Rewriting

Part 4. Equational Problems.
Syntactic Unification and Matching

Temur Kutsia

RISC, JKU Linz

48

Validity and satisfiability

Notation: s =g t iff s = t belongs to the equational theory
generated by F.

48

Validity and satisfiability

Notation: s =g t iff s = t belongs to the equational theory
generated by F.
Validity problem:

Given: A set of identities £/ and terms s and ¢.
Decide: s =g t.

48

Validity and satisfiability

Notation: s =g t iff s = t belongs to the equational theory
generated by F.

Validity problem:
Given: A set of identities F and terms s and t.
Decide: s =g t.
Satisfiability problem:
Given: A set of identities £/ and terms s and ¢.
Find: A substitution o such that o(s) =g o(t).

Equational problems

The following methods solve special cases:

» Term rewriting decides ~p if — g is convergent.
(Discussed in the previous lecture)

48

Equational problems

The following methods solve special cases:

» Term rewriting decides ~p if — g is convergent.
(Discussed in the previous lecture)

» Congruence closure decided ~p when FE is variable-free.

(Discussed in the previous lecture)

48

Equational problems

The following methods solve special cases:
» Term rewriting decides ~p if — g is convergent.
(Discussed in the previous lecture)

» Congruence closure decided ~p when FE is variable-free.

(Discussed in the previous lecture)

» Syntactic unification computes o such that o(s) = o(t).

(Today)

48

Unification

Unification is the process of solving satisfiability problems:
Given: A set of identities £ and two terms s and ¢.
Find: A substitution o such that o(s) =g o(t).

48

Unification

Unification is the process of solving satisfiability problems:

Given: A set of identities £ and two terms s and ¢.

Find: A substitution o such that o(s) =g o(t).

» In syntactic unification, £ = (.

> L Rg T2 iff r =1Tg.

48

Unification

Unification is the process of solving satisfiability problems:
Given: A set of identities £ and two terms s and ¢.
Find: A substitution o such that o(s) =g o(t).

» In syntactic unification, £ = (.
> g e iff rp =ro.
Syntactic unification:
Given: Two terms s and t.
Find: A substitution o such that o(s) = o(t).

Unification

Syntactic unification:

Given: Two terms s and ¢.

Find: A substitution o such that o(s) = o(t).

» o: a unifier of s and t.

» o a solution of the equation s =’ ¢.

48

Examples

f(x) =" f(a)
z="f(y):

. exactly one unifier {z — a}

infinitely many unifiers

{z = fW)} Az = fla),y = al,...

no unifiers

no unifiers

6/ 48

Examples

=’ f(y) : infinitely many unifiers

{z = fy)},{z— f(a),y— a},...

» Some solutions are better than the others: {x — f(y)} is
more general than {z — f(a),y — a}

48

Substitutions

Instantiation Quasi-Ordering

» A substitution o is more general than 9, written o < 9, if
there exists n such that no = 9.

» ¢ is called an instance of o.

» The relation < is quasi-ordering (reflexive and transitive

~

binary relation), called instantiation quasi-ordering.

» ~ is the equivalence relation corresponding to <, i.e., the
relation <N 2.

Example 4.2
Leto={x—y}, p={z—a,y—a}, ¥ ={y— x}.
» 0 < p, because {y — a}o = p.

v

o < ¥, because {y — x}o = .

v

¥ < o, because {z — y}I = 0.

> o~ 9.

48

Substitutions

Definition 4.2 (Variable Renaming)

A substitution o = {1 — y1,22 = Y2,..., Ty > Yy} is called
variable renaming iff {x1,..., 2.} = {y1,.. -, Yn}
(Permuting the domain variables.)

Example 4.3

» {z+ y,y — 2,2~ z} is a variable renaming.
» {z —a}, {r =y} and {x — 2,y — 2,z — x} are not.

48

Substitutions

Definition 4.3 (Idempotent Substitution)
A substitution o is idempotent iff oo = 0.

Example 4.4

Let o ={xz— f(2),y— 2z}, ¥v={z— f(y),y— z}.
» o is idempotent.
» ¢ is not: Y =0 # 9.

10/48

Substitutions

Lemma 4.2
o ~ 19 iff there exists a variable renaming p such that po = 9.

Proof.

Exercise. O

11/48

Substitutions

Lemma 4.2
o ~ 19 iff there exists a variable renaming p such that po = 9.

Proof.

Exercise. O
Example 4.5

» o ={x—y}.
» ¥ ={y—x}.
> o~ 1.

» {r—y,y—alo="1.

11/48

Substitutions

Theorem 4.4
o is idempotent iff Dom(o) N VRan(o) = 0.

Proof.

Exercise. O

12/48

Substitutions

Definition 4.4 (Unification Problem, Unifier, MGU)

» Unification problem: A finite set of equations
I'= {81 =? tl,...,sn Z? tn}.

13/48

Substitutions

Definition 4.4 (Unification Problem, Unifier, MGU)

» Unification problem: A finite set of equations
I'= {81 =? tl,...,sn Z? tn}.

» Unifier or solution of I': A substitution ¢ such that
o(s;) =o(t;) forall 1 <i<mn.

13/48

Substitutions

Definition 4.4 (Unification Problem, Unifier, MGU)

» Unification problem: A finite set of equations
I'= {81 :? tl,...,sn :? tn}.

» Unifier or solution of I': A substitution ¢ such that
o(s;) =o(t;) forall 1 <i<mn.

» U(T): The set of all unifiers of T'. T is unifiable iff (T") # 0.

13/48

Substitutions

Definition 4.4 (Unification Problem, Unifier, MGU)

» Unification problem: A finite set of equations
I'= {81 :? tl,...,sn :? tn}.
» Unifier or solution of I': A substitution ¢ such that
o(s;) =o(t;) forall 1 <i<mn.
» U(T): The set of all unifiers of T'. T is unifiable iff (T") # 0.
» o is a most general unifier (mgu) of I iff it is a least element
of U(T'):
» o cU(T), and
» o <o for every ¥ € U(T).

13 /48

Unifiers

Example 4.6
o:={x—y}isan mguof z =" 4.
For any other unifier 9 of z =7 y, o < ¢ because

> J(z) = I(y) = do(x).
> Wy) = Jo(y).
» J(z) = Yo(z) for any other variable z.

14 /48

Unifiers

Example 4.6
o:={x—y}isan mguof z =" 4.
For any other unifier 9 of z =7 y, o < ¢ because

> J(z) = I(y) = do(x).
> J(y) = Jda(y).
» J(z) = Yo(z) for any other variable z.
o' :={x > z,y — 2z} is a unifier but not an mgu of z =" .
» o' ={y— z}o.
» {2yt ={r—y,z—y}#o.

14 /48

Unifiers

Example 4.6
o:={x—y}isan mguof z =" 4.
For any other unifier 9 of z =7 y, o < ¢ because

> J(z) = J(y) = do(z).
» J(y) = Vo(y).
» J(z) = Yo (z) for any other variable z.
o' :={x > z,y — 2z} is a unifier but not an mgu of z =" .
» o/ ={y— z}o.
» oyl ={z—yz—y}l#o.
0" ={x > y,21 > 22,20+ 21} is an mgu of z = y.
» 0 ={z1 — 22,20 — z1}0".

» ¢” is not idempotent.

14 /48

Unification

Question: How to compute an mgu of an unification problem?

15/48

Rule-based formulation of unification

» Unification algorithm in a rule-base way.
» Repeated transformation of a set of equations.

» The left-to-right search for disagreements: modeled by term
decomposition.

16 /48

The inference system il

» A set of equations in solved form:
{z1 = t1,...,2p =y}

where each x; occurs exactly once.

» For each idempotent substitution there exists exactly one set
of equations in solved form.

» Notation:

» [o] for the solved form set for an idempotent substitution o.
» og for the idempotent substitution corresponding to a solved
form set S.

17 /48

The inference system il

v

System: The symbol L or a pair P;S where

» P is a set of unification problems,
» S is a set of equations in solved form.

v

L represents failure.

v

A unifier (or a solution) of a system P;S: A substitution that
unifies each of the equations in P and S.

v

1 has no unifiers.

18 /48

The inference system il

Example 4.7

> System: {g(a) =" g(y), 9(2) =" g(g(2))}; {z =~ g(y)}.
» Its unifier: {z — g(a),y — a,z > g(g(a))}.

19/48

The inference system il

Six transformation rules on systems:!

Trivial:
{s =7 s}wP:S < P;S.
Decomposition:
{f(s1,-y80) =" flt1, .., t)) WP, S &
{s1="t1,...,5, = to} UP’; S, where n > 0.
Symbol Clash:

{f(s1,-.,8n) :?g(tl,...,tm)}LﬂP/;S@L, if f#g.

! stands for disjoint union.

20 /48

The inference system il

Orient:

{t="2}wP;Se{e="t UP:S ift¢V.
Occurs Check:

{z="t}wP;S o LifxeVar(t) but z # 1.
Variable Elimination:

{r ="t} wP:S e {x— t}(P){z—t}(S)U{z~t},
if x ¢ Var(t).

21/48

Unification with

In order to unify s and t:
1. Create an initial system {s =7 t}; 0.
2. Apply successively rules from $1.

The system 4l is essentially the Herbrand's Unification Algorithm.

Examples

Example 4.8 (Failure)
Unify p(f(a), g(x)) and p(y, y).

1

23 /48

Examples

Example 4.9 (Success)
Unify p(a, 2, h(g(2))) and p(z, h(y), h(y))-

Answer: {z — a,z +— h(g(a)),y — g(a)}

24 /48

Examples

Example 4.10 (Failure)
Unify p(z,z) and p(y, f(v)).

{p(:v,x) =! p(yaf(y)) = Dec
{z="y.2="f(y)
{y="fW)} {z =y} = 0ccch
L

50
b 0 =varel

25 /48

Properties of LI: termination

Lemma 4.3
For any finite set of equations P, every sequence of
transformations in 1

P;@©P1;51@P2;52<=>'”

terminates either with 1 or with 0; S, with S in solved form.

26 /48

Properties of LI: termination

Proof.
Complexity measure on the set P of equations: (n1,ng, ns),
ordered lexicographically on triples of naturals, where

n1 = The number of distinct variables in P.
ng = The number of symbols in P.

ns = The number of equations in P of the form ¢t =’ z where
t is not a variable.

27 /48

Properties of LI: termination

Proof [Cont.]

Each rule in 4l strictly reduces the complexity measure.

Rule ny mng2 N3
Trivial > >
Decomposition = >
Orient = = >
Variable Elimination >

28 /48

Properties of LI: termination

Proof [Cont.]

» A rule can always be applied to a system with non-empty P.

» The only systems to which no rule can be applied are L and
0;S.

» Whenever an equation is added to S, the variable on the

left-hand side is eliminated from the rest of the system, i.e.
51,59, ... are in solved form.

Corollary 4.1
If P;() T 0; S then og is idempotent.

29 /48

Properties of Ll: correctness

Notation: I" for systems.

Lemma 4.4
For any transformation P; S < T', a substitution ¥ unifies P; S iff
it unifies T".

30/48

Properties of Ll: correctness

Proof.
Occurs Check: If 2 € Var(t) and x # t, then

» 1z contains fewer symbols than ¢,
» ¥(x) contains fewer symbols than J(t) (for any ¥).
Therefore, ¥(z) and ¥(t) can not be unified.

Variable Elimination: From J(z) = 9¥(t), by structural induction
on w:

PY(u) = Hax — t}(u)
for any term, equation, or set of equations u. Then

I(P) =9z tH(P), I(S) =9z — t}(S).

O

31/48

Properties of Ll: correctness

Theorem 4.5 (Soundness)
If P;() <1 0; S, then o unifies any equation in P.

32/48

Properties of Ll: correctness

Theorem 4.5 (Soundness)
If P;0) &% 0; S, then og unifies any equation in P.

Proof.

By induction on the length of derivation, using the previous lemma
and the fact that og unifies S.]

32/48

Properties of Ll: correctness

Theorem 4.6 (Completeness)

If ¥ unifies every equation in P, then any maximal sequence of

transformations P;() < --- ends in a system (); S such that
os S 0.

33/48

Properties of Ll: correctness

Theorem 4.6 (Completeness)

If ¥ unifies every equation in P, then any maximal sequence of
transformations P;() < --- ends in a system (); S such that
os S 0.

Proof.

Such a sequence must end in (J; S where ¥ unifies S (why?).

For every binding x — t in og, Jog(x) = ¥(t) = ¥(x) and for
every z ¢ Dom(og), Yog(x) = 9(z). Hence, ¥ = Jog. O

33 /48

Properties of Ll: correctness

Theorem 4.6 (Completeness)

If ¥ unifies every equation in P, then any maximal sequence of
transformations P;() < --- ends in a system (); S such that
os S 0.

Proof.

Such a sequence must end in (J; S where ¥ unifies S (why?).

For every binding x — t in og, Jog(x) = ¥(t) = ¥(x) and for
every z ¢ Dom(og), Yog(x) = 9(z). Hence, ¥ = Jog. O
Corollary 4.2

If P has no unifiers, then any maximal sequence of transformations
from P; () must have the form P;() < --- & L.

33/48

Observations

v

il computes an idempotent mgu.
» The choice of rules in computations via U is “don’t care”
nondeterminism (the word “any” in Completeness Theorem).

» Any control strategy will result to an mgu for unifiable terms,
and failure for non-unifiable terms.

» Any practical algorithm that proceeds by performing
transformations of L[in any order is

» sound and complete,
» generates mgus for unifiable terms.

» Not all transformation sequences have the same length.

» Not all transformation sequences end in exactly the same mgu.

34 /48

Matching

Definition 4.5
Matcher, Matching Problem

» A substitution o is a matcher of s to ¢ if o(s) =t.
» A matching equation between s and t is represented as s < t.

» A matching problem is a finite set of matching equations.

35/48

Matching vs unification

Example 4.11

fla,y) 7 fg(2),) fla,y) =" fg(z),c)
{z—g(2),y = c} {z—g(2),y = ¢}

36 /48

Matching vs unification

Example 4.11

fl@,y) <7 fg(2),0)
{z—g(2),y = c}

fl@,y) =" flg(2),c)
{z—g(2),y = ¢}

fl@,y) <7 Fg(2),2)
{z = 9(2),y = a}

fl@.y) =" f(g(2),)
{z = g(2),y = g(2)}

36 /48

Matching vs unification

Example 4.11

fl@,y) <7 fg(2),0)
{z—g(2),y = c}

fl@,y) =" flg(2),c)
{z—g(2),y = ¢}

fl@,y) <7 Fg(2),2)
{z = g(2),y = a}

fl@.y) =" f(g(2),)
{z = g(2),y = g(2)}

fl@,a) 7 f(by)

No matcher

f(@,a) =" f(by)

{r—by—a}

36 /48

Matching vs unification

Example 4.11

fl@,y) <7 fg(2),0)
{z—g(2),y = c}

fl@,y) =" flg(2),c)
{z—g(2),y = ¢}

fl@,y) <7 Fg(2),2)
{z = g(2),y = a}

fl@.y) =" f(g(2),)
{z = g(2),y = g(2)}

fl@,a) 7 f(by)

f(@,a) =" f(by)

No matcher {z — by a}
fla,2) S° f(,a) fla,z) =" f(z,a)
No matcher {z — a}

36 /48

Matching vs unification

Example 4.11

fl@,y) <7 fg(2),0)
{z—g(2),y = c}

fl@,y) =" flg(2),c)
{z—g(2),y = ¢}

fl@,y) <7 Fg(2),2)
{z = g(2),y = a}

fl@.y) =" f(g(2),)
{z = g(2),y = g(2)}

fl@,a) 7 f(by)

f(@,a) =" f(by)

No matcher {z — by a}
fla,x) S fla,a) fla,x) =" f(z,a)
No matcher {z — a}

x5 fl) z="f()

{x— f(x)} No unifier

36 /48

How to solve matching problems

» s="tand s 57 t coincide, if ¢ is ground.
» When t is not ground in s < ¢, simply regard all variables in ¢
as constants and use the unification algorithm.

» Alternatively, modify the rules in &l to work directly with the
matching problem.

37 /48

Matched form

» A set of equations {z1 ~ t1,...,z, & t,} is in matched from,
if all 2's are pairwise distinct.

» The notation og extends to matched forms.
» If S is in matched form, then

t, fe~telS
os(z) =

z, otherwise

38 /48

The inference system 9

» Matching system: The symbol L or a pair P; S, where

» P is set of matching problems.
» S is set of equations in matched form.

» A matcher (or a solution) of a system P;.S: A substitution
that solves each of the matching equations in P and S.

» | has no matchers.

39 /48

The inference system 9

Five transformation rules on matching systems:?

Decomposition:
{f(s1y.y8n) ST fltr,..)} WP S &
{s1 S? t1,...,8n ,S? tn} UP'; S, where n > 0.
Symbol Clash:

{f(s1,-..,80) <P gty ... tm)Y WP S < L, if f#g.

2y stands for disjoint union.

40 /48

The inference system 9

Symbol-Variable Clash:
{f(s1,...,8,) "2} P S & L.
Merging Clash:
{z<"tlwP {zxty)wS o L, ift] # to.
Elimination:
{(r<"tyw P S e Pi{zxtlUs,
if S does not contain z ~ t’ with t # ¢'.

41 /48

Matching with 9t

In order to match s to ¢
1. Create an initial system {s <7 t}; 0.
2. Apply successively the rules from 1.

42 /48

Matching with 9t

Example 4.12
Match f(z, f(a, 7)) to f(g(a), f(a,g(a))):

{f(x, f(a,2)) SF f(g(a), f(a,g(a)))}; 0 S Decomposition
{LIZ S? g() () 5? f(())} 0 < Elimination
{f(avl') <7 (())}7 {$ ~ g()} <> Decomposition

{CL ,S? a,x <? ()} {.’13 ~ g(a)} <:>’De(7011’1posi‘cion
{LU S? g(a’)}’ {I ~ g(a)} <:>Merge

0:{z ~ g(a)}
Matcher: {z — g(a)}.

43/48

Matching with 9t

Example 4.13
Match f(z,z) to f(z,a):

{f(xa $) S? f(l‘, a)}; @ <:>Decomposition
{$ S? z,T S.;? a};@ <~ Elimination

{l’ S? a}; {l’ ~ -T} <:>Me1rging Clash
1L

No matcher.

44 /48

Properties of)i: termination

Theorem 4.7

For any finite set of matching problems P, every sequence of
transformations in 9N of the form P;() < Py;S1 & Py; Sy & - -+
terminates either with L or with (); S, with S in matched form.

45 /48

Properties of)i: termination

Theorem 4.7

For any finite set of matching problems P, every sequence of
transformations in 9N of the form P;() < Py;S1 & Py; Sy & - -+
terminates either with L or with (); S, with S in matched form.

Proof.
» Termination is obvious, since every rule strictly decreases the
size of the first component of the matching system.
» A rule can always be applied to a system with non-empty P.
» The only systems to which no rule can be applied are L and

0;S.
» Whenever x &~ t is added to S, there is no other equation
x~ 1t in S. Hence, Si,So,... are in matched form.

45 /48

Properties of 9i: correctness

The following lemma is straightforward:

Lemma 4.5

For any transformation of matching systems P; S < T, a
substitution ¥ is a matcher for P; S iff it is a matcher for T'.

46 /48

Properties of 9i: correctness

Theorem 4.8 (Soundness)
If P;() &T 0; S, then og solves all matching equations in P.

47/48

Properties of 9i: correctness

Theorem 4.8 (Soundness)
If P;() &%+ 0; 5, then og solves all matching equations in P.

Proof.

By induction on the length of derivations, using the previous lemma
and the fact that og solves the matching problems in S. [

47 /48

Properties of 9i: correctness

Let v({s1 = t1,...,8n = tn}) be Var({s1,...,sn}).
Theorem 4.9 (Completeness)

If 9 is a matcher of P, then any maximal sequence of
transformations P;() < --- ends in a system (); S such that

o5 = V|yp)-

48 /48

Properties of 9i: correctness

Let v({s1 = t1,...,8n = tn}) be Var({s1,...,sn}).
Theorem 4.9 (Completeness)

If ¥ is a matcher of P, then any maximal sequence of
transformations P;() < --- ends in a system (); S such that

o5 = V|yp)-

Proof.

Such a sequence must end in (); S where ¥ is a matcher of S.

v(S) = v(P). For every equation x ~ t € S, either t =z or

x +— t € og. Therefore, for any such z, og(x) =t = J(x). Hence,
o5 = V|y(p)- O

48 /48

Properties of 9i: correctness

Let v({s1 = t1,...,8n = tn}) be Var({s1,...,sn}).
Theorem 4.9 (Completeness)

If ¥ is a matcher of P, then any maximal sequence of
transformations P;() < --- ends in a system (); S such that

o5 = V|yp)-

Proof.

Such a sequence must end in (); S where ¥ is a matcher of S.

v(S) = v(P). For every equation x ~ t € S, either t =z or

x +— t € og. Therefore, for any such z, og(x) =t = J(x). Hence,
o5 = V|y(p)- O

Corollary 4.3

If P has no matchers, then any maximal sequence of
transformations from P;() must have the form P;() & --- & L.

48 /48

	*
	Matching

