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Termination

Definition 5.1
A term rewriting system R is terminating iff →R is terminating,
i.e., there is no infinite reduction chain

t0 →R t1 →R t2 →R · · ·
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Termination is undecidable

The following problem is undecidable:

Given: A finite TRS R.

Question: Is R terminating or not?

Proof by reduction of the uniform halting problem for Turing
Machines.
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A decidable subcase

Definition 5.2
A TRS R is called right-ground iff for all l→ r ∈ R, we have
Var(r) = ∅ (i.e., r is ground).
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A decidable subcase

Lemma 5.1
Let R be a finite right-ground TRS. Then the following statements
are equivalent:

1. R does not terminate.

2. There exists a rule l→ r ∈ R and a term t such that r
+−→R t

and t contains r as a subterm.

Proof.
(2⇒ 1) is obvious: 2 yields an infinite reduction

r
+−→R t = t[r]p

+−→R t[t]p = t[t[r]p]p
+−→R · · ·
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A decidable subcase

Lemma 5.1
Let R be a finite right-ground TRS. Then the following statements
are equivalent:

1. R does not terminate.

2. There exists a rule l→ r ∈ R and a term t such that r
+−→R t

and t contains r as a subterm.

Proof (Cont.)

(1⇒ 2): By induction on cardinality of R. If R is empty, 1 is false.
Assume |R| > 0 and consider an infinite reduction
t1 →R t2 →R · · ·
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A decidable subcase

Lemma 5.1
Let R be a finite right-ground TRS. Then the following statements
are equivalent:

1. R does not terminate.

2. There exists a rule l→ r ∈ R and a term t such that r
+−→R t

and t contains r as a subterm.

Proof (Cont.)

(i) Assume wlog that at least one of the reductions in
t1 →R t2 →R · · · occurs at position ε.

(ii) This means that there exist an index i, a rule l→ r ∈ R, and
a substitution σ such that ti = σ(l) and ti+1 = σ(r) = r.
Therefore, there exists an infinite reduction
r →R ti+2 →R ti+3 →R · · · starting from r.
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A decidable subcase

Lemma 5.1
Let R be a finite right-ground TRS. Then the following statements
are equivalent:

1. R does not terminate.

2. There exists a rule l→ r ∈ R and a term t such that r
+−→R t

and t contains r as a subterm.

Proof (Cont.)

Two cases:

(a) l→ r is not used in this reduction. Then R \ {l→ r} does
not terminate and we can apply the induction hypothesis.

(b) l→ r is used in the reduction. Hence, there exists j ≥ 2 such
that r occurs in ti+j and 2 holds.

8 / 61



Decision procedure for termination of right-ground TRSs

I Given a finite right-ground TRS R = {l1 → r1, . . . , ln → rn}.
I Take the right hand sides r1, . . . , rn.
I Simultaneously generate all reduction sequences starting from
r1, . . . , rn:

I First generate all sequences of length 1,
I Then generate all sequences of length 2,
I etc.

I Either one detects the cycle ri
k−→R t, k ≥ 1, where t contains

ri as a subterm (R is not terminating),

I or the process of generating these reductions terminates (R is
terminating).

Theorem 5.1
For finite right-ground TRSs, termination is decidable.
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Reduction orders: a tool for proving termination

I Termination problem is undecidable. There can not be a
general procedure that

I given an arbitrary TRS
I answers with “yes” if the system is terminating, and with “no”

otherwise.

I However, often it is necessary to prove for a particular system
that it terminates.

I It is possible to develop tools that facilitate this task. Ideally,
it should be possible to automate them.

I Undecidability of termination implies that such methods can
not succeed for all terminating rewrite systems.
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Reduction orders: a tool for proving termination

I Idea: Define a class of strict orders > on terms such that

l > r for all (l→ r) ∈ R

implies termination of R.

I Reduction orders.
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Reduction orders: a tool for proving termination

Definition 5.3
A strict order > on T (F ,V) is called a reduction order iff it is

1. compatible with F-operations: If s1 > s2, then

f(t1, . . . , ti−1, s1, ti+1, . . . , tn) > f(t1, . . . , ti−1, s2, ti+1, . . . , tn)

for all t1, . . . , ti−1, s1, s2, ti+1, . . . , tn ∈ T (F ,V) and f ∈ Fn,

2. closed under substitutions: If s1 > s2, then σ(s1) > σ(s2) for
all s1, s2 ∈ T (F ,V) and a T (F ,V)-substitution σ,

3. well-founded.

12 / 61



Reduction orders: a tool for proving termination

Example 5.1

I |t|: The size of the term t.

I The order > on T (F ,V): s > t iff |s| > |t|.

I > is compatible with F-operations and well-founded.

I However, > is not a reduction order because it is not closed
under substitutions:

|f(f(x, x), y)| = 5 > 3 = |f(y, y)|

For σ = {y 7→ f(x, x)}:

|σ(f(f(x, x), y))| = |f(f(x, x), f(x, x))| = 7,

|σ(f(y, y)| = |f(f(x, x), f(x, x))| = 7.
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Reduction orders: a tool for proving termination

Example 5.1 (Cont.)

I |t|x: The number of occurrences of x in t.

I The order > on T (F ,V): s > t iff |s| > |t| and |s|x ≥ |t|x for
all x ∈ V.

I > is a reduction order.
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Why are reduction orders interesting?

Theorem 5.2
A TRS R terminates iff there exists a reduction order > that
satisfies l > r for all l→ r ∈ R.

Proof.
(⇒): Assume R terminates. Then

+−→R is a reduction order,

satisfying l
+−→R r for all l→ r ∈ R.

(⇐): l > r implies t[σ(l)]p > t[σ(r)]p for all terms t, substitutions
σ, and positions p. Thus, l > r for all l→ r ∈ R implies s1 > s2
for all s1, s2 with s1 →R s2. Since > is well-founded, there can not
be infinite reduction s1 →R s2 →R s2 →R · · · .
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Reduction orders: an example

Example 5.2

The TRS

R := {f(x, f(y, x))→ f(x, y), f(x, x)→ x}

is terminating. For the reduction order defined as

s > t iff |s| > |t| and |s|x ≥ |t|x for all x ∈ V

we have

f(x, f(y, x)) > f(x, y), f(x, x) > x.
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Reduction orders: example

Example 5.2 (Cont.)

The TRS

R ∪ {f(f(x, y), z)→ f(x, f(y, z))}

is also terminating. But this can not be shown by the previous
reduction order because

f(f(x, y), z) 6> f(x, f(y, z)).
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Methods for construction reduction orders

I Polynomial orders
I Simplification orders:

I Recursive path orders
I Knuth-Bendix orders

Goal: Provide a variety of different reduction orders that can be
used to show termination; not only by hand, but also automatically.
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Polynomial orders

Interpretation method. The idea:

I Interpret terms in an F-algebra that is equipped with a
well-founded order.

I Compare terms with respect to their interpretations: A term s
is larger than a term t iff the interpretation of s is larger than
the interpretation of t.

One has to make sure that the ordering on interpretation induces a
reduction order on terms.
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Polynomial orders. Interpreting terms

Definition 5.4
A polynomial interpretation P of a signature F is an F-algebra
P = (A, {Pf}f∈F ) such that

I the carrier set A is a nonempty set of positive integers:
A ⊆ N \ {0},

I every n-ary function symbol f is associated with a polynomial
Pf (X1, . . . , Xn) ∈ N[X1, . . . , Xn] such that for all
a1, . . . , an ∈ A, fP(a1, . . . , an) := Pf (a1, . . . , an) ∈ A.

A well-founded order > on A is the usual order on natural numbers.
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Polynomial orders. Interpreting terms

Example 5.3

Let F = {⊕,�} consists of two binary function symbols and let
A := N \ {0, 1}. Define

P⊕(x, y) := 2x+ y + 1

P�(x, y) := xy

The mapping from function symbols to polynomial functions can
be extended to terms, mapping variables (x, y, z, . . .) to
indeterminates (X,Y, Z, . . .). For example:

t = x� (x⊕ y)
Pt = P�(X,P⊕(X,Y )) = X(2X + Y + 1) = 2X2 +XY +X.
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Polynomial orders. Guaranteeing compatibility

I If in the previous example we had defined P�(x, y) := x2, the
interpretation would not be compatible with F-operations.

I 3 > 2, but �P(2, 3) = P�(2, 3) = 4 = P�(2, 2) = �P(2, 2).

Definition 5.5 (Monotony)

I A polynomial P (X1, . . . , Xn) ∈ N[X1, . . . , Xn] is a monotone
polynomial iff it depends on all its indeterminates.

I A monotone polynomial interpretation is a polynomial
interpretation in which all function symbols are associated
with monotone polynomials.

X2 is not a monotone polynomial in N[X,Y ].

22 / 61



Polynomial orders. Guaranteeing compatibility

I If in the previous example we had defined P�(x, y) := x2, the
interpretation would not be compatible with F-operations.

I 3 > 2, but �P(2, 3) = P�(2, 3) = 4 = P�(2, 2) = �P(2, 2).

Definition 5.5 (Monotony)

I A polynomial P (X1, . . . , Xn) ∈ N[X1, . . . , Xn] is a monotone
polynomial iff it depends on all its indeterminates.

I A monotone polynomial interpretation is a polynomial
interpretation in which all function symbols are associated
with monotone polynomials.

X2 is not a monotone polynomial in N[X,Y ].

22 / 61



Polynomial orders. Guaranteeing compatibility

I If in the previous example we had defined P�(x, y) := x2, the
interpretation would not be compatible with F-operations.

I 3 > 2, but �P(2, 3) = P�(2, 3) = 4 = P�(2, 2) = �P(2, 2).

Definition 5.5 (Monotony)

I A polynomial P (X1, . . . , Xn) ∈ N[X1, . . . , Xn] is a monotone
polynomial iff it depends on all its indeterminates.

I A monotone polynomial interpretation is a polynomial
interpretation in which all function symbols are associated
with monotone polynomials.

X2 is not a monotone polynomial in N[X,Y ].

22 / 61



Polynomial orders. Inducing reduction order

I Why are monotone polynomial interpretations interesting?

I They help to define an ordering on terms which is compatible
with F-operations (in fact, to define a reduction order).
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Polynomial orders. Inducing reduction order

Theorem 5.3
Let P = (A, {fP}f∈F ) be a monotone polynomial interpretation of
F with the well-founded ordering > on A. Then a > b implies

fP(a1, . . . , ai−1, a, ai+1, . . . , an) > fP(a1, . . . , ai−1, b, ai+1, . . . , an)

for all fP and a, b, a1, . . . , ai−1, ai+1, . . . , an ∈ A.

Proof.
We can write Pf ∈ N[X1, . . . , Xn] = (N[X1, . . . , Xi−1,
Xi+1, . . . , Xn])[Xi] as a polynomial in Xi with coefficients
Qj ∈ N[X1, . . . , Xi−1, Xi+1, . . . , Xn]:

fP = Pf = Qk(X1, . . . , Xi−1, Xi+1, . . . , Xn)X
k
i + · · · +

Q1(X1, . . . , Xi−1, Xi+1, . . . , Xn)Xi +

Q0(X1, . . . , Xi−1, Xi+1, . . . , Xn).
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Polynomial orders. Inducing reduction order
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for all fP and a, b, a1, . . . , ai−1, ai+1, . . . , an ∈ A.

Proof (cont.)

Since Pf is monotone, it depends on Xi. So, we can assume k > 0
and Qk is not a zero polynomial.

Hence, for all a1, . . . , ai−1, ai+1, . . . , an ∈ A ⊆ N \ {0},
Pf (a1, . . . , ai−1, Xi, ai+1, . . . , an) is a polynomial of degree k > 0
in Xi with coefficients in N.

Therefore, a > b implies Pf (a1, . . . , ai−1, a, ai+1, . . . , an) >
Pf (a1, . . . , ai−1, b, ai+1, . . . , an).
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Polynomial orders. Inducing reduction order

Definition 5.6 (Polynomial Order)

The polynomial interpretation P of a signature F induces the
following polynomial order >P on T (F ,V):

s >P t iff Ps(a1, . . . , an) > Pt(a1, . . . , an)

for all a1, . . . , an in the carrier set of P.
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Polynomial orders. Inducing reduction order

Theorem 5.4
The polynomial order >P induced by a monotone polynomial
interpretation P is a reduction order.

Proof.
>P is a strict order on T (F ,V).

I >P is well-founded because > is well-founded on the carrier
set of P.

I >P is closed with respect to substitutions because in the
definition of polynomial orders we consider all a1, . . . , an in
the carrier set.

I >P is compatible to F-operations due to Theorem 5.3.
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Polynomial orders. Inducing reduction order

Example 5.4

I TRS: R = {x� (y ⊕ z)→ (x� y)⊕ (x� z)}.
I Polynomial order induced by

A := N \ {0, 1}, P⊕ = 2X + Y + 1, P� = XY.

I The polynomial associated to l = x� (y ⊕ z):

Pl = X(2Y + Z + 1) = 2XY +XZ +X.

I The polynomial associated to r = (x� y)⊕ (x� z):

Pr = 2XY +XZ + 1.

I Since all elements of A are greater than 1, we have l >P r.
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Polynomial orders

I For a given polynomial order, in general, it is not possible to
decide whether it is suitable for showing termination of a
given TRS.

I It is a consequence of Hilbert’s 10th problem.

I There are automated methods that can (sometimes) show
P >A Q for polynomials P,Q ∈ N[X1, . . . , Xn].
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Polynomial orders

Questions:

I How to find suitable polynomials?

I How to show that P > 0 for a polynomial P ∈ Z[x1, . . . , xn]?

Modern approach:

1. Choose abstract polynomial interpretations (linear, quadratic,
. . . ).

2. Transform rewrite rules into polynomial ordering constraints.

3. Add monotonicity and well-definedness constraints.

4. Eliminate universally quantified variables requiring their
coefficients to be nonnegative and the constant to be positive
(sufficient condition).

5. Translate resulting diophantine constraints to SAT or SMT
problem.
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Polynomial orders

Example 5.5

I Rewrite system:

{0 + y → y, s(x) + y → s(x+ y)}

I Interpretations:

0A = a sA(x) = bx+ c +A (x, y) = dx+ ey + f

I Polynomial constraints: ∀X,Y ∈ N

da+ eY + f > Y

d(bX + c) + eY + f > b(dX + eY + f) + c

a ≥ 0 b ≥ 1 c ≥ 0 d ≥ 1 e ≥ 1 f ≥ 0

31 / 61



Polynomial orders

Example 5.5

I Rewrite system:

{0 + y → y, s(x) + y → s(x+ y)}

I Interpretations:

0A = a sA(x) = bx+ c +A (x, y) = dx+ ey + f

I Polynomial constraints: ∀X,Y ∈ N

da+ eY + f > Y

d(bX + c) + eY + f > b(dX + eY + f) + c

a ≥ 0 b ≥ 1 c ≥ 0 d ≥ 1 e ≥ 1 f ≥ 0

31 / 61



Polynomial orders

Example 5.5

I Rewrite system:

{0 + y → y, s(x) + y → s(x+ y)}

I Interpretations:

0A = a sA(x) = bx+ c +A (x, y) = dx+ ey + f

I Polynomial constraints: ∀X,Y ∈ N

da+ eY + f > Y

d(bX + c) + eY + f > b(dX + eY + f) + c

a ≥ 0 b ≥ 1 c ≥ 0 d ≥ 1 e ≥ 1 f ≥ 0

31 / 61



Polynomial orders

Example 5.5

I Rewrite system:

{0 + y → y, s(x) + y → s(x+ y)}

I Interpretations:

0A = a sA(x) = bx+ c +A (x, y) = dx+ ey + f

I Polynomial constraints: ∀X,Y ∈ N

da+ eY + f > Y

d(bX + c) + eY + f > b(dX + eY + f) + c

a ≥ 0 b ≥ 1 c ≥ 0 d ≥ 1 e ≥ 1 f ≥ 0

31 / 61



Polynomial orders

Example 5.5

I Rewrite system:

{0 + y → y, s(x) + y → s(x+ y)}

I Interpretations:

0A = a sA(x) = bx+ c +A (x, y) = dx+ ey + f

I Polynomial constraints: ∀X,Y ∈ N

(e− 1)Y + da+ f > 0

(e− be)Y + dc+ f − bf − c > 0

a ≥ 0 b ≥ 1 c ≥ 0 d ≥ 1 e ≥ 1 f ≥ 0
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Polynomial orders

Example 5.5

I Rewrite system:

{0 + y → y, s(x) + y → s(x+ y)}

I Interpretations:

0A = a sA(x) = bx+ c +A (x, y) = dx+ ey + f

I Diophantine constraints:

e− 1 ≥ 0 da+ f > 0

(e− be) ≥ 0 dc+ f − bf − c > 0

a ≥ 0 b ≥ 1 c ≥ 0 d ≥ 1 e ≥ 1 f ≥ 0

I Possible solution: a = 0 b = 1 c = 1 d = 2 e = 1 f = 1
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Simplification orders

Motivation: construct reduction orders > for which s >? t is
decidable.

Definition 5.7
A strict order > on T (F ,V) is called a simplification order iff it is

1. compatible with F-operations: If s1 > s2, then

f(t1, . . . , ti−1, s1, ti+1, . . . , tn) > f(t1, . . . , ti−1, s2, ti+1, . . . , tn)

for all t1, . . . , ti−1, s1, s2, ti+1, . . . , tn ∈ T (F ,V) and f ∈ Fn,

2. closed under substitutions: If s1 > s2, then σ(s1) > σ(s2) for
all s1, s2 ∈ T (F ,V) and a T (F ,V)-substitution σ,

3. satisfies subterm property: t > t|p for all terms t ∈ T (F ,V)
and all positions p ∈ Pos(t) \ {ε}.
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Simplification orders

I Our goal is to show that simplification orders are reduction
orders (and, thus, can be used to prove termination)

I First we introduce some notions.
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Homeomorphic embedding

Definition 5.8
The homeomorphic embedding Demb is defined as the reduction
relation

∗−→Remb
induced by the rewrite system

Remb := {f(x1, . . . , xn)→ xi | n ≥ 1, f ∈ Fn, 1 ≤ i ≤ n}.

f(f(a, x), x) Eemb f(f(h(a), h(x)), f(h(x), a))

Since Remb is terminating, Demb is a well-founded partial order.
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Well-partial-orders, Kruskal’s theorem

Definition 5.9
A partial order � on a set A is a well-partial-order (wpo) iff for
every infinite sequence a1, a2, . . . of elements of A there exist
indices i < j such that ai � aj .

Wpos forbid infinite descending chains.

Theorem 5.5 (Kruskal)

For finite F and V, the relation Demb is a wpo on T (F ,V).
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Homeomorphic embedding

Lemma 5.2
Let > be a simplification order on T (F ,V) and let s, t ∈ T (F ,V).
Then s Demb t implies s ≥ t.

Proof.
Since > satisfies the subterm property, we have
f(x1, . . . , xi, . . . , xn) > xi for all n ≥ 1, f ∈ Fn, 1 ≤ i ≤ n.
Therefore, Remb ⊆>.

Since ≥ is reflexive, transitive, closed under substitutions and
compatible with F-operations, this implies

Demb=
∗−→Remb

⊆≥ .

38 / 61



Simplification orders are reduction orders

Theorem 5.6
Let F be a finite signature. Then every simplification order on
T (F ,V) is a reduction order.

Proof.
We just need to show that every simplification order is
well-founded. Assume the opposite: Let t1 > t2 > · · · be an
infinite descending chain in T (F ,V), where > is a simplification
ordering.
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Simplification orders are reduction orders

Theorem 5.6
Let F be a finite signature. Then every simplification order on
T (F ,V) is a reduction order.

Proof (cont.)

1. Prove by contradiction that Var(t1) ⊇ Var(t2) ⊇ · · · .
Assume x ∈ Var(ti+1) \ Var(ti) and let σ := {x 7→ ti}. Then

σ(ti) > σ(ti+1) (> is closed under substitutions)

σ(ti+1) ≥ ti (ti is a subterm of σ(ti+1))

ti = σ(ti) (x /∈ Var(ti))

Hence, σ(ti) > σ(ti): a contradiction.
We get t1, t2, . . . ∈ T (F ,X ) for a finite X = Var(t1).
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Simplification orders are reduction orders

Theorem 5.6
Let F be a finite signature. Then every simplification order on
T (F ,V) is a reduction order.

Proof (cont.)

2. We got t1, t2, . . . ∈ T (F ,X ) for a finite X = Var(t1).
Kruskal’s Theorem implies that there exist i < j such that
tj Demb ti.
Lemma 5.2 implies ti ≤ tj , which is a contradiction since we
know that ti > ti+1 > · · · > tj .

The obtained contradiction shows that > is well-founded.
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Not all reduction orders are simplification orders

Example 5.6

Let F = {f, g}, where f and g are unary. Consider the TRS

R := {f(f(x))→ f(g(f(x)))}.

I R terminates (why?). Therefore,
+−→R is a reduction order.

I Show that
+−→R is not a simplification order.

I Assume the opposite. Then from f(g(f(x))) Demb f(f(x)),

by Lemma 5.2, we have f(g(f(x)))
∗−→R f(f(x)).

I f(g(f(x)))
∗−→R f(f(x)) and f(f(x))→ f(g(f(x))) imply

that R is non-terminating: a contradiction.

Hence,
+−→R is a reduction order, which is not a simplification

order.
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Lexicographic path order

Main idea behind recursive path orders:

I Two terms are compared by first comparing their root
symbols.

I Then recursively comparing the collections of their immediate
subterms.

I Collections seen as multisets yields the multiset path order.
(Not considered in this course.)

I Collections seen as tuples yields the lexicographic path order.

I Combination of multisets and tuples yields the recursive path
order with status. (Not considered in this course.)
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Lexicographic path order

Definition 5.10
Let F be a finite signature and > be a strict order on F (called
the precedence). The lexicographic path order >lpoon T (F ,V)
induced by > is defined as follows:

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

≥lpo stands for the reflexive closure of >lpo .
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Lexicographic path order

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 5.7

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(x, e) >lpo x by (LPO1)

I i(e) >lpo e by (LPO2), because e ≥lpo e.
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Lexicographic path order

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or
(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 5.7 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I i(f(x, y)) >?
lpo f(i(x), i(y)):

I Since i > f , (LPO2b) reduces it to the problems:
i(f(x, y)) >?

lpo i(x) and i(f(x, y)) >?
lpo i(y).

I i(f(x, y)) >?
lpo i(x) is reduced by (LPO2c) to

i(f(x, y)) >?
lpo x and f(x, y) >?

lpo x, which hold by (LPO1).
I i(f(x, y)) >lpo i(y) is shown similarly.
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Lexicographic path order

s >lpo t iff
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(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 5.7 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(f(x, y), z) >?
lpo f(x, f(y, z))). By (LPO2c) with i = 1:

I f(f(x, y), z) >lpo x because of (LPO1).
I f(f(x, y), z) >?

lpo f(y, z): By (LPO2c) with i = 1:
I f(f(x, y), z) >lpo y and f(f(x, y), z) >lpo z by (LPO1).
I f(x, y) >lpo y by (LPO1).

I f(x, y) >lpo x by (LPO1).
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1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 5.7 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(f(x, y), z) >?
lpo f(x, f(y, z))). By (LPO2c) with i = 1:

I f(f(x, y), z) >lpo x because of (LPO1).
I f(f(x, y), z) >?

lpo f(y, z): By (LPO2c) with i = 1:
I f(f(x, y), z) >lpo y and f(f(x, y), z) >lpo z by (LPO1).
I f(x, y) >lpo y by (LPO1).

I f(x, y) >lpo x by (LPO1).
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LPO is a simplification order

Theorem 5.7
For any strict order > on F , the induced lexicographic path order
>lpo is a simplification order on T (F ,V).

Proof.
See Baader and Nipkow, pp. 119–120.

48 / 61



Properties of LPO

For a finite signature F , terms s, t ∈ T (F ,V), finite TRS R over
T (F ,V):

I For a given lpo >lpo , the question whether s >lpo t can be
decided in time polynomial in the size s and t.

I The question whether termination of R can be shown by some
lpo on T (F ,V) is an NP-complete problem.
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Knuth-Bendix order

Let F be a finite signature and > be a strict order on F (called
the precedence).

The Knuth-Bendix order on T (F ,V) will be defined based on the
precedence and a weight function w : F ∪ V −→ N.

The weight function should satisfy the admissibility property:

1. there exists v0 ∈ N \ {0} such that w(x) = v0 for all x ∈ V
and w(c) ≥ v0 for all constants c ∈ F , and

2. if f ∈ F is a unary function with w(f) = 0, then f > g (wrt
the precedence) for any g ∈ F , g 6= f .
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Knuth-Bendix order

The weight function w can be extended to terms,
w : T (F ,V) −→ N:

w(f(t1, . . . , tn)) := w(f) +

n∑
i=1

w(ti).
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Knuth-Bendix order

The Knuth-Bendix order (KBO) >kbo on T (F ,V) induced by the
precedence > on the finite signature F and the weight function w,
is defined as follows:

s >kbo t iff

(KBO1) #(x, s) ≥ #(x, t) for all x ∈ V and w(s) > w(t), or

(KBO2) #(x, s) ≥ #(x, t) for all x ∈ V, w(s) = w(t), and one of the
following properties hold:

(KBO2a) there are a unary function symbol f , a variable x, and a
positive integer n such that s = fn(x) and t = x, or

(KBO2b) there exist f, g ∈ F with f > g (wrt the precedence) such
that s = f(s1, . . . , sn) and t = g(t1, . . . , tm), or

(KBO2c) there exist f ∈ F and 1 ≤ i ≤ n such that
s = f(s1, . . . , sn), t = f(t1, . . . , tn),
s1 = t1, . . . si−1 = ti−1 and si >kbo ti.
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Knuth-Bendix order

KBO first compares terms by their weight, then by their root
symbols, and then recursively the collections of the immediate
subterms.

Comparison to LPO:

I Similarity: comparing the root symbols by the precedence and
then recursively the the collections of the immediate subterms.

I Difference: using the weight function.

I Because of the use of the weight function, the condition
#(x, s) ≥ #(x, t) for all x ∈ V is necessary. Without it, KBO
would not be closed under substitutions.

Yet another similairty to LPO: both are decidable, and it is
decidable whether termination of a finite TRS can be shown using
such an order.
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Knuth-Bendix order

Special treatment of unary function symbols of weight zero.

I (KBO2a) can only apply if w(f) = 0.

I Admissibility of w makes sure that there is only one such f .

I Such an f must be the greatest element of F with respect to
the precedence.
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Knuth-Bendix order

Why are unary function symbols of weight 0 allowed?

Without it, termination of rules like i(f(x, y))→ f(i(y), i(x)) can
not be shown by a KBO.

The power of KBOs would be very restricted.
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Knuth-Bendix order

s >kbo t iff
(KBO1) #(x, s) ≥ #(x, t) for all x ∈ V and w(s) > w(t), or

(KBO2) #(x, s) ≥ #(x, t) for all x ∈ V, w(s) = w(t), and

(KBO2a) there are a unary function symbol f , a variable x, and a
positive integer n such that s = fn(x) and t = x, or

(KBO2b) there exist f, g ∈ F with f > g (wrt the precedence) such
that s = f(s1, . . . , sn) and t = g(t1, . . . , tm), or

(KBO2c) there exist f ∈ F and 1 ≤ i ≤ n such that
s = f(s1, . . . , sn), t = f(t1, . . . , tn),
s1 = t1, . . . si−1 = ti−1 and si >kbo ti.

Example 5.8 (Cont.)
Let F = {i, f} with w(i) = w(f) = 0, v0 = 1, and i > f .
t1 = i(f(x, y)) >?

kbo f(i(y), i(x)) = t2.

w(t1) = w(t2) = 2.
By (KBO2b), t1 >kbo t2.
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Knuth-Bendix order

s >kbo t iff
(KBO1) #(x, s) ≥ #(x, t) for all x ∈ V and w(s) > w(t), or

(KBO2) #(x, s) ≥ #(x, t) for all x ∈ V, w(s) = w(t), and
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(KBO2c) there exist f ∈ F and 1 ≤ i ≤ n such that
s = f(s1, . . . , sn), t = f(t1, . . . , tn),
s1 = t1, . . . si−1 = ti−1 and si >kbo ti.

Example 5.8 (Cont.)
Let F = {s,+} with w(s) = w(+) = 0, v0 = 1, and s > +.
t1 = s(x) + (y + z) >?

kbo x+ (s(s(y)) + z) = t2.

w(t1) = w(t2) = 3.
By (KBO2c), first s(x) >?

kbo x should be decided.
s(x) >?

kbo x holds by (KBO2a). Hence, t1 >kbo t2.
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Knuth-Bendix order
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s = f(s1, . . . , sn), t = f(t1, . . . , tn),
s1 = t1, . . . si−1 = ti−1 and si >kbo ti.

Example 5.8 (Cont.)
Let F = {s,+} with w(s) = w(+) = 0, v0 = 1, and s > +.
t1 = s(x1) + (x2 + (x3 + x4)) >

?
kbo x1 + (x2 + (x3 + x4)) = t2.

w(t1) = w(t2) = 4. By (KBO2c), first s(x1) >
?
kbo x1 should be checked.

s(x1) >kbo x1 holds by (KBO2a). Hence, t1 >kbo t2.
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Knuth-Bendix order

s >kbo t iff
(KBO1) #(x, s) ≥ #(x, t) for all x ∈ V and w(s) > w(t), or

(KBO2) #(x, s) ≥ #(x, t) for all x ∈ V, w(s) = w(t), and

(KBO2a) there are a unary function symbol f , a variable x, and a
positive integer n such that s = fn(x) and t = x, or

(KBO2b) there exist f, g ∈ F with f > g (wrt the precedence) such
that s = f(s1, . . . , sn) and t = g(t1, . . . , tm), or

(KBO2c) there exist f ∈ F and 1 ≤ i ≤ n such that
s = f(s1, . . . , sn), t = f(t1, . . . , tn),
s1 = t1, . . . si−1 = ti−1 and si >kbo ti.

Example 5.8 (Cont.)
Let F = {s,+} with w(s) = w(+) = 0, v0 = 1, and s > +.
t1 = s(x1) + (x2 + (x3 + x4)) >

?
kbo x1 + (x2 + (x3 + x4)) = t2.

w(t1) = w(t2) = 4.

By (KBO2c), first s(x1) >
?
kbo x1 should be checked.

s(x1) >kbo x1 holds by (KBO2a). Hence, t1 >kbo t2.

58 / 61



Knuth-Bendix order

s >kbo t iff
(KBO1) #(x, s) ≥ #(x, t) for all x ∈ V and w(s) > w(t), or

(KBO2) #(x, s) ≥ #(x, t) for all x ∈ V, w(s) = w(t), and

(KBO2a) there are a unary function symbol f , a variable x, and a
positive integer n such that s = fn(x) and t = x, or

(KBO2b) there exist f, g ∈ F with f > g (wrt the precedence) such
that s = f(s1, . . . , sn) and t = g(t1, . . . , tm), or

(KBO2c) there exist f ∈ F and 1 ≤ i ≤ n such that
s = f(s1, . . . , sn), t = f(t1, . . . , tn),
s1 = t1, . . . si−1 = ti−1 and si >kbo ti.

Example 5.8 (Cont.)
Let F = {s,+} with w(s) = w(+) = 0, v0 = 1, and s > +.
t1 = s(x1) + (x2 + (x3 + x4)) >

?
kbo x1 + (x2 + (x3 + x4)) = t2.

w(t1) = w(t2) = 4. By (KBO2c), first s(x1) >
?
kbo x1 should be checked.

s(x1) >kbo x1 holds by (KBO2a). Hence, t1 >kbo t2.

58 / 61



Knuth-Bendix order

s >kbo t iff
(KBO1) #(x, s) ≥ #(x, t) for all x ∈ V and w(s) > w(t), or

(KBO2) #(x, s) ≥ #(x, t) for all x ∈ V, w(s) = w(t), and

(KBO2a) there are a unary function symbol f , a variable x, and a
positive integer n such that s = fn(x) and t = x, or

(KBO2b) there exist f, g ∈ F with f > g (wrt the precedence) such
that s = f(s1, . . . , sn) and t = g(t1, . . . , tm), or

(KBO2c) there exist f ∈ F and 1 ≤ i ≤ n such that
s = f(s1, . . . , sn), t = f(t1, . . . , tn),
s1 = t1, . . . si−1 = ti−1 and si >kbo ti.

Example 5.8 (Cont.)
Let F = {s,+} with w(s) = w(+) = 0, v0 = 1, and s > +.
t1 = s(x1) + (x2 + (x3 + x4)) >

?
kbo x1 + (x2 + (x3 + x4)) = t2.

w(t1) = w(t2) = 4. By (KBO2c), first s(x1) >
?
kbo x1 should be checked.

s(x1) >kbo x1 holds by (KBO2a). Hence, t1 >kbo t2.

58 / 61



Knuth-Bendix order

Theorem 5.8
For any strict order > on F and a weight function
w : F ∪ V −→ N that is admissible for >, the induced
Knuth-Bendix order >kbo on T (F ,V) is a reduction order.

Proof.
See Baader and Nipkow, pp. 125–129.
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Properties of KBO

Given a finite signature F , terms s, t ∈ T (F ,V), and a finite TRS
R over T (F ,V):

I For a given KBO >kbo , the question whether s >kbo t can be
decided in time polynomial in the size s and t.

I The question whether termination of R can be shown by some
KBO on T (F ,V) is decidable.

I The question whether there exists a KBO which orients every
ground instance of every rewrite rule in R can be solved in
polynomial time.
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LPO, KBO, and polynomial interpretations are not
comparable

Terminating TRSs

Polynomial Interpretations

LPO

KBO
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