Rewriting

Part 6. Confluence of Term Rewriting Systems

Temur Kutsia
RISC, JKU Linz

Confluence is undecidable

The following problem is undecidable:
Given: A finite TRS R.
Question: Is R confluent or not?

Confluence is undecidable

The following problem is undecidable:
Given: A finite TRS R.
Question: Is R confluent or not?
Proof.
Idea:

- Given a set of identities E such that $\operatorname{V} \operatorname{ar}(l) \approx \mathcal{V} \operatorname{ar}(r)$ for all $l \approx r \in E, l$ and r not being variables.
- Construct a TRS whose confluence problem is equivalent to the ground word problem for E.
- Undecidability of the ground word problem for E (see e.g. Examples 4.1.3 and 4.1.4 from the book of Baader and Nipkow) will imply undecidability of the confluence problem.

Confluence is undecidable

The following problem is undecidable:
Given: A finite TRS R.
Question: Is R confluent or not?
Proof.
Construction of a TRS:

1. $R:=E \cup E^{-1}$ is a confluent TRS.
2. $R_{s t}:=R \cup\{a \rightarrow s, a \rightarrow t\}$, where s and t are given ground terms and a is a new constant.
3. $R_{s t}$ is confluent iff $s \approx_{E} t$.

Hence, the ground word problem for E reduces to the confluence problem for $R_{s t}$.

A decidable subcase

Theorem 6.1
For terminating TRSs, confluence is decidable.
Proof idea:

- By Newman's lemma, if a TRS is terminating and locally confluent, then it is confluent.
- To prove the theorem, we need to prove that local confluence is decidable for terminating TRSs.

How to test local confluence?

Local confluence:

How to test local confluence?

To test for local confluence of \rightarrow_{R}, consider reductions:

That means, there are rules $l_{1} \rightarrow r_{1}, l_{2} \rightarrow r_{2} \in R$, positions $p_{1}, p_{2} \in \mathcal{P o s}(s)$, and substitutions σ_{1}, σ_{2} such that

- $\left.s\right|_{p_{1}}=\sigma_{1}\left(l_{1}\right)$ and $t_{1}=s\left[\sigma_{1}\left(r_{1}\right)\right]_{p_{1}}$.
- $\left.s\right|_{p_{2}}=\sigma_{2}\left(l_{2}\right)$ and $t_{2}=s\left[\sigma_{2}\left(r_{2}\right)\right]_{p_{2}}$.

Consider several cases, depending on the relative positions of p_{1} and p_{2}.

How to test local confluence?

Case 1: p_{1} and p_{2} are parallel positions.
Example: $R:=\{f(a, g(x)) \rightarrow f(x, x), g(b) \rightarrow c\}$
Peak:

$$
p_{1}=1
$$

How to test local confluence?

Case 1: p_{1} and p_{2} are parallel positions.
Outcome: The reducts are joinable.

How to test local confluence?

Case 1: p_{1} and p_{2} are parallel positions.
Outcome: The reducts are joinable.
Example: $R:=\{f(a, g(x)) \rightarrow f(x, x), g(b) \rightarrow c\}$
Peak:

$$
p_{1}=1
$$

Joinability:

$$
\begin{aligned}
f(c, \underline{g(b)}) & \rightarrow f(c, c) \\
f(\underline{g(b)}, c) & \rightarrow f(c, c)
\end{aligned}
$$

How to test local confluence?

Case 2: One position is a prefix of another. Say, p_{1} is a prefix of $p_{2}: p_{2}=p_{1} p$ for some p.

How to test local confluence?

Case 2: One position is a prefix of another. Say, p_{1} is a prefix of $p_{2}: p_{2}=p_{1} p$ for some p.

We restrict our attention to $\sigma_{1}\left(l_{1}\right)$, because

implies $s\left[\sigma_{1}\left(r_{1}\right)\right]_{p_{1}} \xrightarrow{*} s[t] \stackrel{*}{\leftarrow} s\left[\sigma_{1}\left(l_{1}\right)\left[\sigma_{2}\left(r_{2}\right)\right]_{p}\right]_{p_{1}}=s\left[\sigma_{2}\left(r_{2}\right)\right]_{p_{2}}$.

How to test local confluence?

Case 2.1: The redex $\sigma_{2}\left(l_{2}\right)$ does not overlap with l_{1} itself, but is contained in σ_{1}. $p=q_{1} q_{2}$ such that q_{1} is a variable position in l_{1}. $\sigma_{1}\left(l_{1}\right)$ has the form:

Non-critical overlap.

How to test local confluence?

Case 2.1: The redex $\sigma_{2}\left(l_{2}\right)$ does not overlap with l_{1} itself, but is contained in σ_{1}.
$p=q_{1} q_{2}$ such that q_{1} is a variable position in l_{1}.
Example: $R:=\{f(a, g(x)) \rightarrow f(x, x), g(b) \rightarrow c\}$
Peak:

$$
\begin{gathered}
\frac{f(a, g(g(\overline{g(b)})))}{p_{1}=\epsilon} \\
f(g(g(b)), g(g(b))) \quad f(a, g(g(c))) \\
l_{1}=f(a, g(x)), \sigma_{1}=\{x \mapsto g(g(b))\}, l_{2}=g(b), \\
\sigma_{2}=\varepsilon . \\
p=211, q_{1}=21, q_{2}=1 .
\end{gathered}
$$

How to test local confluence?

Case 2.1: The redex $\sigma_{2}\left(l_{2}\right)$ does not overlap with l_{1} itself, but is contained in σ_{1}. $p=q_{1} q_{2}$ such that q_{1} is a variable position in l_{1}.
Outcome: The reducts are joinable.
The analysis is complicated by the fact that $x=\left.l_{1}\right|_{q_{1}}$ may occur repeatedly both in l_{1} and r_{1}.

How to test local confluence?

Case 2.1: Instance: x appears three times in l_{1} and twice in r_{1}.

How to test local confluence?

Case 2.1: The redex $\sigma_{2}\left(l_{2}\right)$ does not overlap with l_{1} itself, but is contained in σ_{1}.
$p=q_{1} q_{2}$ such that q_{1} is a variable position in l_{1}.
Example: $R:=\{f(a, g(x)) \rightarrow f(x, x), g(b) \rightarrow c\}$
Peak:

The reducts are joinable.

$$
\begin{aligned}
& f(g(g(b)), g(g(b)) \xrightarrow{2} f(g(c), g(c)) . \\
& f(a, g(g(c))) \rightarrow f(g(c), g(c))
\end{aligned}
$$

How to test local confluence?

Case 2.2: Two left-hand sides l_{1} and l_{2} overlap. $p \in \mathcal{P o s}\left(l_{1}\right),\left.l_{1}\right|_{p}$ is not a variable, and $\sigma_{1}\left(\left.l_{1}\right|_{p}\right)=\sigma_{2}\left(l_{2}\right)$. $\sigma_{1}\left(l_{1}\right)$ has the form:

Critical overlap.

How to test local confluence?

Case 2.2: Two left-hand sides l_{1} and l_{2} overlap. $p \in \mathcal{P}$ os $\left(l_{1}\right),\left.l_{1}\right|_{p}$ is not a variable, and $\sigma_{1}\left(\left.l_{1}\right|_{p}\right)=\sigma_{2}\left(l_{2}\right)$.
In the case of critical overlap, local confluence need not hold.
Example: $R:=\{f(a, g(x)) \rightarrow f(x, x), g(b) \rightarrow c\}$

$$
\begin{gathered}
p_{1}=\epsilon \\
f(b, b) \\
l_{1}=f(a, g(x)), \sigma_{1}=\{x \mapsto b\}, l_{2}=g(b), \sigma_{2}=\varepsilon . \\
p=2 .
\end{gathered}
$$

How to test local confluence?

Case 2.2: Two left-hand sides l_{1} and l_{2} overlap. $p \in \mathcal{P o s}\left(l_{1}\right),\left.l_{1}\right|_{p}$ is not a variable, and $\sigma_{1}\left(\left.l_{1}\right|_{p}\right)=\sigma_{2}\left(l_{2}\right)$.
Problem: Critical overlaps must be checked for local confluence. How to do that?

Answer: It is enough to check finitely many critical pairs.

How to test local confluence?

Definition 6.1
Let

- $l_{1} \rightarrow r_{1}$ and $l_{2} \rightarrow r_{2}$ be two rules which do not share variables,
- $p \in \mathcal{P} o s\left(l_{1}\right)$ be a position such that $\left.l_{1}\right|_{p}$ is not a variable, and
- ϑ be an mgu of $l_{1} \mid p$ and l_{2}

Then the pair $\left\langle\vartheta\left(r_{1}\right), \vartheta\left(l_{1}\right)\left[\vartheta\left(r_{2}\right)\right]_{p}\right\rangle$ is called a critical pair.

How to test local confluence?

- The critical pairs of a TRS R are the critical pairs between any of two of its renamed rules and are denoted by $C P(R)$.
- Includes overlaps of a rule with a renamed copy of itself.

How to test local confluence?

Example 6.1

- Let $R:=\{f(f(x)) \rightarrow g(x)\}$.
- Take a critical pair between the rule and its renamed copy, $f(f(x)) \rightarrow g(x)$ and $f(f(y)) \rightarrow g(y)$

- The terms in the critical pair, $g(f(x))$ and $f(g(x))$, are not joinable.
- R is not locally confluent.

How to test local confluence?

- Hence, local confluence test reduces to checking joinability of critical pairs.
- The analysis of the cases on the previous slides leads to the Critical Pair Lemma.

How to test local confluence?

Lemma 6.1 (Critical Pair Lemma)
If R is a TRS and

then $t_{1} \downarrow_{R} t_{2}$, or $t_{1}=s\left[u_{1}\right]_{p_{1}}$ and $t_{2}=s\left[u_{2}\right]_{p_{2}}$ for some p_{1}, p_{2}, where $\left\langle u_{1}, u_{2}\right\rangle$ or $\left\langle u_{2}, u_{1}\right\rangle$ is an instance of a critical pair of R.
Proof.

- When there is no overlap or a non-critical overlap, then $t_{1} \downarrow_{R} t_{2}$.
- When there is a critical overlap, then $\left.s\right|_{p_{1}}=\sigma\left(l_{1}\right)$ and $\sigma\left(\left.l_{1}\right|_{p}\right)=\sigma\left(l_{2}\right)$.

How to test local confluence?

Lemma 6.1 (Critical Pair Lemma)
If R is a TRS and

then $t_{1} \downarrow_{R} t_{2}$, or $t_{1}=s\left[u_{1}\right]_{p_{1}}$ and $t_{2}=s\left[u_{2}\right]_{p_{2}}$ for some p_{1}, p_{2}, where $\left\langle u_{1}, u_{2}\right\rangle$ or $\left\langle u_{2}, u_{1}\right\rangle$ is an instance of a critical pair of R.
Proof (cont.)

- Hence, σ unifies $\left.l_{1}\right|_{p}$ and l_{2} and, therefore, is an instance of their mgu ϑ.
- Therefore, $\left\langle\sigma\left(r_{1}\right), \sigma\left(l_{1}\right)\left[\sigma\left(r_{2}\right)\right]_{p}\right\rangle$ is an instance of the critical pair $\left\langle\vartheta\left(r_{1}\right), \vartheta\left(l_{1}\right)\left[\vartheta\left(r_{2}\right)\right]_{p}\right\rangle$

How to test local confluence?

Lemma 6.1 (Critical Pair Lemma)
If R is a TRS and

then $t_{1} \downarrow_{R} t_{2}$, or $t_{1}=s\left[u_{1}\right]_{p_{1}}$ and $t_{2}=s\left[u_{2}\right]_{p_{2}}$ for some p_{1}, p_{2}, where $\left\langle u_{1}, u_{2}\right\rangle$ or $\left\langle u_{2}, u_{1}\right\rangle$ is an instance of a critical pair of R.

Proof (cont.)

- $t_{1}=s\left[\sigma\left(r_{1}\right)\right]_{p_{1}}, t_{2}=s\left[\sigma\left(l_{1}\right)\left[\sigma\left(r_{2}\right)\right]_{p}\right]_{p_{1}}, p_{2}=p_{1} p$.

How to test local confluence?

Theorem 6.2 (Critical Pair Theorem)
A TRS is locally confluent iff all its critical pairs are joinable.
Proof.
(\Leftarrow) Using the Critical Pair Lemma: Given $t_{i}=s\left[u_{i}\right]_{p}, i=1,2$, where $\left\langle u_{1}, u_{2}\right\rangle$ (wlog) is an instance of some critical pair $\left\langle v_{1}, v_{2}\right\rangle$ under a substitution φ, then $v_{i} \xrightarrow{*} t$ for some term t implies $u_{i} \xrightarrow{*} \varphi(t)$ and, hence, $t_{i} \xrightarrow{*} s[\varphi(t)]_{p}, i=1,2$.

How to test local confluence?

Theorem 6.2 (Critical Pair Theorem)

A TRS is locally confluent iff all its critical pairs are joinable.
Proof.
(\Leftarrow) Using the Critical Pair Lemma: Given $t_{i}=s\left[u_{i}\right]_{p}, i=1,2$, where $\left\langle u_{1}, u_{2}\right\rangle$ (wlog) is an instance of some critical pair $\left\langle v_{1}, v_{2}\right\rangle$ under a substitution φ, then $v_{i} \xrightarrow{*} t$ for some term t implies $u_{i} \xrightarrow{*} \varphi(t)$ and, hence, $t_{i} \xrightarrow{*} s[\varphi(t)]_{p}, i=1,2$.
(\Rightarrow) Every critical pair is the product of a fork $\vartheta\left(r_{1}\right) \leftarrow \vartheta\left(l_{1}\right) \rightarrow \vartheta\left(l_{1}\right)\left[\vartheta\left(r_{2}\right)\right]_{p}$. Joinability follows from local confluence.

How to test local confluence?

Theorem 6.2 (Critical Pair Theorem)
A TRS is locally confluent iff all its critical pairs are joinable.
Corollary 6.1
A terminating TRS is confluent iff all its critical pairs are joinable.

How to test local confluence?

- The problem of testing local confluence reduces to critical pair joinability test.
- For terminating TRSs, the problem whether two terms are joinable can be decided.
- For finite TRSs, the number of critical pairs is finite.
- Hence, for terminating and finite TRSs local confluence is decidable.
- Therefore, for terminating and finite TRSs confluence is decidable.

Deciding (local) confluence for terminating finite TRSs

Let R be a terminating finite TRS.
Decision procedure:

Deciding (local) confluence for terminating finite TRSs

Let R be a terminating finite TRS.
Decision procedure:

- For each pair of rules $l_{1} \rightarrow r_{1}$ and $l_{2} \rightarrow r_{2}$ (there are $|R|^{2}$ of them) and for every $p \in \mathcal{P o s}\left(l_{1}\right)$ with a nonvariable $\left.l_{1}\right|_{p}$ (there are at most $\left|l_{1}\right|$ of them) try to generate critical pairs.

Deciding (local) confluence for terminating finite TRSs

Let R be a terminating finite TRS.
Decision procedure:

- For each pair of rules $l_{1} \rightarrow r_{1}$ and $l_{2} \rightarrow r_{2}$ (there are $|R|^{2}$ of them) and for every $p \in \mathcal{P o s}\left(l_{1}\right)$ with a nonvariable $\left.l_{1}\right|_{p}$ (there are at most $\left|l_{1}\right|$ of them) try to generate critical pairs.
- It involves unification of $\left.l_{1}\right|_{p}$ and l_{2} (decidable, unitary).

Deciding (local) confluence for terminating finite TRSs

Let R be a terminating finite TRS.
Decision procedure:

- For each pair of rules $l_{1} \rightarrow r_{1}$ and $l_{2} \rightarrow r_{2}$ (there are $|R|^{2}$ of them) and for every $p \in \mathcal{P o s}\left(l_{1}\right)$ with a nonvariable $\left.l_{1}\right|_{p}$ (there are at most $\left|l_{1}\right|$ of them) try to generate critical pairs.
- It involves unification of $\left.l_{1}\right|_{p}$ and l_{2} (decidable, unitary).
- Result: finitely many critical pairs.

Deciding (local) confluence for terminating finite TRSs

Let R be a terminating finite TRS.
Decision procedure:

- For each pair of rules $l_{1} \rightarrow r_{1}$ and $l_{2} \rightarrow r_{2}$ (there are $|R|^{2}$ of them) and for every $p \in \mathcal{P o s}\left(l_{1}\right)$ with a nonvariable $\left.l_{1}\right|_{p}$ (there are at most $\left|l_{1}\right|$ of them) try to generate critical pairs.
- It involves unification of $\left.l_{1}\right|_{p}$ and l_{2} (decidable, unitary).
- Result: finitely many critical pairs.
- For each critical pair $\left\langle u_{1}, u_{2}\right\rangle$, reduce u_{i}, to some R-normal form $\hat{u}_{i}, i=1,2$.

Deciding (local) confluence for terminating finite TRSs

Let R be a terminating finite TRS.
Decision procedure:

- For each pair of rules $l_{1} \rightarrow r_{1}$ and $l_{2} \rightarrow r_{2}$ (there are $|R|^{2}$ of them) and for every $p \in \mathcal{P o s}\left(l_{1}\right)$ with a nonvariable $\left.l_{1}\right|_{p}$ (there are at most $\left|l_{1}\right|$ of them) try to generate critical pairs.
- It involves unification of $\left.l_{1}\right|_{p}$ and l_{2} (decidable, unitary).
- Result: finitely many critical pairs.
- For each critical pair $\left\langle u_{1}, u_{2}\right\rangle$, reduce u_{i}, to some R-normal form $\hat{u}_{i}, i=1,2$.
- If $\hat{u}_{1}=\hat{u}_{2}$ for all such pairs, R is confluent (Corollary 6.1).

Deciding (local) confluence for terminating finite TRSs

Let R be a terminating finite TRS.
Decision procedure:

- For each pair of rules $l_{1} \rightarrow r_{1}$ and $l_{2} \rightarrow r_{2}$ (there are $|R|^{2}$ of them) and for every $p \in \mathcal{P o s}\left(l_{1}\right)$ with a nonvariable $\left.l_{1}\right|_{p}$ (there are at most $\left|l_{1}\right|$ of them) try to generate critical pairs.
- It involves unification of $\left.l_{1}\right|_{p}$ and l_{2} (decidable, unitary).
- Result: finitely many critical pairs.
- For each critical pair $\left\langle u_{1}, u_{2}\right\rangle$, reduce u_{i}, to some R-normal form $\hat{u}_{i}, i=1,2$.
- If $\hat{u}_{1}=\hat{u}_{2}$ for all such pairs, R is confluent (Corollary 6.1).
- If $\hat{u}_{1} \neq \hat{u}_{2}$ for such a pair, we have a non-confluent situation: $\hat{u}_{1} \stackrel{*}{\leftarrow} u_{1} \leftarrow u \rightarrow u_{2} \xrightarrow{*} \hat{u}_{2}$.

Deciding (local) confluence for terminating finite TRSs

Example 6.2

Recall the $\operatorname{TRS}\{f(f(x)) \rightarrow g(x)\}$, which is not locally confluent. The only critical pair $\langle g(f(x)), f(g(x))\rangle$ is not joinable.

Deciding (local) confluence for terminating finite TRSs

Example 6.2

Recall the TRS $\{f(f(x)) \rightarrow g(x)\}$, which is not locally confluent. The only critical pair $\langle g(f(x)), f(g(x))\rangle$ is not joinable.

Deciding (local) confluence for terminating finite TRSs

Example 6.2

Recall the TRS $\{f(f(x)) \rightarrow g(x)\}$, which is not locally confluent. The only critical pair $\langle g(f(x)), f(g(x))\rangle$ is not joinable.
This example illustrates that the two conditions in the definition of the critical pairs are necessary:

Deciding (local) confluence for terminating finite TRSs

Example 6.2

Recall the TRS $\{f(f(x)) \rightarrow g(x)\}$, which is not locally confluent. The only critical pair $\langle g(f(x)), f(g(x))\rangle$ is not joinable.
This example illustrates that the two conditions in the definition of the critical pairs are necessary:

- Rules are to be renamed. Otherwise $f(f(x))$ and $f(x)$ are not unifiable.

Deciding (local) confluence for terminating finite TRSs

Example 6.2

Recall the TRS $\{f(f(x)) \rightarrow g(x)\}$, which is not locally confluent. The only critical pair $\langle g(f(x)), f(g(x))\rangle$ is not joinable.
This example illustrates that the two conditions in the definition of the critical pairs are necessary:

- Rules are to be renamed. Otherwise $f(f(x))$ and $f(x)$ are not unifiable.
- The critical pair of a rule and (a renamed copy of) itself has to be taken into account. Otherwise all one-rule systems would appear to be locally-confluent.

Deciding (local) confluence for terminating finite TRSs

Example 6.2

Recall the TRS $\{f(f(x)) \rightarrow g(x)\}$, which is not locally confluent. The only critical pair $\langle g(f(x)), f(g(x))\rangle$ is not joinable.
This example illustrates that the two conditions in the definition of the critical pairs are necessary:

- Rules are to be renamed. Otherwise $f(f(x))$ and $f(x)$ are not unifiable.
- The critical pair of a rule and (a renamed copy of) itself has to be taken into account. Otherwise all one-rule systems would appear to be locally-confluent.
- Critical pairs can be helpful lemmas: $g(f(x)) \approx_{R} f(g(x))$ is an interesting consequence of $f(f(x)) \rightarrow_{R} g(x)$ which may not be apparent at first sight.

Deciding (local) confluence for terminating finite TRSs

Example 6.3

The TRS $\{f(f(x)) \rightarrow g(x), f(g(x)) \rightarrow g(f(x))\}$ is locally confluent. Both critical pairs are joinable:

Since the TRS is also terminating (use LPO with $f>g$), it is also confluent.

Deciding (local) confluence for terminating finite TRSs

- Because critical pairs are equational consequences, adding a critical pair as a new rewrite rule does not change the induced equality.
- If R is a TRS and R^{\prime} is obtained from R by adding a critical pair as a new rule, then $\approx_{R}=\approx_{R^{\prime}}$.
- The idea of adding a critical pair as a new rule is called "completion".

