff[i]);

073: } //for

074: strcpy(outbuff[NR_OF_TASKS], EXIT_SIGNAL);

075: for (int i = 0; i < nrChildren; i++) {

076: MPI_Send(outbuff[NR_OF_TASKS], MSG_SIZE,

MPI_CHAR, children[i], 0,

MPI_COMM_WORLD);

077: }

078: } //if

079: else {

080: /***** non-root branch *****/

081: TAAG_Tree_parent(rank, &parent);

082: TAAG_Tree_isLeaf(rank, &flag);

083: if (flag == TAAG_FALSE) {

084: /***** non-leaf branch *****/

085: TAAG_Tree_width(rank, 1, &nrChildren);

086: TAAG_Tree_children(rank, 1, nrChildren, children);

087: MPI_Irecv(inbuff[indx_recv], MSG_SIZE,

MPI_CHAR, parent, MPI_ANY_TAG,

MPI_COMM_WORLD, &reqs[indx_recv]);

088: while(!triggeredExit) {

089: MPI_Wait(&reqs[indx_recv], &stat);

090: indx = indx_recv;

091: indx_recv++;

092: if (!strcmp(inbuff[indx], EXIT_SIGNAL)) {

093: triggeredExit = TAAG_TRUE;

094: for (int i=0; i < nrChildren; i++) {

095: MPI_Send(inbuff[indx], MSG_SIZE,

MPI_CHAR, children[i], stat.MPI_TAG,

MPI_COMM_WORLD);

096: } //for

097: } //if

098: else {

099: MPI_Irecv(inbuff[indx_recv], MSG_SIZE,

MPI_CHAR, MPI_ANY_SOURCE, MPI_ANY_TAG,

MPI_COMM_WORLD, &reqs[indx_recv]);
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100: if (stat.MPI_SOURCE == parent) {

101: MPI_Isend(inbuff[indx], MSG_SIZE,

MPI_CHAR, children[child_indx],

stat.MPI_TAG, MPI_COMM_WORLD, &req);

102: child_indx++;

103: if (child_indx == nrChildren) child_indx = 0;

104: }

105: else {

106: MPI_Isend(inbuff[indx], MSG_SIZE,

MPI_CHAR, parent, stat.MPI_TAG,

MPI_COMM_WORLD, &req);

107: } //else

108: } //else

109: } //while

110: } //if

111: else {

112: /***** leaf branch *****/

113: MPI_Irecv(inbuff[indx_recv], MSG_SIZE,

MPI_CHAR, parent, MPI_ANY_TAG,

MPI_COMM_WORLD, &reqs[indx_recv]);

114: while(!triggeredExit) {

115: MPI_Wait(&reqs[indx_recv], &stat);

116: if (!strcmp(inbuff[indx_recv], EXIT_SIGNAL)) {

117: triggeredExit = TAAG_TRUE;

118: } //if

119: else {

120: indx = indx_recv;

121: indx_recv++;

122: MPI_Irecv(inbuff[indx_recv], MSG_SIZE,

MPI_CHAR, parent, MPI_ANY_TAG,

MPI_COMM_WORLD, &reqs[indx_recv]);

123: process_task(rank,

inbuff[indx],

outbuff[indx]);

124: MPI_Isend(outbuff[indx], MSG_SIZE,

MPI_CHAR, parent, stat.MPI_TAG,

MPI_COMM_WORLD, &req);

125: } //else

126: } //while

127: } //else

128: } //else
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129: TAAG_Free();

130: MPI_Finalize();

131: return 0;

132: }

Comments:

lines 001–005 comprise the required includes.

line 006 defines the constant MSG SIZE, which is the maximum size of the
MPI messages.

line 007 defines the constant NR OF TASKS, which is the number of tasks
distributed among the processes.

line 008 defines the constant BUFFER SIZE, which is the maximum number
of messages can be stored in a message buffer used in this program.

line 009 defines the constant EXIT SIGNAL, which is a predefined message.
If a process receives this message it finishes its execution.

line 010 defines the constant XML DEFAULT, which is a filename. This file
name is used if no command line argument is given for the program.

lines 011–013 define a function called create task which returns a string
description of the subsequent computational task.

line 014–018 define a function called process task whose input is a previ-
ously mentioned task description and whose output is the outcome of
this task (in string format).

lines 040–045 allocate and initialize the corresponding data structures ac-
cording to the execution plan comprised by the given mapping file.

line 051 checks whether the given execution plan describes a program struc-
ture “tree”.

line 058 determines the root process of the tree hierarchy.

lines 059–078 describe the behavior of the root process of the tree. In
line 061 it determines number and in line 062 the rank of its children
processes. Then it generates a given number of computational tasks,
distributes them among its children and waits for the results. If all
results were received, it prints out them. Finally, root starts to dis-
seminate a message EXIT SIGNAL to its each child and it finishes its
execution.
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line 081 determines the parent process of the current non-root process in
the tree.

line 082 decides whether the current process is a leaf in the tree.

lines 084–110 describe the behavior of the intermediate scheduler processes
in the tree. It determines number and the rank of children of the current
process. Then local scheduler is blocked, until a message is received. If
the message was sent by its parent process it forwards it to one of its
children. Otherwise, it forwards it to its parent. If the local scheduler
receives a message EXIT SIGNAL, it forwards this message to its all
children, then it finishes its execution.

lines 113–128 describe the behavior of the leaf processes in the tree. A
leaf is blocked, until a computational task arrives in a message from
its parent. Then it processes the task and sends the result back to its
parent. If a message EXIT SIGNAL is received, the leaf process finishes
its execution.

line 129 deallocates the data structures applied by our library.

D Example for the XML-based Execution Plan

The example presented below is an XML-based description of an execution
plan for the grid application described in Section C. The name of the exe-
cutable of the application is given between the XML tags <executable>.

An execution plan usually consists of two major parts:

• the part given between the XML tags <graph> describes how the pro-
cesses are organized into higher-level logical structures (e.g.: how the
processes are clustered to groups, and how these groups are planned to
interact with each other, etc.),

• the part given between the XML tags <topology> describes how the
processes are distributed on the physical resources on the grid (e.g.:
which processes are executed on which grid hosts, what are the working
directories on these hosts, etc.).

The given example describes a three level tree structures which is com-
posed by 20 processes executed on the grid sites altix1.jku.austriangrid.at
(Altix 350) and lilli.edvz.uni-linz.ac.at (Altix 4700), see Figure 6.
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Figure 6: The execution plan given by the XML source below

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE mapping SYSTEM "../../etc/taagXML.dtd">

<mapping>

<executable>taagTree</executable>

<applicationId>treeWith3levels</applicationId>

<timeStamp>00000000</timeStamp>

<graph>

<type>tree</type>

<group id="0">

<process>0</process>

</group>

<group id="1">

<process>1</process>

</group>

<group id="2">

<process>2</process>

</group>

<group id="3">

<process>3</process>

<process>4</process>

<process>5</process>

<process>6</process>

<process>7</process>
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</group>

<group id="4">

<process>8</process>

<process>9</process>

<process>10</process>

<process>11</process>

<process>12</process>

</group>

<group id="5">

<process>13</process>

</group>

<group id="6">

<process>14</process>

<process>15</process>

<process>16</process>

<process>17</process>

<process>18</process>

<process>19</process>

</group>

<edge oneEndPoint="0" otherEndPoint="1"/>

<edge oneEndPoint="0" otherEndPoint="2"/>

<edge oneEndPoint="0" otherEndPoint="5"/>

<edge oneEndPoint="1" otherEndPoint="3"/>

<edge oneEndPoint="2" otherEndPoint="4"/>

<edge oneEndPoint="5" otherEndPoint="6"/>

</graph>

<topology>

<lan id="0">

<host id="0">

<hostname>altix1.jku.austriangrid.at</hostname>

<CPUs>16</CPUs>

<directory>$(HOME)/taag/examples/tree</directory>

<process>0</process>

<process>1</process>

<process>2</process>

<process>3</process>

<process>4</process>

<process>5</process>

<process>6</process>

<process>7</process>

<process>8</process>
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<process>9</process>

<process>10</process>

<process>11</process>

<process>12</process>

</host>

<host id="1">

<hostname>lilli.edvz.uni-linz.ac.at</hostname>

<CPUs>128</CPUs>

<directory>$(HOME)/taag/examples/tree</directory>

<process>13</process>

<process>14</process>

<process>15</process>

<process>16</process>

<process>17</process>

<process>18</process>

<process>19</process>

</host>

</lan>

<latency row="0" column="0">0.0</latency>

<latency row="0" column="1">1.0</latency>

<latency row="1" column="1">0.0</latency>

</topology>

</mapping>

Note: The XML tag <latency> will be used in our second prototype ver-
sion to provide information about the average latency between two given
hosts, but it is not used at the moment. Hence, we have just adjusted its
value to one second in the case of two distinct hosts.

E Example How to Use MPI Collective Op-

eration among Groups and Processes

The following example program presents how to perform MPI collective op-
erations among local groups and single processes, too. The source code dis-
cussed below is an corrected and updated version of the one presented in [6].
This program was tested with different number of processes on the grid sites
altix1.jku.austriangrid.at (Altix 350) and lilli.edvz.uni-linz.ac.at
(Altix 4700).

This program is an artificial example that assumes its processes parti-
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tioned to even number of local groups which compose a ring. Such a com-
munication pattern can be specified by the schema ring [6] as follows:

RING{nrOfProcs,minSizeOfGroups,2}

In the first two arguments the number of processes and the minimum size
of the local groups is given. The third argument is a restriction for the
scheduling mechanism such that its value must always be a divisor of the
number of the local groups (in our example this third argument is 2 because
the program requires even number of local groups).

The program sends broadcast messages round in the ring between neigh-
bor groups in two steps:

• In the first step the root process of every even group (local group with
even group rank) sends a broadcast to all elements of its right neighbor
group.

• In the second step the root process of every odd group (local group with
odd group rank) sends a broadcast to all elements of its right neighbor
group.

Since we apply MPICH-G2 as an underlying software architecture, the
performed broadcast operations are topology aware [12], too.

001: #include <stdlib.h>

002: #include <stdio.h>

003: #include <string.h>

004: #include <mpi.h>

005: #include <taag.h>

006: #define MSG_SIZE 160

007: #define XML_DEFAULT "ringWith6Groups.xml"

008: void create_message(int rank, int grp, char* s) {

009: sprintf(s,"MESSAGE FROM P%d (from G%d)",rank, grp);

010: }

011: void process_message(int step, int rank, int grp, char* s) {

012: printf("IN STEP %d: P%d (from G%d) RECEIVED: \"%s\".\n",

step, rank, grp, s);

013: }
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014: int main(int argc, char *argv[]) {

015: int nrProcs, rc, flag;

016: int rank, localRootRank, remoteRootRank;

017: int grpRank, leftGrpRank, rightGrpRank;

018: MPI_Comm mpiComm1, mpiComm2;

019: MPI_Group mpiGrp1, mpiGrp2;

020: char buff[MSG_SIZE];

021: rc = MPI_Init(&argc,&argv);

022: if (rc != MPI_SUCCESS) {

023: printf("Error starting MPI program.\n");

024: MPI_Abort(MPI_COMM_WORLD, rc);

025: }

026: MPI_Comm_size(MPI_COMM_WORLD,&nrProcs);

027: MPI_Comm_rank(MPI_COMM_WORLD,&rank);

028: if (argc > 1) {

029: rc = TAAG_Init(argv[1]);

030: }

031: else {

032: rc = TAAG_Init(XML_DEFAULT);

033: }

034: if (rc != TAAG_SUCCESS) {

035: fprintf(stderr,"Error (code %d) initializing the TAAG

structure on process %d.\n", rc, rank);

036: MPI_Finalize();

037: return rc;

038: } //if

039: TAAG_Ring_isRing(&flag);

040: if (!flag) {

041: fprintf(stderr, "Error (code %d) the given schema is

NOT a ring.\n", TAAG_ERR_SCHEMA);

042: TAAG_Free();

043: MPI_Finalize();

044: return TAAG_ERR_SCHEMA;

045: } //if
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046: TAAG_Group_rank(rank, &grpRank);

047: TAAG_Ring_right(grpRank, &rightGrpRank);

048: TAAG_Ring_left(grpRank, &leftGrpRank);

049: /******************* First Step *************************/

050: if (grpRank % 2 == 0) { //even group rank

051: TAAG_Group_element(grpRank, 0, &localRootRank);

052: TAAG_Group_MPIGroup(1, &localRootRank, 1, &rightGrpRank,

&mpiGrp1);

053: if (rank == localRootRank) create_message(rank, grpRank,

buff);

054: } //if

055: else { //odd group rank

056: TAAG_Group_element(leftGrpRank, 0 , &remoteRootRank);

057: TAAG_Group_MPIGroup(1, &remoteRootRank, 1, &grpRank,

&mpiGrp1);

058: } //else

059: //MPI_Comm_create is a collective operation

060: MPI_Comm_create(MPI_COMM_WORLD, mpiGrp1, &mpiComm1);

061: //sending/receiving broadcast from the root of each even

//groups to all element of its right neighbor

062: if (mpiComm1 != MPI_COMM_NULL) { /* not every process is

involved in the broadcast */

063: MPI_Bcast(buff, MSG_SIZE, MPI_CHAR, 0, mpiComm1);

064: process_message(1, rank, grpRank, buff);

065: }

066: /******************* Second Step *************************/

067: if (grpRank % 2 == 1) { //odd group rank

068: TAAG_Group_element(grpRank, 0, &localRootRank);

069: TAAG_Group_MPIGroup(1, &localRootRank, 1, &rightGrpRank,

&mpiGrp2);

070: if (rank == localRootRank) create_message(rank, grpRank,

buff);

071: } //if

072: else { //even group rank

073: TAAG_Group_element(leftGrpRank, 0 , &remoteRootRank);
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074: TAAG_Group_MPIGroup(1, &remoteRootRank, 1, &grpRank,

&mpiGrp2);

075: } //else

076: //MPI_Comm_create is a collective operation

077: MPI_Comm_create(MPI_COMM_WORLD, mpiGrp2, &mpiComm2);

078: //sending/receiving broadcast from the root of each odd

//groups to all element of its right neighbour

079: if (mpiComm2 != MPI_COMM_NULL) { /* not every process is

involved in the broadcast */

080: MPI_Bcast(buff, MSG_SIZE, MPI_CHAR, 0, mpiComm2);

081: process_message(2, rank, grpRank, buff);

082: }

083: if (mpiComm1 != MPI_COMM_NULL) MPI_Comm_free(&mpiComm1);

084: if (mpiComm2 != MPI_COMM_NULL) MPI_Comm_free(&mpiComm2);

085: MPI_Group_free(&mpiGrp1);

086: MPI_Group_free(&mpiGrp2);

087: TAAG_Free();

088: MPI_Finalize();

089: return 0;

090: }

Comments:

lines 001–005 comprise the required includes.

line 006 defines the constant MSG SIZE, which is the maximum size of the
MPI messages.

line 007 defines the constant XML DEFAULT, which is a filename. This file
name is used if no command line argument is given for the program.

lines 008–010 define a function called create message which generates a
string. The string will be sent in a broadcast.

lines 011–013 define a function called process message which writes out
its string argument together with some additional information on the
standard output.
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lines 028–033 allocate and initialize the corresponding data structures ac-
cording to the mapping file comprised by the given file.

line 039 checks whether the given mapping file describes a program struc-
ture “ring”.

line 046 determines the rank of the group in which the current process is
involved.

line 047 determines the rank of the right neighbor group of the current
group.

line 048 determines the rank of the left neighbor group of the current group.

First Step:

lines 050-054 are executed only on the processes of EVEN local groups.

line 052 composes a MPI group on each process of every EVEN local group,
which comprises the root process (the first element) of the current
group and all processes of the right neighbor group (the order of the
processes in the created MPI group is always the following: first the
given processes in the given order, then the processes of the given group
the given order ).

line 053 generates a string message on the root process of the current group.

lines 055-058 are executed only on the processes of ODD local groups.

line 057 composes a MPI group on each process of every ODD local group,
which comprises all processes of the current group and the root process
(the first element) of the left neighbor group.

line 059 establishes some MPI communicators according to the previously
created MPI groups from the MPI COMM WORLD. Attention, the
statement MPI Comm create is a collective operation (concerning the
communicator given in its first argument), therefore, all processes must
perform it even those of them which are not involved in the created MPI
groups.

lines 062-065 check whether the current process involved in the given com-
municator. If it is, then a broadcast is performed within this commu-
nicator (from its first process to its all processes) and the received
message will be displayed by the function process message.
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Second Step:

lines 067-071 are executed only on the processes of ODD local groups.

line 069 composes a MPI group on each process of every ODD local group,
which comprises the root process (the first element) of the current group
and all processes of the right neighbor group.

line 070 generates a string message on the root process of the current group.

lines 072-075 are executed only on the processes of EVEN local groups.

line 074 composes a MPI group on each process of every EVEN local group,
which comprises all processes of the current group and the root process
(the first element) of the left neighbor group.

line 077 establishes some MPI communicators according to the previously
created MPI groups from the MPI COMM WORLD. Attention, the
statement MPI Comm create is a collective operation (concerning the
communicator given in its first argument), therefore, all processes must
perform it even those of them which are not involved in the created MPI
groups.

lines 079-082 check whether the current process involved in the given com-
municator. If it is, then a broadcast is performed within this commu-
nicator (from its first process to its all processes) and the received
message will be displayed by the function process message.

lines 083-086 free the created MPI structures (MPI groups and MPI com-
municators).

line 087 deallocates the data structures applied by our software framework.
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