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Purpose of the lecture

» Introduce syntactic notions:

» Terms
» Substitutions
» |dentities

» Define semantics.

» Establish connections between syntax and semantics.

)
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Syntax

» Alphabet

» Terms
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Alphabet

A first-order alphabet consists of the following sets of symbols:

» A countable set of variables V.

v

For each n > 0, a set of n-ary function symbols F™.
Elements of F° are called constants.

Signature: F = Up>0F".

VNF =0

v

v

v
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Alphabet

A first-order alphabet consists of the following sets of symbols:

» A countable set of variables V.

v

For each n > 0, a set of n-ary function symbols F™.

Elements of FY are called constants.

>
» Signature: F = Up>oF".
» VNF=0.

Notation:

» x,y, z for variables.
» f,g for function symbols.

» a,b,c for constants.
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Terms

Definition 2.1
The set of terms T'(F,V) over F and V:

» V CT(F,V) (every variable is a term).

» Forall t1,...,t, € T(F,V) and f € F" and n > 0, we have
ft1,...,tn) € T(F,V)
(application of function symbols to terms yields a term).

» Nothing else is a term.

6

48



Terms

Definition 2.1
The set of terms T'(F,V) over F and V:

» V CT(F,V) (every variable is a term).

» Forall ty,...,t, € T(F,V) and f € F" and n > 0, we have
ft1,...,tn) € T(F,V)
(application of function symbols to terms yields a term).

» Nothing else is a term.

Notation:

» s,t,r for terms.
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Terms

Definition 2.1
The set of terms T'(F,V) over F and V:

» V CT(F,V) (every variable is a term).

» Forall ty,...,t, € T(F,V) and f € F" and n > 0, we have
ft1,...,tn) € T(F,V)
(application of function symbols to terms yields a term).

» Nothing else is a term.

Notation:
» s,t,r for terms.

Example:
» ec FOie FL fe F2
> fle. f(a,i(2)) € T(F, V).

6
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Tree representation of terms

Positions: ¢, 1,2,21,22,221
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Positions

Definition 2.2
Let t € T(F,V). The set of positions of t, Pos(t), is a set of
strings of positive integers, defined as follows:

» If t =z, then Pos(t) := {e},
> If t = f(t1,...,t,), then

Pos(t) :={e}U{ip|1<i<n, pePos(t)}

» Prefix ordering on positions: p < q iff pp’ = ¢ for some p/.
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More notions about terms

Subterm of ¢ at position p: |,
tl = f(zi(z))
t’gl = T
tle = i(x)



More Notions about Terms

Term: t = f(e, f(x,i(x)))

Replacing a subterm
at position p by s: t[s],

tlale = a
t[g<a’7 a)]21 - f(ea f(g(a7 a),
tli(y)laz = fle, f(x,i(y))
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More notions about terms

A set of variables occurring in t: Var(t)
Var(t) = {z}
Var(tlals) = 0
Var(tlaa) = {x}
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More notions about terms

A size of t: |t| = card(Pos(t))

|t]
|t[a]2]
[t]22]

6
3
2
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More notions about terms

» Ground term: A term without occurrences of variables.
» Ground t: Var(t) = 0.
» T'(F): The set of all ground terms over F.
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Substitutions

» A T(F,V)-substitution: A function o : V — T'(F,V), whose

domain
Dom(o) :={z | o(x) # z}

is finite.

14 /48
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Substitutions

» A T(F,V)-substitution: A function o : V — T'(F,V), whose

domain
Dom(o) :={z | o(x) # z}

is finite.

» Range of a substitution o
Ran(o) :={o(z) | = € Dom(o)}.
» Variable range of a substitution o:

VRan(o) := Var(Ran(c)).
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Substitutions

» A T(F,V)-substitution: A function o : V — T'(F,V), whose

domain
Dom(o) :={z | o(x) # z}

is finite.

» Range of a substitution o
Ran(o) :={o(z) | = € Dom(o)}.
» Variable range of a substitution o:
VRan(o) := Var(Ran(c)).

» Notation: lower case Greek letters o, 9, v, 1, .. ..
Identity substitution: €.
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Substitutions

» Notation: If Dom(o) = {z1,...,x,}, then o can be written
as the set
{z1 = o(x1),...,2n — o(xn)}.
» Example:

{z —i(y),y — e}
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Substitutions

» The substitution o can be extended to a mapping
o:T(F,V)—=T(F,V)
by induction:

o(f(tr,- . tn)) = flo(tr), ... o(tn)).
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Substitutions

» The substitution o can be extended to a mapping
o:T(F,V)—T(F,V)
by induction:
o(f(ti,...,tn)) = flo(tr),...,o(tn)).
» Example:

o={x—i(y),y— e}
t= f(yvf(xvy))
o(t) = f(e f(i(y), e))
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Substitutions

» The substitution o can be extended to a mapping
o:T(F,V)—T(F,V)
by induction:
o(f(ti,...,tn)) = flo(tr),...,o(tn)).
» Example:

o={x—i(y),y— e}
t= f(yvf(xvy))
o(t) = f(e f(i(y), e))

» Sub: The set of substitutions.

16
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More notions about substitutions

» Composition of ¥ and o:

» Composition of two substitutions is again a substitution.

» Composition is associative but not commutative.
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More notions about substitutions

Algorithm for obtaining a set representation of a composition of
two substitutions in a set form.

» Given:
0:{$1'—>t1,...,xn'—>tn}
J:{yl'_)slr'"ym'_)*gm}a

the set representation of their composition o6 is obtained
from the set

{1‘1 = U(tl)a sy Ty O‘(tn),yl = S1,- s Ym 2 Sm}
by deleting
» all y; — s;'s with y; € {z1,...,2,},

» all x; — o(t;)'s with z; = o(¢;).
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More notions about substitutions

Example 2.1 (Composition)

0=A{z— fly)yr—z}
o={z—a,y—bz—y}
o0 ={z — f(b),z— y}.
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More notions about substitutions

» ¢ is an instance of s iff there exists a o such that

o(s) =t.

v

Notation: ¢t = s (or s < t).
Reads: t is more specific than s, or s is more general than t.

v

» 2> is a quasi-order.

v

Strict part: >.
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More notions about substitutions

» ¢ is an instance of s iff there exists a o such that

o(s)=t.

v

Notation: ¢t = s (or s < t).
Reads: t is more specific than s, or s is more general than t.

v

» > is a quasi-order.

v

Strict part: >.
Example: f(e, f(i(y),€)) 2 f(y, f(z,y)), because

J(f(yv f(.CL‘, y))) = f(ea f(Z(y)> e)

foro={z—i(y),y — e}

v
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Identities

» An identity over T'(F,V): a pair (s,t) € T(F,V) x T(F,V).
» Written: s ~ ¢.
» s — left hand side, ¢ — right hand side.
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Identities and reduction relation

» Given a set E of identities.
» The reduction relation -5 C T(F,V) x T(F,V):

s —g tiff
there exist (I,7) € E, p € Pos(s), o € Sub
such that s|, = o(l) and t = s[o(7)],

» Sometimes written s —%, ¢.
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Identities and reduction relation

» Given a set E of identities.
» The reduction relation -5 C T(F,V) x T(F,V):

s —g tiff
there exist (I,7) € E, p € Pos(s), o € Sub
such that s|, = o(l) and t = s[o(7)],

» Sometimes written s —%, ¢.
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Identities and reduction relation

Example 2.2

» Let GG be the set of identities consisting of
(1) f(z, [y, 2)) = f(f(2,9),2)
(2) fle,x) =
(3) fli(x),z) ~e
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Identities and reduction relation

Example 2.2

» Let GG be the set of identities consisting of

(1) f(=, f(y,2)) = f(f(2,9),2)
(2) fle,z) ==

(3) fli(z),z) ~e
» Then

f(i(e), f(e,e))
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Identities and reduction relation

Example 2.2

» Let GG be the set of identities consisting of

(1) f(=, f(y,2)) = f(f(2,9),2)
(2) fle,z) ==

(3) fli(z),z) ~e
» Then
f(i(e), f(e,e))
—a f(f(i(e),e),e) [(1), o1 ={x—i(e),y — e,z e}]
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Identities and reduction relation

Example 2.2

» Let GG be the set of identities consisting of

(1) f(=, f(y,2)) = f(f(2,9),2)
(2) fle,z) ==

(3) fli(z),z) ~e
» Then
f(i(e), f(e,e))
—a f(f(i(e),e),e) [(1), o1 ={x—i(e),y — e,z e}]
=& flee) [(3), o2 ={z > e}]
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Identities and reduction relation

Example 2.2

» Let GG be the set of identities consisting of

(1) f(=, f(y,2)) = f(f(2,9),2)
(2) fle,z) ==

(3) fli(z),z) ~e
» Then
f(i(e), f(e,e€))
—a f(f(i(e),e),e) [(1), o1 ={x—i(e),y — e,z e}]
=G flee) [(3), o2 ={z > e}]
-G e [(2), o3 ={z > e€}]
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Closures of a reduction relation

* . P
— g Reflexive transitive closure of —g.
* . e .
< Reflexive transitive symmetric closure of —g.

An important problem of equational reasoning:
Design decision procedures for <= .
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Characterizations of <> g

Syntactic characterization.

Semantic characterization.
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Towards syntactic characterization of <=

=: A binary relation on T'(F, V).
» = is closed under substitutions iff
s =t implies o(s) = o(t) for all s,t,0.
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Towards syntactic characterization of <=

=: A binary relation on T'(F, V).
» = is closed under substitutions iff
s =t implies o(s) = o(t) for all s,t,0.
» = is closed under F-operations iff
S1=t1,..., 8y =ty imply f(s1,...,80) = f(t1,...,tn)
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Towards syntactic characterization of <=

=: A binary relation on T'(F, V).
» = is closed under substitutions iff
s =t implies o(s) = o(t) for all s,t,0.
» = is closed under F-operations iff
S1=t1,..., 8y =ty imply f(s1,...,80) = f(t1,...,tn)
forall s1,...,8n,t1,...,8,, n>0, f e Fm".

» = is compatible with F-operations iff s =t implies
f(sl, ey Si—158,Si41y -0 Sn) =
flsiyeeeySiz1,t,Siq1,. .., Sp) for all

S81,.+-,8i-1,5,t,8i41,.--,5n ET(]:,V), n>0,feF™
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Towards syntactic characterization of <=

=: A binary relation on T'(F, V).
» = is closed under substitutions iff
s =t implies o(s) = o(t) for all s,t,0.
» = is closed under F-operations iff

S1=t1,..., 8y =ty imply f(s1,...,80) = f(t1,...,tn)
for all s1,...,8n,t1,...,8,, n >0, f € F™

» = is compatible with F-operations iff s = ¢ implies
f(sl, ey Si—158,Si41y -0 Sn) =
flsiyeeeySiz1,t,Siq1,. .., Sp) for all

S81,..-,8-1,5,t,8i41,...,5n € T(]:,V), n>0,feF™
» = is compatible with F-contexts iff s =t implies r[s], = r[t],
for all F-terms r and positions p € Pos(r).
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Towards syntactic characterization of <=

Lemma 2.1
Let E be a set of F-identities. Then —g is closed under
substitutions and compatible with F-operations.

Proof.
Follows from the definition of —g. ]
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Towards syntactic characterization of <=

Lemma 2.1
Let E be a set of F-identities. Then —g is closed under
substitutions and compatible with F-operations.

Proof.
Follows from the definition of —g. ]

Lemma 2.2
Let = be a binary relation on T'(F,V). Then = is compatible with
JF-operations iff it is compatible with F-contexts.

Proof.
The (=) direction can be proved by induction on the length of the
position p in the context. The (<) direction is obvious. O
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Towards syntactic characterization of <=

Exercise: Which of the following relations is closed under
substitutions, closed under F-operations, or compatible with
JF-operations?

» s=tiff t is a subterm of s.

» s =t iff t is an instance of s.

» s =tiff Var(s) C Var(t).

28 /48



Towards syntactic characterization of <=

Lemma 2.3

Let = be a binary relation on T(F,V). If = is reflexive and
transitive, then it is compatible with JF-operations iff it is closed
under F-operations.
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Towards syntactic characterization of <=

Lemma 2.3

Let = be a binary relation on T(F,V). If = is reflexive and
transitive, then it is compatible with JF-operations iff it is closed
under F-operations.

Proof.

(=) Assume s; =t; for all 1 < i < n. By compatibility we have

f(s1,82,...,8,) = f(t1,82,...,8n)
f(tl,SQ,...,Sn) f(tl,tg,...,sn)

flt1,ta, .oy 8n) = fti,ta, ..o tn)

Transitivity of = implies f(s1,...,8,) = f(t1,...,tn)-
(<) Using reflexivity of =.
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Syntactic characterization of <=

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence

relation on T(F,V) that
(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof.

< g is an equivalence relation by definition.
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Syntactic characterization of <=

Theorem 2.1

Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof.

< g is an equivalence relation by definition.
(a) Obvious.
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Syntactic characterization of <=

Theorem 2.1
Let E be a set of identities. < E IS the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.
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Syntactic characterization of <=

Theorem 2.1

Let E be a set of identities. < E IS the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.
Proof (Cont.)

(b) Assume s <> t. Prove o(s) <> o(t) for a o by induction on
the length of <> chain.
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Syntactic characterization of <=

Theorem 2.1

Let E be a set of identities. < E IS the smallest equivalence
relation on T(F,V) that
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(b) is closed under substitutions, and
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Proof (Cont.)
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Syntactic characterization of <=

Theorem 2.1

Let E be a set of identities. < E IS the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.
Proof (Cont.)

(b) Assume s <> t. Prove o(s) <> o(t) for a o by induction on
the length of <5 g chain. IB s = t: Obvious. IH for s <> p t.
IS: Let s <> p t <35 t'. By case distinction on <.
» t »pt': By IH: 0(s) &g o(t).
t—=pt =0olt)—polt)=ot) g alt).
By transitivity of <> p: o(s) <> g o(t).
» t' — g t. Similar to the previous item.
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Syntactic characterization of <=

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.
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Syntactic characterization of <=

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

(c) » <5pis reflexive and transitive and compatible with
F-operations (because — g is).
» By Lemma 2.3, <5 is closed under F-operations.
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Syntactic characterization of <=

Theorem 2.1
Let E be a set of identities. <= is the smallest equivalence
relation on T'(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.
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Syntactic characterization of <=

Theorem 2.1
Let E be a set of identities. <= is the smallest equivalence
relation on T'(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

Prove that <> is the smallest such relation. Take another
equivalence relation = on T'(F, V) which satisfies (a), (b), (c).
Prove that <i>E C =.
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Syntactic characterization of <=

Theorem 2.1
Let E be a set of identities. <= is the smallest equivalence
relation on T'(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

Prove that <> is the smallest such relation. Take another
equivalence relation = on T'(F, V) which satisfies (a), (b), (c).
Prove that <i>E C =.

» First, prove g C =.
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Syntactic characterization of <=

Theorem 2.1
Let E be a set of identities. <= is the smallest equivalence
relation on T'(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

Prove that <> is the smallest such relation. Take another
equivalence relation = on T'(F, V) which satisfies (a), (b), (c).
Prove that <i>E C =.
» First, prove g C =.
» Let s —p t. It implies that there exist (I,7) € E, p € Pos(s),
and o such that s|, = o(l), t = s[o(7)],.
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Syntactic characterization of <=

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.
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Syntactic characterization of <=

Theorem 2.1
Let E be a set of identities. <= is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

» EC ==l=r=o0(l)=0o(r).
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Syntactic characterization of <=

Theorem 2.1

Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

» EC ==l=r=o0(l)=0o(r).

» = is reflexive and transitive and closed under F-operations.

By Lemma 2.3, = is compatible with F-operations.
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Syntactic characterization of <=

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

» By Lemma 2.2, = is compatible with contexts: o(l) =
implies u[o(1)]pos = u[o(r)]pos for all u, pos € Pos(u),

(r)

g
g
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Syntactic characterization of <=

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

» By Lemma 2.2, = is compatible with contexts: o(l) =
implies u[o(1)]pos = u[o(r)]pos for all u, pos € Pos(u),

» In particular, s = s[o(l)], = s[o(r)], =t.

(r)
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Syntactic characterization of <=

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

» By Lemma 2.2, = is compatible with contexts: o(l) =
implies u[o(1)]pos = u[o(r)]pos for all u, pos € Pos(u),

» In particular, s = s[o(l)], = s[o(r)], =t.

(r)

g
g

» Hence, s=tand - C =.
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Syntactic characterization of <=

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

36 /48



Syntactic characterization of <=

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Finished).

» 5 C = implies <> C =, because, by definition, <> is the
smallest equivalence relation containing —g.

36
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Syntactic characterization of <=

Theorem 2.1 says that <5 can be obtained by starting with the
binary relation E and closing it under

> reflexivity,
» symmetry,

» transitivity,

v

substitutions, and
» JF-operations.

describing the closing process leads to equational logic.
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Equational logic

Inference rules:

s~te F
EtFs~t
EFs=t EFrs~t Ertxr
EFs~s Ertms Ers~r
EFrs=t Ftsi=t1 --- Ebls,=t,

EFo(s)=o(t) Eb f(s1,-.,8n) & f(t1,.. - tn)

EFs=t: s~ tisa syntactic consequence of E/, or s & t is
provable from E.

38/48



Equational logic

Example 2.3
» Let E={a~b, f(z) =~ g(z)}
» Prove EF g(b) = f(a).

Proof:

Q

Era~b (Func. closure) Er f(x) g(x) (Subst. inst.)
Et f(a) = f(b) EF f(b) = g(b)
Bt fla) = g(b)
Etrg() = f(a)

%

(Transitivity)

(Symmetry)
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Equational logic

Example 2.3
» Let E={a~b, f(z) =~ g(z)}
» Prove EF g(b) = f(a).

Proof:

Q

Era~b (Func. closure) Er f(x) g(x) (Subst. inst.)
Et f(a) = f(b) EF f(b) = g(b)
Bt fla) = g(b)
Etrg() = f(a)

%

(Transitivity)

(Symmetry)

Compare with the derivation of g(b) <> g f(a):

9(b) g g(a) < f(a)
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Syntactic characterization of <= via provability

Theorem 2.2 (Logicality)
For all E, s, t,

sspt iff EFsat.

Proof.

Follows from Theorem 2.1. O
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Convertibility and provability

Differences in behavior:

1. The rewriting approach <>z allows the replacement of a
subterm at an arbitrary position in a single step; The inference
rule approach E I needs to simulate this with a sequence of
small steps.

2. The inference rule approach allows the simultaneous
replacement in each argument of an operation; The rewriting
approach needs to simulate this by a number of replacement
steps in sequence.

41 /48



Semantics
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Semantic algebras

. . . *
Towards semantic characterization of <= g.

> F-algebra A = (A, {fa}ser)-
» A is a nonempty set, the carrier.
» fa4: A" — As an interpretation for f € F™.
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Semantic algebras

. . . *
Towards semantic characterization of <= g.

> F-algebra A = (A, {fa}ser)-
» A is a nonempty set, the carrier.
» fa4: A" — As an interpretation for f € F™.

Example 2.4
Two {0, s, +}-algebras:

A= (N,{04,54,+4}) with 04 =0, sa(z) =z +1, +alr,y) =z +y.

B= (N, {OB, SB,—I—B}) with Og =1, SB(.Z‘) =x+1, +B(x,y) =2z +vy.
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Variable assignment, interpretation function

» Variable assignment: a: V — A
» Interpretation function: [a]a(:) : T(F,V) — A

B a(t) iftey
[a]a(t) = { aelaty), .- lalaltn))  iFt=f(tr,... tn)
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Variable assignment, interpretation function

» Variable assignment: a: V — A
» Interpretation function: [a]a(:) : T(F,V) — A

B Ck(t) iftey
[a]a(t) = { Falla)a(ty), ... [alaltn)) Ft=ftr,... tn)

Example 2.5
A= (N, {04, 54, +4}) with 04 =0, sa(z) =z + 1,
+alz,y) =z +y.

B = (N,{0g, s, +5}) with 0 =1, sp(z) =x + 1,
+8(r,y) =2z +y.

t= s(s(2)) + s(z +y), alz) = 2, aly) = 3, B(z) = L, By) = 4.
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Validity, models

» An equation s &~ t is valid in algebra A, written AFE s ~ t, iff

for all assignments «.

» An F-algebra A is a model of the set of identities F over
T(F,V)iff AEs~tforallsxteE.
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Validity, models

» An equation s &~ t is valid in algebra A, written AFE s ~ t, iff

for all assignments «.
» An F-algebra A is a model of the set of identities F over
T(F,V)iff AEs~tforallsxteE.

Example 2.6
A= (N,{04,54, +a}) with 04 =0, sa(z) =2+ 1, +a(z,y) =z +y.

B = (N,{05,s5,+8}) with 0 =1, sg(x) =z + 1, +5(z,y) =2z +y.
E={0+y~y, s(z) +y~sz+y)}

A is a model of E, while B is not.
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Validity, models, equational theory

» s~ tiff s =t isvalid in all models of E.

» FEs~1t: s~ tisasemantic consequence of E.

v

Equational theory of E:

~p:={(s,t) | s,t € T(F,V), EEs~t}

v

Notation: s ~pg t iff (s,t) € ~p.
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Validity, models, equational theory

» s~ tiff s =t isvalid in all models of E.

» FEs~1t: s~ tisasemantic consequence of E.

» Equational theory of E:
~p:={(s,t) | s,t € T(F,V), EEs~t}
» Notation: s ~pg t iff (s,t) € ~p.
Example 2.7

» E={0+y=~vy, s(z) +y=~s(zx+y)}
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Validity, models, equational theory

» s~ tiff s =t isvalid in all models of E.

» FEs~1t: s~ tisasemantic consequence of E.

» Equational theory of E:
~p:={(s,t) | s,t € T(F,V), EEs~t}
» Notation: s ~pg t iff (s,t) € ~p.
Example 2.7

» E={0+y~y, s(z) +y~s(z+y)}
» EE s(s(0)+ s(0)) =~ s(s(s(0))).
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Validity, models, equational theory

» s~ tiff s =t isvalid in all models of E.

» FEs~1t: s~ tisasemantic consequence of E.

» Equational theory of E:
~p:={(s,t) | s,t € T(F,V), EEs~t}
» Notation: s ~pg t iff (s,t) € ~p.
Example 2.7

» E={0+y~y, s(z) +y~s(z+y)}
» EFEs(s(0)+s(0)) = s(s(s(0))).
» EFx+y~y+u.
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Validity, models, equational theory

» E s~ tiff s~ tisvalid in all models of F.
» FEs~1t: s~ tisasemantic consequence of E.
» Equational theory of E:

~p:={(s,t) | s,t € T(F,V), EEs~t}
» Notation: s ~pg t iff (s,t) € ~p.
Example 2.7

» E={0+y=~vy, s(z) +y=~s(zx+y)}
» EFEs(s(0)+s(0)) = s(s(s(0))).
» EFc+y~y+z.

» Model C = (N, {Oc,SC,—l-c}) with O¢c = 0, Sc(a:) =,

+elz,y) =y.
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Relating syntax and semantics

Theorem 2.3 (Birkhoff)
Equational logic is sound and complete:

Forall E,s,t, ElFs=~t iff EFs=xt.
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Relating syntax and semantics

Theorem 2.3 (Birkhoff)

Equational logic is sound and complete:

Forall E,s,t, ElFs=~t iff EFs=xt.

Corollary 2.1
For all E, s, t,

s<spt iff Ebs~t iff EEs~t.
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Relating syntax and semantics

Theorem 2.3 (Birkhoff)

Equational logic is sound and complete:

Forall E,s,t, ElFs=~t iff EFs=xt.

Corollary 2.1
For all E, s, t,

s<spt iff Ebs~t iff EEs~t.

Corollary 2.1 combines syntactic and semantic characterizations of
*
<—E-
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Validity and satisfiability

Validity problem:
Given: A set of identities F and terms s and t.
Decide: s ~p t.
Satisfiability problem:
Given: A set of identities F and terms s and t.

Find: A substitution o such that o(s) =g o(t).

48 /48



	*
	Syntax
	Semantics




