Rewriting

Part 2. Terms, Substitutions, Identities, Inference, Semantics

Temur Kutsia

RISC, JKU Linz

Purpose of the lecture

- ► Introduce syntactic notions:
 - ► Terms
 - ► Substitutions
 - ► Identities
- Define semantics.
- ► Establish connections between syntax and semantics.

Syntax

Semantics

Syntax

- ► Alphabet
- ► Terms

Alphabet

A first-order alphabet consists of the following sets of symbols:

- ► A countable set of variables V.
- ▶ For each $n \ge 0$, a set of n-ary function symbols \mathcal{F}^n .
- ▶ Elements of \mathcal{F}^0 are called constants.
- ▶ Signature: $\mathcal{F} = \bigcup_{n \geq 0} \mathcal{F}^n$.
- $ightharpoonup \mathcal{V} \cap \mathcal{F} = \emptyset.$

Alphabet

A first-order alphabet consists of the following sets of symbols:

- ► A countable set of variables V.
- ▶ For each $n \ge 0$, a set of n-ary function symbols \mathcal{F}^n .
- ▶ Elements of \mathcal{F}^0 are called constants.
- ▶ Signature: $\mathcal{F} = \bigcup_{n \geq 0} \mathcal{F}^n$.
- $\triangleright \mathcal{V} \cap \mathcal{F} = \emptyset.$

Notation:

- $\blacktriangleright x, y, z$ for variables.
- f, g for function symbols.
- ightharpoonup a, b, c for constants.

Terms

Definition 2.1

The set of terms $T(\mathcal{F}, \mathcal{V})$ over \mathcal{F} and \mathcal{V} :

- $ightharpoonup \mathcal{V} \subseteq T(\mathcal{F}, \mathcal{V})$ (every variable is a term).
- ▶ For all $t_1, ..., t_n \in T(\mathcal{F}, \mathcal{V})$ and $f \in \mathcal{F}^n$ and $n \geq 0$, we have $f(t_1, ..., t_n) \in T(\mathcal{F}, \mathcal{V})$ (application of function symbols to terms yields a term).
- ► Nothing else is a term.

Terms

Definition 2.1

The set of terms $T(\mathcal{F}, \mathcal{V})$ over \mathcal{F} and \mathcal{V} :

- $ightharpoonup \mathcal{V} \subseteq T(\mathcal{F},\mathcal{V})$ (every variable is a term).
- For all $t_1, \ldots, t_n \in T(\mathcal{F}, \mathcal{V})$ and $f \in \mathcal{F}^n$ and $n \geq 0$, we have $f(t_1, \ldots, t_n) \in T(\mathcal{F}, \mathcal{V})$ (application of function symbols to terms yields a term).
- ► Nothing else is a term.

Notation:

ightharpoonup s, t, r for terms.

Terms

Definition 2.1

The set of terms $T(\mathcal{F}, \mathcal{V})$ over \mathcal{F} and \mathcal{V} :

- $ightharpoonup \mathcal{V} \subseteq T(\mathcal{F}, \mathcal{V})$ (every variable is a term).
- ▶ For all $t_1, ..., t_n \in T(\mathcal{F}, \mathcal{V})$ and $f \in \mathcal{F}^n$ and $n \geq 0$, we have $f(t_1, ..., t_n) \in T(\mathcal{F}, \mathcal{V})$ (application of function symbols to terms yields a term).
- ▶ Nothing else is a term.

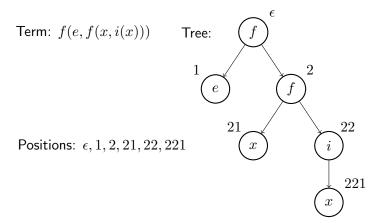
Notation:

ightharpoonup s, t, r for terms.

Example:

- \bullet $e \in \mathcal{F}^0, i \in \mathcal{F}^1, f \in \mathcal{F}^2.$
- $f(e, f(x, i(x))) \in T(\mathcal{F}, \mathcal{V}).$

Tree representation of terms



Positions

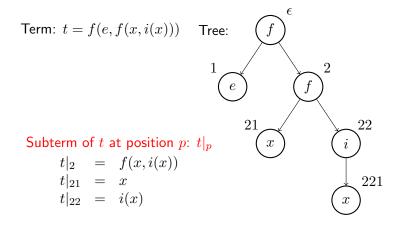
Definition 2.2

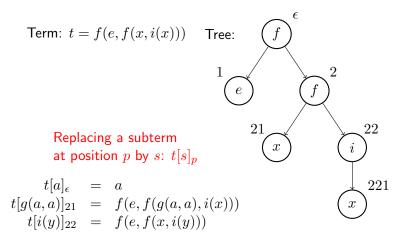
Let $t \in T(\mathcal{F}, \mathcal{V})$. The set of positions of t, $\mathcal{P}os(t)$, is a set of strings of positive integers, defined as follows:

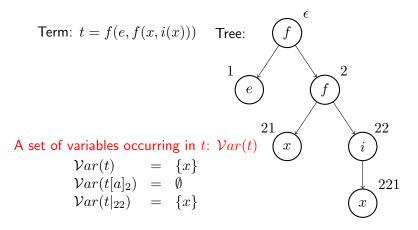
- ▶ If t = x, then $\mathcal{P}os(t) := \{\epsilon\}$,
- ▶ If $t = f(t_1, \ldots, t_n)$, then

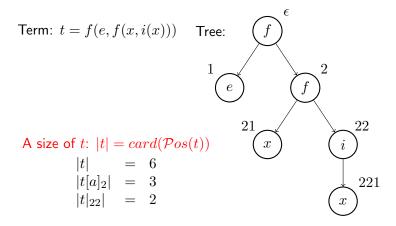
$$\mathcal{P}os(t) := \{\epsilon\} \cup \{ip \mid 1 \le i \le n, \ p \in \mathcal{P}os(t_i)\}.$$

▶ Prefix ordering on positions: $p \le q$ iff pp' = q for some p'.









- ► Ground term: A term without occurrences of variables.
- ▶ Ground t: $Var(t) = \emptyset$.
- ▶ $T(\mathcal{F})$: The set of all ground terms over \mathcal{F} .

▶ A $T(\mathcal{F}, \mathcal{V})$ -substitution: A function $\sigma : \mathcal{V} \to T(\mathcal{F}, \mathcal{V})$, whose domain

$$\mathcal{D}om(\sigma) := \{ x \mid \sigma(x) \neq x \}$$

is finite.

▶ A $T(\mathcal{F}, \mathcal{V})$ -substitution: A function $\sigma: \mathcal{V} \to T(\mathcal{F}, \mathcal{V})$, whose domain

$$\mathcal{D}om(\sigma) := \{ x \mid \sigma(x) \neq x \}$$

is finite.

▶ Range of a substitution σ :

$$\mathcal{R}an(\sigma) := \{ \sigma(x) \mid x \in \mathcal{D}om(\sigma) \}.$$

▶ A $T(\mathcal{F}, \mathcal{V})$ -substitution: A function $\sigma : \mathcal{V} \to T(\mathcal{F}, \mathcal{V})$, whose domain

$$\mathcal{D}om(\sigma) := \{ x \mid \sigma(x) \neq x \}$$

is finite.

▶ Range of a substitution σ :

$$\mathcal{R}an(\sigma) := \{ \sigma(x) \mid x \in \mathcal{D}om(\sigma) \}.$$

▶ Variable range of a substitution σ :

$$VRan(\sigma) := Var(Ran(\sigma)).$$

▶ A $T(\mathcal{F}, \mathcal{V})$ -substitution: A function $\sigma : \mathcal{V} \to T(\mathcal{F}, \mathcal{V})$, whose domain

$$\mathcal{D}om(\sigma) := \{x \mid \sigma(x) \neq x\}$$

is finite.

▶ Range of a substitution σ :

$$\mathcal{R}an(\sigma) := \{ \sigma(x) \mid x \in \mathcal{D}om(\sigma) \}.$$

▶ Variable range of a substitution σ :

$$VRan(\sigma) := Var(Ran(\sigma)).$$

▶ Notation: lower case Greek letters $\sigma, \vartheta, \varphi, \psi, \ldots$ Identity substitution: ε .

▶ Notation: If $\mathcal{D}om(\sigma) = \{x_1, \dots, x_n\}$, then σ can be written as the set

$$\{x_1 \mapsto \sigma(x_1), \dots, x_n \mapsto \sigma(x_n)\}.$$

► Example:

$$\{x \mapsto i(y), y \mapsto e\}.$$

ightharpoonup The substitution σ can be extended to a mapping

$$\sigma: T(\mathcal{F}, \mathcal{V}) \to T(\mathcal{F}, \mathcal{V})$$

by induction:

$$\sigma(f(t_1,\ldots,t_n))=f(\sigma(t_1),\ldots,\sigma(t_n)).$$

 \blacktriangleright The substitution σ can be extended to a mapping

$$\sigma: T(\mathcal{F}, \mathcal{V}) \to T(\mathcal{F}, \mathcal{V})$$

by induction:

$$\sigma(f(t_1,\ldots,t_n))=f(\sigma(t_1),\ldots,\sigma(t_n)).$$

► Example:

$$\sigma = \{x \mapsto i(y), y \mapsto e\}.$$

$$t = f(y, f(x, y))$$

$$\sigma(t) = f(e, f(i(y), e))$$

lacktriangle The substitution σ can be extended to a mapping

$$\sigma: T(\mathcal{F}, \mathcal{V}) \to T(\mathcal{F}, \mathcal{V})$$

by induction:

$$\sigma(f(t_1,\ldots,t_n))=f(\sigma(t_1),\ldots,\sigma(t_n)).$$

► Example:

$$\sigma = \{x \mapsto i(y), y \mapsto e\}.$$

$$t = f(y, f(x, y))$$

$$\sigma(t) = f(e, f(i(y), e))$$

 $ightharpoonup \mathcal{S}ub$: The set of substitutions.

▶ Composition of ϑ and σ :

$$\sigma \vartheta(x) := \sigma(\vartheta(x)).$$

- ► Composition of two substitutions is again a substitution.
- ► Composition is associative but not commutative.

Algorithm for obtaining a set representation of a composition of two substitutions in a set form.

► Given:

$$\theta = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$$

$$\sigma = \{y_1 \mapsto s_1, \dots, y_m \mapsto s_m\},$$

the set representation of their composition $\sigma\theta$ is obtained from the set

$$\{x_1 \mapsto \sigma(t_1), \dots, x_n \mapsto \sigma(t_n), y_1 \mapsto s_1, \dots, y_m \mapsto s_m\}$$

by deleting

- lacktriangle all $y_i \mapsto s_i$'s with $y_i \in \{x_1, \dots, x_n\}$,
- ▶ all $x_i \mapsto \sigma(t_i)$'s with $x_i = \sigma(t_i)$.

Example 2.1 (Composition)

$$\theta = \{x \mapsto f(y), y \mapsto z\}.$$

$$\sigma = \{x \mapsto a, y \mapsto b, z \mapsto y\}.$$

$$\sigma\theta = \{x \mapsto f(b), z \mapsto y\}.$$

 \blacktriangleright t is an instance of s iff there exists a σ such that

$$\sigma(s) = t$$
.

- ▶ Notation: $t \gtrsim s$ (or $s \lesssim t$).
- ightharpoonup Reads: t is more specific than s, or s is more general than t.
- ightharpoonup \gtrsim is a quasi-order.
- ► Strict part: >.

 \blacktriangleright t is an instance of s iff there exists a σ such that

$$\sigma(s) = t$$
.

- ▶ Notation: $t \gtrsim s$ (or $s \lesssim t$).
- ▶ Reads: t is more specific than s, or s is more general than t.
- ightharpoonup \gtrsim is a quasi-order.
- ► Strict part: >.
- ► Example: $f(e, f(i(y), e)) \gtrsim f(y, f(x, y))$, because

$$\sigma(f(y, f(x, y))) = f(e, f(i(y), e))$$

for
$$\sigma = \{x \mapsto i(y), y \mapsto e\}$$

Identities

- ▶ An identity over $T(\mathcal{F}, \mathcal{V})$: a pair $(s, t) \in T(\mathcal{F}, \mathcal{V}) \times T(\mathcal{F}, \mathcal{V})$.
- ▶ Written: $s \approx t$.
- ightharpoonup s left hand side, t right hand side.

- ▶ Given a set *E* of identities.
- ▶ The reduction relation $\rightarrow_E \subseteq T(\mathcal{F}, \mathcal{V}) \times T(\mathcal{F}, \mathcal{V})$:

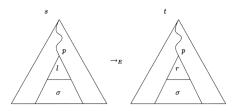
$$s \to_E t$$
 iff
$$\text{there exist } (l,r) \in E, \, p \in \mathcal{P}os(s), \, \sigma \in \mathcal{S}ub$$
 such that $s|_p = \sigma(l)$ and $t = s[\sigma(r)]_p$

▶ Sometimes written $s \to_E^p t$.

- ▶ Given a set *E* of identities.
- ▶ The reduction relation $\rightarrow_E \subseteq T(\mathcal{F}, \mathcal{V}) \times T(\mathcal{F}, \mathcal{V})$:

$$s \to_E t$$
 iff
$$\text{there exist } (l,r) \in E, \, p \in \mathcal{P}os(s), \, \sigma \in \mathcal{S}ub$$
 such that $s|_p = \sigma(l)$ and $t = s[\sigma(r)]_p$

▶ Sometimes written $s \to_E^p t$.



- lacktriangle Let G be the set of identities consisting of
 - (1) $f(x, f(y, z)) \approx f(f(x, y), z)$
 - (2) $f(e,x) \approx x$
 - (3) $f(i(x), x) \approx e$

- ▶ Let G be the set of identities consisting of
 - (1) $f(x, f(y, z)) \approx f(f(x, y), z)$
 - (2) $f(e,x) \approx x$
 - (3) $f(i(x), x) \approx e$
- ► Then

- ▶ Let G be the set of identities consisting of
 - (1) $f(x, f(y, z)) \approx f(f(x, y), z)$
 - (2) $f(e,x) \approx x$
 - (3) $f(i(x), x) \approx e$
- ► Then

$$f(i(e), f(e, e))$$

$$\rightarrow_G^{\epsilon} f(f(i(e), e), e) \quad [(1), \ \sigma_1 = \{x \mapsto i(e), y \mapsto e, z \mapsto e\}]$$

- ▶ Let G be the set of identities consisting of
 - (1) $f(x, f(y, z)) \approx f(f(x, y), z)$
 - (2) $f(e,x) \approx x$
 - (3) $f(i(x), x) \approx e$
- ► Then

$$f(i(e), f(e, e))$$

$$\rightarrow_{G}^{\epsilon} f(f(i(e), e), e) \quad [(1), \ \sigma_{1} = \{x \mapsto i(e), y \mapsto e, z \mapsto e\}]$$

$$\rightarrow_{G}^{1} f(e, e) \quad [(3), \ \sigma_{2} = \{x \mapsto e\}]$$

Identities and reduction relation

Example 2.2

- ▶ Let G be the set of identities consisting of
 - (1) $f(x, f(y, z)) \approx f(f(x, y), z)$
 - (2) $f(e,x) \approx x$
 - (3) $f(i(x), x) \approx e$
- ► Then

$$f(i(e), f(e, e))$$

$$\rightarrow_{G}^{\epsilon} f(f(i(e), e), e) \quad [(1), \ \sigma_{1} = \{x \mapsto i(e), y \mapsto e, z \mapsto e\}]$$

$$\rightarrow_{G}^{1} f(e, e) \quad [(3), \ \sigma_{2} = \{x \mapsto e\}]$$

$$\rightarrow_{G}^{\epsilon} e \quad [(2), \ \sigma_{3} = \{x \mapsto e\}]$$

Closures of a reduction relation

- $\stackrel{*}{\rightarrow}_E$: Reflexive transitive closure of \rightarrow_E .
- $\stackrel{*}{\longleftrightarrow}_E$: Reflexive transitive symmetric closure of \to_E .

An important problem of equational reasoning: Design decision procedures for $\stackrel{*}{\hookleftarrow}_E$.

Characterizations of $\stackrel{*}{\longleftrightarrow}_E$

Syntactic characterization.

Semantic characterization.

- \equiv : A binary relation on $T(\mathcal{F}, \mathcal{V})$.
 - $\begin{tabular}{l} \blacktriangleright \equiv \mbox{is closed under substitutions iff} \\ s \equiv t \mbox{ implies } \sigma(s) \equiv \sigma(t) \mbox{ for all } s,t,\sigma. \end{tabular}$

- \equiv : A binary relation on $T(\mathcal{F}, \mathcal{V})$.
 - $\begin{tabular}{l} \blacktriangleright \equiv \text{is closed under substitutions iff} \\ s \equiv t \text{ implies } \sigma(s) \equiv \sigma(t) \text{ for all } s,t,\sigma. \end{tabular}$
 - ▶ \equiv is closed under \mathcal{F} -operations iff $s_1 \equiv t_1, \ldots, s_n \equiv t_n \text{ imply } f(s_1, \ldots, s_n) \equiv f(t_1, \ldots, t_n)$ for all $s_1, \ldots, s_n, t_1, \ldots, s_n, n \geq 0, f \in \mathcal{F}^n$.

- \equiv : A binary relation on $T(\mathcal{F}, \mathcal{V})$.
 - $\begin{tabular}{l} \blacktriangleright \equiv \mbox{is closed under substitutions iff} \\ s \equiv t \mbox{ implies } \sigma(s) \equiv \sigma(t) \mbox{ for all } s,t,\sigma. \end{tabular}$
 - ▶ ≡ is closed under \mathcal{F} -operations iff $s_1 \equiv t_1, \ldots, s_n \equiv t_n \text{ imply } f(s_1, \ldots, s_n) \equiv f(t_1, \ldots, t_n)$ for all $s_1, \ldots, s_n, t_1, \ldots, s_n, n \geq 0, f \in \mathcal{F}^n$.
 - ▶ ≡ is compatible with \mathcal{F} -operations iff $s \equiv t$ implies $f(s_1, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_n) \equiv f(s_1, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_n)$ for all $s_1, \ldots, s_{i-1}, s, t, s_{i+1}, \ldots, s_n \in T(\mathcal{F}, \mathcal{V}), n \geq 0, f \in \mathcal{F}^n$.

- \equiv : A binary relation on $T(\mathcal{F}, \mathcal{V})$.
 - $\begin{tabular}{l} \blacktriangleright \equiv \text{is closed under substitutions iff} \\ s \equiv t \text{ implies } \sigma(s) \equiv \sigma(t) \text{ for all } s,t,\sigma. \end{tabular}$
 - ▶ ≡ is closed under \mathcal{F} -operations iff $s_1 \equiv t_1, \ldots, s_n \equiv t_n$ imply $f(s_1, \ldots, s_n) \equiv f(t_1, \ldots, t_n)$ for all $s_1, \ldots, s_n, t_1, \ldots, s_n, n \geq 0, f \in \mathcal{F}^n$.
 - ▶ ≡ is compatible with \mathcal{F} -operations iff $s \equiv t$ implies $f(s_1,\ldots,s_{i-1},s,s_{i+1},\ldots,s_n) \equiv f(s_1,\ldots,s_{i-1},t,s_{i+1},\ldots,s_n)$ for all $s_1,\ldots,s_{i-1},s,t,s_{i+1},\ldots,s_n \in T(\mathcal{F},\mathcal{V}),\ n \geq 0,\ f \in \mathcal{F}^n.$
 - ▶ \equiv is compatible with \mathcal{F} -contexts iff $s \equiv t$ implies $r[s]_p \equiv r[t]_p$ for all \mathcal{F} -terms r and positions $p \in \mathcal{P}os(r)$.

Lemma 2.1

Let E be a set of \mathcal{F} -identities. Then \rightarrow_E is closed under substitutions and compatible with \mathcal{F} -operations.

Proof.

Follows from the definition of \rightarrow_E .

Lemma 2.1

Let E be a set of \mathcal{F} -identities. Then \rightarrow_E is closed under substitutions and compatible with \mathcal{F} -operations.

Proof.

Follows from the definition of \rightarrow_E .

Lemma 2.2

Let \equiv be a binary relation on $T(\mathcal{F}, \mathcal{V})$. Then \equiv is compatible with \mathcal{F} -operations iff it is compatible with \mathcal{F} -contexts.

Proof.

The (\Rightarrow) direction can be proved by induction on the length of the position p in the context. The (\Leftarrow) direction is obvious.

Exercise: Which of the following relations is closed under substitutions, closed under \mathcal{F} -operations, or compatible with \mathcal{F} -operations?

- ▶ $s \equiv t$ iff t is a subterm of s.
- $ightharpoonup s \equiv t \text{ iff } t \text{ is an instance of } s.$
- $s \equiv t \text{ iff } \mathcal{V}ar(s) \subseteq \mathcal{V}ar(t).$

Lemma 2.3

Let \equiv be a binary relation on $T(\mathcal{F}, \mathcal{V})$. If \equiv is reflexive and transitive, then it is compatible with \mathcal{F} -operations iff it is closed under \mathcal{F} -operations.

Lemma 2.3

Let \equiv be a binary relation on $T(\mathcal{F}, \mathcal{V})$. If \equiv is reflexive and transitive, then it is compatible with \mathcal{F} -operations iff it is closed under \mathcal{F} -operations.

Proof.

 (\Rightarrow) Assume $s_i \equiv t_i$ for all $1 \leq i \leq n$. By compatibility we have

$$f(s_1, s_2, ..., s_n) \equiv f(t_1, s_2, ..., s_n)$$

$$f(t_1, s_2, ..., s_n) \equiv f(t_1, t_2, ..., s_n)$$

...

$$f(t_1, t_2, ..., s_n) \equiv f(t_1, t_2, ..., t_n)$$

Transitivity of \equiv implies $f(s_1, \ldots, s_n) \equiv f(t_1, \ldots, t_n)$.

 (\Leftarrow) Using reflexivity of \equiv .

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof.

 $\stackrel{*}{\longleftrightarrow}_E$ is an equivalence relation by definition.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof.

 $\stackrel{*}{\longleftrightarrow}_E$ is an equivalence relation by definition.

(a) Obvious.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(b) Assume $s \stackrel{*}{\longleftrightarrow}_E t$. Prove $\sigma(s) \stackrel{*}{\longleftrightarrow}_E \sigma(t)$ for a σ by induction on the length of $\stackrel{*}{\longleftrightarrow}_E$ chain.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(b) Assume $s \stackrel{*}{\longleftrightarrow}_E t$. Prove $\sigma(s) \stackrel{*}{\longleftrightarrow}_E \sigma(t)$ for a σ by induction on the length of $\stackrel{*}{\longleftrightarrow}_E$ chain. IB s=t: Obvious.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(b) Assume $s \stackrel{*}{\longleftrightarrow}_E t$. Prove $\sigma(s) \stackrel{*}{\longleftrightarrow}_E \sigma(t)$ for a σ by induction on the length of $\stackrel{*}{\longleftrightarrow}_E$ chain. IB s=t: Obvious. IH for $s \stackrel{*}{\longleftrightarrow}_E t$.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(b) Assume $s \stackrel{*}{\longleftrightarrow}_E t$. Prove $\sigma(s) \stackrel{*}{\longleftrightarrow}_E \sigma(t)$ for a σ by induction on the length of $\stackrel{*}{\longleftrightarrow}_E$ chain. IB s=t: Obvious. IH for $s \stackrel{*}{\longleftrightarrow}_E t$. IS: Let $s \stackrel{*}{\longleftrightarrow}_E t \leftrightarrow_E t'$. By case distinction on \leftrightarrow_E .

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

- (b) Assume $s \stackrel{*}{\longleftrightarrow}_E t$. Prove $\sigma(s) \stackrel{*}{\longleftrightarrow}_E \sigma(t)$ for a σ by induction on the length of $\stackrel{*}{\longleftrightarrow}_E$ chain. IB s=t: Obvious. IH for $s \stackrel{*}{\longleftrightarrow}_E t$. IS: Let $s \stackrel{*}{\longleftrightarrow}_E t \leftrightarrow_E t'$. By case distinction on \leftrightarrow_E .
 - $\begin{array}{l} \blacktriangleright \ t \rightarrow_E t' \colon \text{By IH: } \sigma(s) \stackrel{*}{\leftrightarrow}_E \sigma(t). \\ t \rightarrow_E t' \Rightarrow \sigma(t) \rightarrow_E \sigma(t') \Rightarrow \sigma(t) \stackrel{*}{\leftrightarrow}_E \sigma(t'). \\ \text{By transitivity of } \stackrel{*}{\leftrightarrow}_E \colon \sigma(s) \stackrel{*}{\leftrightarrow}_E \sigma(t'). \end{array}$

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

- (b) Assume $s \stackrel{*}{\longleftrightarrow}_E t$. Prove $\sigma(s) \stackrel{*}{\longleftrightarrow}_E \sigma(t)$ for a σ by induction on the length of $\stackrel{*}{\longleftrightarrow}_E$ chain. IB s=t: Obvious. IH for $s \stackrel{*}{\longleftrightarrow}_E t$. IS: Let $s \stackrel{*}{\longleftrightarrow}_E t \leftrightarrow_E t'$. By case distinction on \leftrightarrow_E .
 - $\begin{array}{l} \blacktriangleright \ t \rightarrow_E t' \colon \mbox{By IH: } \sigma(s) \stackrel{*}{\hookleftarrow}_E \sigma(t). \\ t \rightarrow_E t' \Rightarrow \sigma(t) \rightarrow_E \sigma(t') \Rightarrow \sigma(t) \stackrel{*}{\hookleftarrow}_E \sigma(t'). \\ \mbox{By transitivity of } \stackrel{*}{\hookleftarrow}_E \colon \sigma(s) \stackrel{*}{\hookleftarrow}_E \sigma(t'). \end{array}$
 - ▶ $t' \rightarrow_E t$. Similar to the previous item.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(c) $\stackrel{*}{\longleftrightarrow}_E$ is reflexive and transitive and compatible with \mathcal{F} -operations (because \to_E is).

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

- (c) $\stackrel{*}{\longleftrightarrow}_E$ is reflexive and transitive and compatible with \mathcal{F} -operations (because \to_E is).
 - ▶ By Lemma 2.3, $\stackrel{*}{\longleftrightarrow}_E$ is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

Prove that $\stackrel{*}{\leftarrow}_E$ is the smallest such relation. Take another equivalence relation \equiv on $T(\mathcal{F},\mathcal{V})$ which satisfies (a), (b), (c). Prove that $\stackrel{*}{\hookleftarrow}_E \subseteq \equiv$.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

Prove that $\stackrel{*}{\leftrightarrow}_E$ is the smallest such relation. Take another equivalence relation \equiv on $T(\mathcal{F},\mathcal{V})$ which satisfies (a), (b), (c). Prove that $\stackrel{*}{\leftrightarrow}_E \subseteq \equiv$.

▶ First, prove $\rightarrow_E \subseteq \equiv$.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

Prove that $\stackrel{*}{\leftrightarrow}_E$ is the smallest such relation. Take another equivalence relation \equiv on $T(\mathcal{F},\mathcal{V})$ which satisfies (a), (b), (c). Prove that $\stackrel{*}{\leftrightarrow}_E \subseteq \equiv$.

- ▶ First, prove $\rightarrow_E \subseteq \equiv$.
- ▶ Let $s \to_E t$. It implies that there exist $(l,r) \in E$, $p \in \mathcal{P}os(s)$, and σ such that $s|_p = \sigma(l)$, $t = s[\sigma(r)]_p$.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

 $ightharpoonup E \subseteq \implies l \equiv r \Rightarrow \sigma(l) \equiv \sigma(r).$

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

- $ightharpoonup E \subseteq \implies l \equiv r \implies \sigma(l) \equiv \sigma(r).$
- ightharpoonup is reflexive and transitive and closed under \mathcal{F} -operations. By Lemma 2.3, \equiv is compatible with \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

▶ By Lemma 2.2, \equiv is compatible with contexts: $\sigma(l) \equiv \sigma(r)$ implies $u[\sigma(l)]_{pos} \equiv u[\sigma(r)]_{pos}$ for all $u, pos \in \mathcal{P}os(u), \sigma$.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

- ▶ By Lemma 2.2, \equiv is compatible with contexts: $\sigma(l) \equiv \sigma(r)$ implies $u[\sigma(l)]_{pos} \equiv u[\sigma(r)]_{pos}$ for all $u, pos \in \mathcal{P}os(u), \sigma$.
- ▶ In particular, $s = s[\sigma(l)]_p \equiv s[\sigma(r)]_p = t$.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

- ▶ By Lemma 2.2, \equiv is compatible with contexts: $\sigma(l) \equiv \sigma(r)$ implies $u[\sigma(l)]_{pos} \equiv u[\sigma(r)]_{pos}$ for all $u, pos \in \mathcal{P}os(u), \sigma$.
- ▶ In particular, $s = s[\sigma(l)]_p \equiv s[\sigma(r)]_p = t$.
- ▶ Hence, $s \equiv t$ and $\rightarrow_E \subseteq \equiv$.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\longleftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Finished).

▶ $\rightarrow_E \subseteq \equiv$ implies $\stackrel{*}{\longleftrightarrow} \subseteq \equiv$, because, by definition, $\stackrel{*}{\longleftrightarrow}$ is the smallest equivalence relation containing \rightarrow_E .

Theorem 2.1 says that $\stackrel{*}{\longleftrightarrow}_E$ can be obtained by starting with the binary relation E and closing it under

- ► reflexivity,
- symmetry,
- ► transitivity,
- substitutions, and
- \triangleright \mathcal{F} -operations.

describing the closing process leads to equational logic.

Equational logic

Inference rules:

$$\frac{s \approx t \in E}{E \vdash s \approx t}$$

$$\frac{E \vdash s \approx t}{E \vdash t \approx s} \quad \frac{E \vdash s \approx t}{E \vdash t \approx r}$$

$$\frac{E \vdash s \approx t}{E \vdash s \approx t} \quad \frac{E \vdash s \approx t}{E \vdash s \approx r}$$

$$\frac{E \vdash s \approx t}{E \vdash \sigma(s) \approx \sigma(t)} \quad \frac{E \vdash s_1 \approx t_1 \quad \cdots \quad E \vdash s_n \approx t_n}{E \vdash f(s_1, \dots, s_n) \approx f(t_1, \dots, t_n)}$$

 $E \vdash s \approx t$: $s \approx t$ is a syntactic consequence of E, or $s \approx t$ is provable from E.

Equational logic

Example 2.3

- ▶ Let $E = \{a \approx b, f(x) \approx g(x)\}.$
- ▶ Prove $E \vdash g(b) \approx f(a)$.

Proof:

$$\frac{E \vdash a \approx b}{E \vdash f(a) \approx f(b)} \text{ (Func. closure)} \qquad \frac{E \vdash f(x) \approx g(x)}{E \vdash f(b) \approx g(b)} \text{ (Subst. inst.)} \\ \frac{E \vdash f(a) \approx g(b)}{E \vdash g(b) \approx f(a)} \text{ (Symmetry)}$$

Equational logic

Example 2.3

- ▶ Let $E = \{a \approx b, f(x) \approx g(x)\}.$
- ▶ Prove $E \vdash g(b) \approx f(a)$.

Proof:

$$\frac{ \frac{E \vdash a \approx b}{E \vdash f(a) \approx f(b)} \text{ (Func. closure)} \qquad \frac{E \vdash f(x) \approx g(x)}{E \vdash f(b) \approx g(b)} \text{ (Subst. inst.)} }{ \frac{E \vdash f(a) \approx g(b)}{E \vdash g(b) \approx f(a)} \text{ (Symmetry)} }$$

Compare with the derivation of $g(b) \stackrel{*}{\longleftrightarrow}_E f(a)$:

$$g(b) \leftrightarrow_E g(a) \leftrightarrow_E f(a)$$

Syntactic characterization of $\stackrel{*}{\longleftrightarrow}_E$ via provability

Theorem 2.2 (Logicality)

For all E, s, t,

$$s \stackrel{*}{\longleftrightarrow}_E t$$
 iff $E \vdash s \approx t$.

Proof.

Follows from Theorem 2.1.

Convertibility and provability

Differences in behavior:

- 1. The rewriting approach $\stackrel{*}{\longleftrightarrow}_E$ allows the replacement of a subterm at an arbitrary position in a single step; The inference rule approach $E \vdash$ needs to simulate this with a sequence of small steps.
- The inference rule approach allows the simultaneous replacement in each argument of an operation; The rewriting approach needs to simulate this by a number of replacement steps in sequence.

Syntax

Semantics

Semantic algebras

Towards semantic characterization of $\stackrel{*}{\hookleftarrow}_E$.

- ▶ \mathcal{F} -algebra $\mathcal{A} = (A, \{f_{\mathcal{A}}\}_{f \in \mathcal{F}}).$
- lacktriangledown A is a nonempty set, the carrier.
- $f_A:A^n\to A$ is an interpretation for $f\in\mathcal{F}^n$.

Semantic algebras

Towards semantic characterization of $\stackrel{*}{\leftrightarrow}_E$.

- ▶ \mathcal{F} -algebra $\mathcal{A} = (A, \{f_{\mathcal{A}}\}_{f \in \mathcal{F}}).$
- ightharpoonup A is a nonempty set, the carrier.
- $f_A:A^n\to A$ is an interpretation for $f\in\mathcal{F}^n$.

Example 2.4

Two $\{0, s, +\}$ -algebras:

$$\mathcal{A}=(\mathbb{N},\{0_{\mathcal{A}},s_{\mathcal{A}},+_{\mathcal{A}}\}) \text{ with } 0_{\mathcal{A}}=0, \ s_{\mathcal{A}}(x)=x+1, \ +_{\mathcal{A}}(x,y)=x+y.$$

$$\mathcal{B} = (\mathbb{N}, \{0_{\mathcal{B}}, s_{\mathcal{B}}, +_{\mathcal{B}}\}) \text{ with } 0_{\mathcal{B}} = 1, \ s_{\mathcal{B}}(x) = x + 1, \ +_{\mathcal{B}}(x, y) = 2x + y.$$

Variable assignment, interpretation function

- ▶ Variable assignment: $\alpha: \mathcal{V} \to A$
- ▶ Interpretation function: $[\alpha]_{\mathcal{A}}(\cdot): T(\mathcal{F}, \mathcal{V}) \to A$

$$[\alpha]_{\mathcal{A}}(t) = \begin{cases} \alpha(t) & \text{if } t \in \mathcal{V} \\ f_{\mathcal{A}}([\alpha]_{\mathcal{A}}(t_1), \dots, [\alpha]_{\mathcal{A}}(t_n)) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Variable assignment, interpretation function

- ▶ Variable assignment: $\alpha: \mathcal{V} \to A$
- ▶ Interpretation function: $[\alpha]_{\mathcal{A}}(\cdot): T(\mathcal{F}, \mathcal{V}) \to A$

$$[\alpha]_{\mathcal{A}}(t) = \begin{cases} \alpha(t) & \text{if } t \in \mathcal{V} \\ f_{\mathcal{A}}([\alpha]_{\mathcal{A}}(t_1), \dots, [\alpha]_{\mathcal{A}}(t_n)) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

$$\mathcal{A} = (\mathbb{N}, \{0_{\mathcal{A}}, s_{\mathcal{A}}, +_{\mathcal{A}}\}) \text{ with } 0_{\mathcal{A}} = 0, \ s_{\mathcal{A}}(x) = x+1, \\ +_{\mathcal{A}}(x, y) = x+y.$$

$$\mathcal{B} = (\mathbb{N}, \{0_{\mathcal{B}}, s_{\mathcal{B}}, +_{\mathcal{B}}\})$$
 with $0_{\mathcal{B}} = 1$, $s_{\mathcal{B}}(x) = x + 1$, $+_{\mathcal{B}}(x, y) = 2x + y$.

$$t = s(s(x)) + s(x + y)$$
, $\alpha(x) = 2$, $\alpha(y) = 3$, $\beta(x) = 1$, $\beta(y) = 4$.

$$[\alpha]_{\mathcal{A}}(t) = 10 \qquad [\beta]_{\mathcal{A}}(t) = 9$$

$$[\alpha]_{\mathcal{B}}(t) = 16$$
 $[\beta]_{\mathcal{B}}(t) = 13$

Validity, models

▶ An equation $s \approx t$ is valid in algebra \mathcal{A} , written $\mathcal{A} \vDash s \approx t$, iff

$$[\alpha]_{\mathcal{A}}(s) = [\alpha]_{\mathcal{A}}(t)$$

for all assignments α .

▶ An \mathcal{F} -algebra \mathcal{A} is a model of the set of identities E over $T(\mathcal{F}, \mathcal{V})$ iff $\mathcal{A} \vDash s \approx t$ for all $s \approx t \in E$.

Validity, models

▶ An equation $s \approx t$ is valid in algebra \mathcal{A} , written $\mathcal{A} \vDash s \approx t$, iff

$$[\alpha]_{\mathcal{A}}(s) = [\alpha]_{\mathcal{A}}(t)$$

for all assignments α .

▶ An \mathcal{F} -algebra \mathcal{A} is a model of the set of identities E over $T(\mathcal{F}, \mathcal{V})$ iff $\mathcal{A} \vDash s \approx t$ for all $s \approx t \in E$.

Example 2.6

$$\mathcal{A} = (\mathbb{N}, \{0_{\mathcal{A}}, s_{\mathcal{A}}, +_{\mathcal{A}}\}) \text{ with } 0_{\mathcal{A}} = 0, \ s_{\mathcal{A}}(x) = x+1, \ +_{\mathcal{A}}(x,y) = x+y.$$

$$\mathcal{B} = (\mathbb{N}, \{0_{\mathcal{B}}, s_{\mathcal{B}}, +_{\mathcal{B}}\}) \text{ with } 0_{\mathcal{B}} = 1, \ s_{\mathcal{B}}(x) = x+1, \ +_{\mathcal{B}}(x,y) = 2x+y.$$

$$E = \{0+y \approx y, \ s(x)+y \approx s(x+y)\}.$$

 \mathcal{A} is a model of E, while \mathcal{B} is not.

- ▶ $E \models s \approx t$ iff $s \approx t$ is valid in all models of E.
- ▶ $E \vDash s \approx t$: $s \approx t$ is a semantic consequence of E.
- ► Equational theory of *E*:

$$\approx_E := \{(s,t) \mid s,t \in T(\mathcal{F},\mathcal{V}), E \vDash s \approx t\}$$

▶ Notation: $s \approx_E t$ iff $(s,t) \in \approx_E$.

- ▶ $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of E.
- ▶ $E \vDash s \approx t$: $s \approx t$ is a semantic consequence of E.
- ► Equational theory of *E*:

$$\approx_E := \{(s,t) \mid s,t \in T(\mathcal{F},\mathcal{V}), E \vDash s \approx t\}$$

▶ Notation: $s \approx_E t$ iff $(s, t) \in \approx_E$.

Example 2.7

• $E = \{0 + y \approx y, \ s(x) + y \approx s(x+y)\}.$

- ▶ $E \models s \approx t$ iff $s \approx t$ is valid in all models of E.
- ▶ $E \vDash s \approx t$: $s \approx t$ is a semantic consequence of E.
- ► Equational theory of *E*:

$$\approx_E := \{(s,t) \mid s,t \in T(\mathcal{F},\mathcal{V}), E \vDash s \approx t\}$$

▶ Notation: $s \approx_E t$ iff $(s, t) \in \approx_E$.

- $E = \{0 + y \approx y, \ s(x) + y \approx s(x+y)\}.$
- ► $E \vDash s(s(0) + s(0)) \approx s(s(s(0))).$

- ▶ $E \models s \approx t$ iff $s \approx t$ is valid in all models of E.
- ▶ $E \vDash s \approx t$: $s \approx t$ is a semantic consequence of E.
- ► Equational theory of *E*:

$$\approx_E := \{(s,t) \mid s,t \in T(\mathcal{F},\mathcal{V}), \ E \vDash s \approx t\}$$

▶ Notation: $s \approx_E t$ iff $(s, t) \in \approx_E$.

- $E = \{0 + y \approx y, \ s(x) + y \approx s(x+y)\}.$
- ► $E \vDash s(s(0) + s(0)) \approx s(s(s(0))).$
- $ightharpoonup E \not \models x + y \approx y + x.$

- ▶ $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of E.
- ▶ $E \vDash s \approx t$: $s \approx t$ is a semantic consequence of E.
- ► Equational theory of *E*:

$$\approx_E := \{(s,t) \mid s,t \in T(\mathcal{F},\mathcal{V}), E \vDash s \approx t\}$$

▶ Notation: $s \approx_E t$ iff $(s, t) \in \approx_E$.

- $E = \{0 + y \approx y, \ s(x) + y \approx s(x+y)\}.$
- ► $E \models s(s(0) + s(0)) \approx s(s(s(0))).$
- $ightharpoonup E \not \models x + y \approx y + x.$
- ► Model $C = (\mathbb{N}, \{0_{\mathcal{C}}, s_{\mathcal{C}}, +_{\mathcal{C}}\})$ with $0_{\mathcal{C}} = 0$, $s_{\mathcal{C}}(x) = x$, $+_{\mathcal{C}}(x, y) = y$.

Relating syntax and semantics

Theorem 2.3 (Birkhoff)

Equational logic is sound and complete:

For all $E, s, t, E \vdash s \approx t$ iff $E \vDash s \approx t$.

Relating syntax and semantics

Theorem 2.3 (Birkhoff)

Equational logic is sound and complete:

For all
$$E, s, t, E \vdash s \approx t$$
 iff $E \vDash s \approx t$.

Corollary 2.1

For all E, s, t,

$$s \stackrel{*}{\longleftrightarrow}_E t$$
 iff $E \vdash s \approx t$ iff $E \vDash s \approx t$.

Relating syntax and semantics

Theorem 2.3 (Birkhoff)

Equational logic is sound and complete:

For all
$$E, s, t, E \vdash s \approx t$$
 iff $E \vDash s \approx t$.

Corollary 2.1

For all E, s, t,

$$s \stackrel{*}{\leftrightarrow}_E t$$
 iff $E \vdash s \approx t$ iff $E \vDash s \approx t$.

Corollary 2.1 combines syntactic and semantic characterizations of $\stackrel{*}{\hookleftarrow}_E$.

Validity and satisfiability

Validity problem:

Given: A set of identities E and terms s and t.

Decide: $s \approx_E t$.

Satisfiability problem:

Given: A set of identities E and terms s and t.

Find: A substitution σ such that $\sigma(s) \approx_E \sigma(t)$.