# Rewriting

#### Part 1. Abstract Reduction

Temur Kutsia

RISC, JKU Linz





#### Literature

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

```
Book's page: http://www21.in.tum.de/~nipkow/TRaAT/
Resources about rewriting:
```

http://rewriting.loria.fr/

http://www.jaist.ac.jp/~hirokawa/tool/

http://cl-informatik.uibk.ac.at/users/ami/research/rr/

#### Motivation

**Abstract Reduction Systems** 

#### Equational reasoning

Restricted class of languages.

The only predicate symbol is equality  $\approx$ .

Reasoning with equations:

- derive consequences of given equations,
- find values for variables that satisfy a given equation.

At the heart of many problems in mathematics and computer science.

Equations (identities):

$$x + 0 \approx x$$
$$x + s(y) \approx s(x + y)$$

How to calculate s(0) + s(s(0))?

Orient equations, obtaining rewriting rules.

Apply the rules to transform expressions.

Orient equations, obtaining rewriting rules.

Apply the rules to transform expressions. Rewrite rules:

$$x + 0 \to x \tag{R_1}$$

$$x + s(y) \rightarrow s(x + y)$$
 (R<sub>2</sub>)

Orient equations, obtaining rewriting rules.

Apply the rules to transform expressions. Rewrite rules:

$$x + 0 \rightarrow x$$
 (R<sub>1</sub>)  
 $x + s(y) \rightarrow s(x + y)$  (R<sub>2</sub>)

$$s(0) + s(s(0)) \rightarrow$$
 (by  $R_2$ , with  $x \mapsto s(0), y \mapsto s(0)$ )

Orient equations, obtaining rewriting rules.

Apply the rules to transform expressions. Rewrite rules:

$$x + 0 \rightarrow x$$
 (R<sub>1</sub>)  
 $x + s(y) \rightarrow s(x + y)$  (R<sub>2</sub>)

$$s(0) + s(s(0)) \rightarrow$$
 (by  $R_2$ , with  $x \mapsto s(0), y \mapsto s(0)$ )  
 $s(s(0) + s(0)) \rightarrow$  (by  $R_2$ , with  $x \mapsto s(0), y \mapsto 0$ )

Orient equations, obtaining rewriting rules.

Apply the rules to transform expressions. Rewrite rules:

$$x + 0 \rightarrow x$$
 (R<sub>1</sub>)  
 $x + s(y) \rightarrow s(x + y)$  (R<sub>2</sub>)

$$s(0) + s(s(0)) \rightarrow \qquad \text{(by } R_2, \text{ with } x \mapsto s(0), y \mapsto s(0))$$

$$s(s(0) + s(0)) \rightarrow \qquad \text{(by } R_2, \text{ with } x \mapsto s(0), y \mapsto 0)$$

$$s(s(s(0) + 0)) \rightarrow \qquad \text{(by } R_1, \text{ with } x \mapsto s(0))$$

Orient equations, obtaining rewriting rules.

Apply the rules to transform expressions. Rewrite rules:

$$x + 0 \rightarrow x$$
 (R<sub>1</sub>)  
 $x + s(y) \rightarrow s(x + y)$  (R<sub>2</sub>)

$$s(0) + s(s(0)) \rightarrow \qquad \text{(by } R_2, \text{ with } x \mapsto s(0), y \mapsto s(0))$$

$$s(s(0) + s(0)) \rightarrow \qquad \text{(by } R_2, \text{ with } x \mapsto s(0), y \mapsto 0)$$

$$s(s(s(0) + 0)) \rightarrow \qquad \text{(by } R_1, \text{ with } x \mapsto s(0))$$

$$s(s(s(0)))$$

#### What is rewriting

Process of transforming one expression into another.

Rules describe how one expression can be rewritten into another.

## Identities and rewriting

#### Rewriting as a computational mechanism:

- Apply given equations in one direction, as rewrite rules.
- Compute normal forms.
- Close relationship with functional programming.
- Example: symbolic differentiation.

## Identities and rewriting

#### Rewriting as a computational mechanism:

- Apply given equations in one direction, as rewrite rules.
- Compute normal forms.
- Close relationship with functional programming.
- Example: symbolic differentiation.

#### Rewriting as a deduction mechanism:

- Apply given equations in both directions.
- Define equivalence classes of terms.
- Equational reasoning.
- Example: group theory.

Expressions: Terms built over variables (u, v, ...) and the following function symbols:

- ► constants 0,1 (numbers),
- ► constants *X,Y* (indeterminates),
- unary symbol  $D_X$  (partial derivative with respect to X),
- ▶ binary symbols +, \*.

Expressions: Terms built over variables (u, v, ...) and the following function symbols:

- ► constants 0,1 (numbers),
- ► constants *X,Y* (indeterminates),
- unary symbol  $D_X$  (partial derivative with respect to X),
- ▶ binary symbols +, \*.

#### Examples of terms:

- (X + X) \* Y + 1.
- $D_X(u*v)$ .
- $(X+Y)*D_X(X*Y)$ .

#### Rewrite rules:

$$D_X(X) \to 1$$

$$D_X(Y) \to 0$$

$$D_X(u+v) \to D_X(u) + D_X(v)$$

$$D_X(u*v) \to (u*D_X(v)) + (D_X(u)*v)$$

$$(R_4)$$

Rewrite rules:

$$D_X(X) \to 1$$

$$D_X(Y) \to 0$$

$$D_X(u+v) \to D_X(u) + D_X(v)$$

$$D_X(u*v) \to (u*D_X(v)) + (D_X(u)*v)$$

$$(R_4)$$

$$D_X(X*X)$$

Rewrite rules:

$$D_X(X) \to 1$$

$$D_X(Y) \to 0$$

$$D_X(u+v) \to D_X(u) + D_X(v)$$

$$D_X(u*v) \to (u*D_X(v)) + (D_X(u)*v)$$

$$(R_4)$$

$$D_X(X * X)$$

$$\downarrow^{(R_4)}$$

$$(X * D_X(X))) + (D_X(X) * X)$$

Rewrite rules:

$$D_X(X) \to 1 \qquad (R_1)$$

$$D_X(Y) \to 0 \qquad (R_2)$$

$$D_X(u+v) \to D_X(u) + D_X(v) \qquad (R_3)$$

$$D_X(u*v) \to (u*D_X(v)) + (D_X(u)*v) \qquad (R_4)$$

$$D_X(X * X)$$

$$\downarrow^{(R_4)}$$

$$(X * D_X(X))) + (D_X(X) * X)$$

Rewrite rules:

$$D_X(X) \to 1 \qquad (R_1)$$

$$D_X(Y) \to 0 \qquad (R_2)$$

$$D_X(u+v) \to D_X(u) + D_X(v) \qquad (R_3)$$

$$D_X(u*v) \to (u*D_X(v)) + (D_X(u)*v) \qquad (R_4)$$

$$D_X(X * X)$$

$$\downarrow (R_4)$$

$$(X * D_X(X))) + (D_X(X) * X)$$

$$(R_1) \swarrow$$

$$(X * 1) + (D_X(X) * X)$$

Rewrite rules:

$$D_X(X) \to 1 \qquad (R_1)$$

$$D_X(Y) \to 0 \qquad (R_2)$$

$$D_X(u+v) \to D_X(u) + D_X(v) \qquad (R_3)$$

$$D_X(u*v) \to (u*D_X(v)) + (D_X(u)*v) \qquad (R_4)$$

$$D_X(X * X)$$

$$\downarrow (R_4)$$

$$(X * D_X(X))) + (D_X(X) * X)$$

$$(R_1) \swarrow$$

$$(X * 1) + (D_X(X) * X)$$

Rewrite rules:

$$D_X(X) \to 1 \qquad (R_1)$$

$$D_X(Y) \to 0 \qquad (R_2)$$

$$D_X(u+v) \to D_X(u) + D_X(v) \qquad (R_3)$$

$$D_X(u*v) \to (u*D_X(v)) + (D_X(u)*v) \qquad (R_4)$$

Rewrite rules:

$$D_X(X) \to 1 \qquad (R_1)$$

$$D_X(Y) \to 0 \qquad (R_2)$$

$$D_X(u+v) \to D_X(u) + D_X(v) \qquad (R_3)$$

$$D_X(u*v) \to (u*D_X(v)) + (D_X(u)*v) \qquad (R_4)$$

$$D_{X}(X * X)$$

$$\downarrow (R_{4})$$

$$(X * D_{X}(X))) + (D_{X}(X) * X)$$

$$(R_{1}) \swarrow$$

$$(X * 1) + (D_{X}(X) * X)$$

$$(R_{1}) \swarrow$$

$$(X * 1) + (1 * X)$$

Rewrite rules:

$$D_X(X) \to 1 \qquad (R_1)$$

$$D_X(Y) \to 0 \qquad (R_2)$$

$$D_X(u+v) \to D_X(u) + D_X(v) \qquad (R_3)$$

$$D_X(u*v) \to (u*D_X(v)) + (D_X(u)*v) \qquad (R_4)$$

$$D_{X}(X * X)$$

$$\downarrow (R_{4})$$

$$(X * D_{X}(X))) + (D_{X}(X) * X)$$

$$(R_{1}) \swarrow$$

$$(X * 1) + (D_{X}(X) * X)$$

$$(R_{1}) \swarrow$$

$$(X * 1) + (1 * X)$$

Rewrite rules:

$$D_X(X) \to 1 \qquad (R_1)$$

$$D_X(Y) \to 0 \qquad (R_2)$$

$$D_X(u+v) \to D_X(u) + D_X(v) \qquad (R_3)$$

$$D_X(u*v) \to (u*D_X(v)) + (D_X(u)*v) \qquad (R_4)$$

$$D_{X}(X * X)$$

$$\downarrow (R_{4})$$

$$(X * D_{X}(X))) + (D_{X}(X) * X)$$

$$(R_{1}) \swarrow$$

$$(X * 1) + (D_{X}(X) * X)$$

$$(R_{1}) \swarrow$$

$$(X * 1) + (1 * X)$$

Rewrite rules:

$$D_X(X) \to 1 \qquad (R_1)$$

$$D_X(Y) \to 0 \qquad (R_2)$$

$$D_X(u+v) \to D_X(u) + D_X(v) \qquad (R_3)$$

$$D_X(u*v) \to (u*D_X(v)) + (D_X(u)*v) \qquad (R_4)$$

Rewrite rules:

$$D_X(X) \to 1 \qquad (R_1)$$

$$D_X(Y) \to 0 \qquad (R_2)$$

$$D_X(u+v) \to D_X(u) + D_X(v) \qquad (R_3)$$

$$D_X(u*v) \to (u*D_X(v)) + (D_X(u)*v) \qquad (R_4)$$

Rewrite rules:

$$D_X(X) \to 1 \qquad (R_1)$$

$$D_X(Y) \to 0 \qquad (R_2)$$

$$D_X(u+v) \to D_X(u) + D_X(v) \qquad (R_3)$$

$$D_X(u*v) \to (u*D_X(v)) + (D_X(u)*v) \qquad (R_4)$$

$$D_{X}(X * X)$$

$$\downarrow^{(R_{4})}$$

$$(X * D_{X}(X))) + (D_{X}(X) * X)$$

$$\stackrel{(R_{1})}{\swarrow} \qquad \stackrel{(R_{1})}{\swarrow}$$

$$(X * 1) + (D_{X}(X) * X) \qquad (X * D_{X}(X)) + (1 * X)$$

$$\stackrel{(R_{1})}{\swarrow} \qquad \qquad (X * 1) + (1 * X)$$

Rewrite rules:

$$D_X(X) \to 1 \qquad (R_1)$$

$$D_X(Y) \to 0 \qquad (R_2)$$

$$D_X(u+v) \to D_X(u) + D_X(v) \qquad (R_3)$$

$$D_X(u*v) \to (u*D_X(v)) + (D_X(u)*v) \qquad (R_4)$$

$$D_{X}(X * X)$$

$$\downarrow (R_{4})$$

$$(X * D_{X}(X))) + (D_{X}(X) * X)$$

$$(R_{1}) \downarrow \qquad \qquad (R_{1})$$

$$(X * 1) + (D_{X}(X) * X) \qquad (X * D_{X}(X)) + (1 * X)$$

$$(R_{1}) \downarrow \qquad \qquad (R_{1})$$

$$(X * 1) + (1 * X)$$

Rewrite rules:

$$D_X(X) \to 1 \qquad (R_1)$$

$$D_X(Y) \to 0 \qquad (R_2)$$

$$D_X(u+v) \to D_X(u) + D_X(v) \qquad (R_3)$$

$$D_X(u*v) \to (u*D_X(v)) + (D_X(u)*v) \qquad (R_4)$$

$$D_{X}(X * X)$$

$$\downarrow (R_{4})$$

$$(X * D_{X}(X))) + (D_{X}(X) * X)$$

$$(R_{1}) \downarrow \qquad \qquad (R_{1})$$

$$(X * 1) + (D_{X}(X) * X) \qquad (X * D_{X}(X)) + (1 * X)$$

$$(R_{1}) \downarrow \qquad \qquad (R_{1})$$

$$(X * 1) + (1 * X)$$

The symbolic differentiation example can be used to illustrate two most important properties of TRSs:

The symbolic differentiation example can be used to illustrate two most important properties of TRSs:

#### 1. Termination:

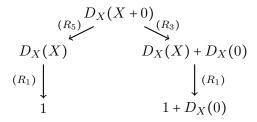
- Is it always the case that after finitely many rule applications we reach an expression to which no more rules apply (normal form)?
- For symbolic differentiation rules this is the case.
- But how to prove it?
- An example of non-terminating rule:  $u + v \rightarrow v + u$

The symbolic differentiation example can be used to illustrate two most important properties of TRSs:

#### 2. Confluence:

- If there are different ways of applying rules to a given term t, leading to different terms  $t_1$  and  $t_2$ , can they be reduced by rule applications to a common term?
- For symbolic differentiation rules this is the case.
- But how to prove it?

Adding the rule  $u + 0 \rightarrow u$  ( $R_5$ ) destroys confluence:



Confluence can be regained by adding  $D_X(0) \to 0$  (completion).

## Group theory

Terms are built over variables and the following function symbols:

- ▶ binary ∘,
- ▶ unary i,
- ▶ constant e.

#### Examples of terms:

- $x \circ (y \circ i(y))$
- $(e \circ x) \circ i(e)$
- $i(x \circ y)$

Identities (aka group axioms), defining groups:

Associativity of  $\circ$   $(x \circ y) \circ z \approx x \circ (y \circ z)$   $(G_1)$ 

e left unit  $e \circ x \approx x$   $(G_2)$ 

*i* left inverse  $i(x) \circ x \approx e$   $(G_3)$ 

## Group theory

Identities can be applied in both directions.

#### Word problem for identities:

- Given a set of identities E and two terms s and t.
- Is it possible to transform s into t, using the identities in E as rewrite rules applied in both directions?

For instance, is it possible to transform e into  $x \circ i(x)$ , i.e., is the left inverse also a right-inverse?

## Group theory

$$(x \circ y) \circ z \approx x \circ (y \circ z)$$
  $(G_1)$   
 $e \circ x \approx x$   $(G_2)$   
 $i(x) \circ x \approx e$   $(G_3)$ 

Transform e into  $x \circ i(x)$ :

## Group theory

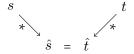
$$(x \circ y) \circ z \approx x \circ (y \circ z)$$
  $(G_1)$   
 $e \circ x \approx x$   $(G_2)$   
 $i(x) \circ x \approx e$   $(G_3)$ 

#### Transform e into $x \circ i(x)$ :

```
\begin{split} e \approx_{G_3} i(x \circ i(x)) \circ (x \circ i(x)) \\ \approx_{G_2} i(x \circ i(x)) \circ (x \circ (e \circ i(x))) \\ \approx_{G_3} i(x \circ i(x)) \circ (x \circ ((i(x) \circ x) \circ i(x))) \\ \approx_{G_1} i(x \circ i(x)) \circ ((x \circ (i(x) \circ x)) \circ i(x)) \\ \approx_{G_1} i(x \circ i(x)) \circ (((x \circ i(x)) \circ x) \circ i(x)) \\ \approx_{G_1} i(x \circ i(x)) \circ ((x \circ i(x)) \circ (x \circ i(x))) \\ \approx_{G_1} (i(x \circ i(x)) \circ (x \circ i(x))) \circ (x \circ i(x)) \\ \approx_{G_3} e \circ (x \circ i(x)) \\ \approx_{G_2} x \circ i(x) \end{split}
```

Is there a simpler way to solve word problems?

Try to solve it by rewriting (uni-directional application of identities):



Reduce s and t to normal forms  $\hat{s}$  and  $\hat{t}$ .

Check whether  $\hat{s} = \hat{t}$ , i.e., syntactically equal. (= is the meta-equality.)

Is there a simpler way to solve word problems?

Try to solve it by rewriting (uni-directional application of identities):



Reduce s and t to normal forms  $\hat{s}$  and  $\hat{t}$ .

Check whether  $\hat{s} = \hat{t}$ , i.e., syntactically equal. (= is the meta-equality.)

But... it would only work if normal forms exist and are unique.

In the group theory example, e and  $x \circ i(x)$  are equivalent, but it can not be decided by (left-to-right) rewriting: Both terms are in the normal form.

Uniqueness of normal forms is violated: non-confluence.

Normal forms may not exist: The process of reducing a term may lead to an infinite chain of transformations: non-termination.

In the group theory example, e and  $x \circ i(x)$  are equivalent, but it can not be decided by (left-to-right) rewriting: Both terms are in the normal form.

Uniqueness of normal forms is violated: non-confluence.

Normal forms may not exist: The process of reducing a term may lead to an infinite chain of transformations: non-termination.

Termination and confluence ensure existence and uniqueness of normal forms.

In the group theory example, e and  $x \circ i(x)$  are equivalent, but it can not be decided by (left-to-right) rewriting: Both terms are in the normal form.

Uniqueness of normal forms is violated: non-confluence.

Normal forms may not exist: The process of reducing a term may lead to an infinite chain of transformations: non-termination.

Termination and confluence ensure existence and uniqueness of normal forms.

If a given set of identities leads to non-confluent system, we will try to apply the idea of completion to extend the rewrite system to a confluent one. Motivation

Abstract Reduction Systems

#### Abstract vs concrete

#### Concrete rewrite formalisms:

- string rewriting
- ► term rewriting
- graph rewriting
- $\lambda$  calculus
- etc.

#### Abstract reduction:

- ▶ No structure on objects to be rewritten.
- Abstract treatment of reductions.

# Abstract reduction systems

Abstract reduction system (ARS): A pair  $(A, \rightarrow)$ , where

- ► A is a set.
- ▶ the reduction  $\rightarrow$  is a binary relation on A:  $\rightarrow \subseteq A \times A$ .

Write  $a \to b$  for  $(a, b) \in \to$ .

$$A = \{a, b, c, d, e, f, g\}$$

$$\Rightarrow = \left\{ \begin{array}{c} (a, e), (b, a), (b, c), (c, d), (c, f) \\ (e, b), (e, g), (f, e), (f, g) \end{array} \right\}$$

$$a \longleftarrow b \longrightarrow c \longrightarrow f$$

## Equivalence and reduction

Again, two views at reductions.

- 1. Directed computation: Follow the reductions, trying to compute a normal form:  $a_0 \rightarrow a_1 \rightarrow \cdots$
- 2. View  $\rightarrow$  as description of  $\stackrel{*}{\leftrightarrow}$ .
  - $a \overset{*}{\leftrightarrow} b$  means there is a path between a and b, with arrows traversed in both directions:  $a \leftarrow c \rightarrow d \leftarrow b$
  - Goal: Decide whether  $a \stackrel{*}{\leftrightarrow} b$ .
  - Bidirectional rewriting is expensive.
  - Unidirectional rewriting with subsequent comparison of normal form works if the reduction system is confluent and terminating.

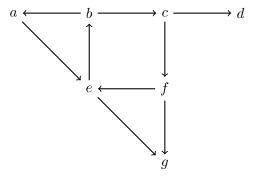
Termination, confluence: central topics.

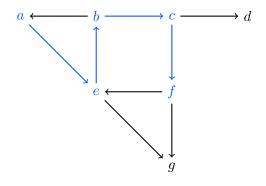
#### Basic notions

Composition of two relations.

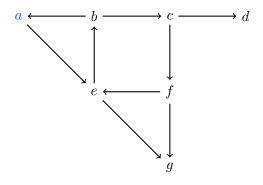
Given two relations  $R \subseteq A \times B$  and  $S \subseteq B \times C$ , their composition is defined as

$$R \circ S \coloneqq \{(x,z) \mid \exists y \in B. \ (x,y) \in R \land (y,z) \in S\}$$

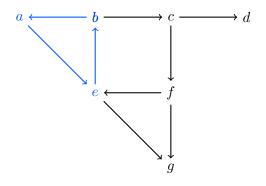




• Finite rewrite sequence:  $a \rightarrow e \rightarrow b \rightarrow c \rightarrow f$ 



- ▶ Finite rewrite sequence:  $a \rightarrow e \rightarrow b \rightarrow c \rightarrow f$
- ullet Empty rewrite sequence: a



- ► Finite rewrite sequence:  $a \rightarrow e \rightarrow b \rightarrow c \rightarrow f$
- ullet Empty rewrite sequence: a
- Infinite rewrite sequence:  $a \rightarrow e \rightarrow b \rightarrow a \rightarrow \cdots$

## Relations derived from →

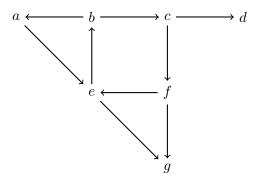
| $\xrightarrow{0} \coloneqq \{(x,x) \mid x \in A\}$                                      | identity                               |
|-----------------------------------------------------------------------------------------|----------------------------------------|
| $\stackrel{=}{\rightarrow} := \rightarrow \cup \stackrel{0}{\rightarrow}$               | reflexive closure                      |
| $\xrightarrow{i+1} := \xrightarrow{i} \circ \to$                                        | $(i+1)$ -fold composition, $i \ge 0$   |
| $\stackrel{+}{\rightarrow} := \cup_{i>0} \stackrel{i}{\rightarrow}$                     | transitive closure                     |
| $\stackrel{*}{\rightarrow} := \stackrel{+}{\rightarrow} \cup \stackrel{0}{\rightarrow}$ | reflexive transitive closure           |
| $\xrightarrow{-1} := \{(y,x) \mid (x,y) \in \to\}$                                      | inverse                                |
| $\leftarrow := \xrightarrow{-1}$                                                        | inverse                                |
| $\leftrightarrow := \rightarrow \cup \leftarrow$                                        | symmetric closure                      |
| $\stackrel{+}{\leftrightarrow} := (\leftrightarrow)^+$                                  | transitive symmetric closure           |
| $\stackrel{*}{\leftrightarrow} := (\leftrightarrow)^*$                                  | reflexive transitive symmetric closure |

If  $x \stackrel{*}{\rightarrow} y$  then we say:

- ightharpoonup x rewrites to y, or
- there is some finite path from x to y, or
- y is a reduct of x.

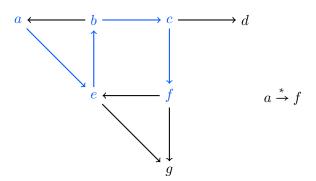
If  $x \stackrel{*}{\rightarrow} y$  then we say:

- ightharpoonup x rewrites to y, or
- there is some finite path from x to y, or
- y is a reduct of x.



If  $x \stackrel{*}{\rightarrow} y$  then we say:

- ightharpoonup x rewrites to y, or
- there is some finite path from x to y, or
- y is a reduct of x.



x is reducible iff there exists y such that  $x \to y$ .

- x is reducible iff there exists y such that  $x \to y$ .
- x is in normal form (irreducible) iff x is not reducible.

- x is reducible iff there exists y such that  $x \to y$ .
- x is in normal form (irreducible) iff x is not reducible.
- y is a normal form of x iff  $x \xrightarrow{*} y$  and y is in normal form.

- x is reducible iff there exists y such that  $x \to y$ .
- x is in normal form (irreducible) iff x is not reducible.
- y is a normal form of x iff  $x \xrightarrow{*} y$  and y is in normal form.

We write  $x \xrightarrow{!} y$  if y is a normal form of x.

If x has a unique normal form, it is denoted by  $x \downarrow$ .

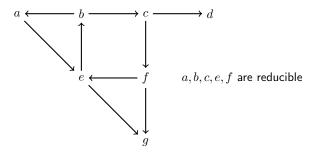
x is reducible iff there exists y such that  $x \to y$ .

x is in normal form (irreducible) iff x is not reducible.

y is a normal form of x iff  $x \xrightarrow{*} y$  and y is in normal form.

We write  $x \xrightarrow{!} y$  if y is a normal form of x.

If x has a unique normal form, it is denoted by  $x\downarrow$ .



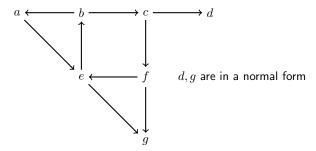
x is reducible iff there exists y such that  $x \to y$ .

x is in normal form (irreducible) iff x is not reducible.

y is a normal form of x iff  $x \xrightarrow{*} y$  and y is in normal form.

We write  $x \xrightarrow{!} y$  if y is a normal form of x.

If x has a unique normal form, it is denoted by  $x\downarrow$ .



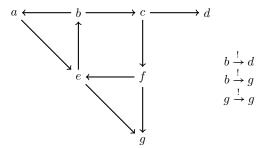
x is reducible iff there exists y such that  $x \to y$ .

x is in normal form (irreducible) iff x is not reducible.

y is a normal form of x iff  $x \xrightarrow{*} y$  and y is in normal form.

We write  $x \xrightarrow{!} y$  if y is a normal form of x.

If x has a unique normal form, it is denoted by  $x \downarrow$ .



y is direct successor of x iff  $x \to y$ .

- y is direct successor of x iff  $x \rightarrow y$ .
- y is successor of x iff  $x \xrightarrow{+} y$ .

- y is direct successor of x iff  $x \rightarrow y$ .
- y is successor of x iff  $x \xrightarrow{+} y$ .
- x and y are convertible iff  $x \stackrel{*}{\leftrightarrow} y$ .

- y is direct successor of x iff  $x \rightarrow y$ .
- y is successor of x iff  $x \stackrel{+}{\rightarrow} y$ .
- x and y are convertible iff  $x \stackrel{*}{\leftrightarrow} y$ .
- x and y are joinable iff there exists z such that  $x \xrightarrow{*} z \xleftarrow{*} y$ .

```
y is direct successor of x iff x \to y.

y is successor of x iff x \overset{+}{\to} y.

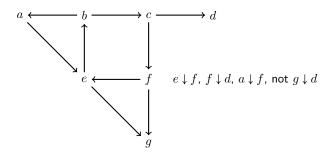
x and y are convertible iff x \overset{*}{\leftrightarrow} y.

x and y are joinable iff there exists z such that x \overset{*}{\to} z \overset{*}{\leftarrow} y.

We write x \downarrow y iff x and y are joinable.
```

- y is direct successor of x iff  $x \rightarrow y$ .
- y is successor of x iff  $x \xrightarrow{+} y$ .
- x and y are convertible iff  $x \stackrel{*}{\leftrightarrow} y$ .
- x and y are joinable iff there exists z such that  $x \stackrel{*}{\to} z \stackrel{*}{\leftarrow} y$ .

We write  $x \downarrow y$  iff x and y are joinable.



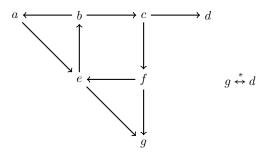
y is direct successor of x iff  $x \rightarrow y$ .

y is successor of x iff  $x \xrightarrow{+} y$ .

x and y are convertible iff  $x \stackrel{*}{\leftrightarrow} y$ .

x and y are joinable iff there exists z such that  $x \stackrel{*}{\to} z \stackrel{*}{\leftarrow} y$ .

We write  $x \downarrow y$  iff x and y are joinable.



## Example

- 1. Let  $A := \mathbb{N} \{0,1\}$  and  $\rightarrow := \{(m,n) \mid m > n \text{ and } n \text{ divides } m\}$ . Then
  - (a) m is in normal form iff m is prime.
  - (b) p is a normal form of m iff p is a prime factor of m.
  - (c)  $m \downarrow n$  iff m and n are not relatively prime.
  - (d)  $\stackrel{+}{\rightarrow} = \rightarrow$  because > and "divides" are already transitive.
  - (e)  $\stackrel{*}{\leftrightarrow} = A \times A$ .
- 2. Let  $A := \{a, b\}^*$  (the set of words over the alphabet  $\{a, b\}$ ) and  $\rightarrow := \{(ubav, uabv) \mid u, v \in A\}$ . Then
  - (a) w is in normal form iff w is sorted, i.e. of the form  $a^*b^*$ .
  - (b) Every w has a unique normal form  $w \downarrow$ , the result of sorting w.
  - (c)  $w_1 \downarrow w_2$  iff  $w_1 \stackrel{*}{\leftrightarrow} w_2$  iff  $w_1$  and  $w_2$  contain the same number of as and bs.

## Central notions: Church-Rosser

### Definition 1.1

A relation  $\rightarrow$  is called Church-Rosser (CR) iff

 $x \stackrel{*}{\leftrightarrow} y \text{ implies } x \downarrow y.$ 

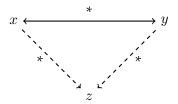
## Central notions: Church-Rosser

### Definition 1.1

A relation  $\rightarrow$  is called Church-Rosser (CR) iff

$$x \stackrel{*}{\leftrightarrow} y$$
 implies  $x \downarrow y$ .

### Graphically:



Solid arrows represent universal and dashed arrows existential quantification:  $\forall x, y. \ x \stackrel{*}{\leftrightarrow} y \Rightarrow \exists z. \ x \stackrel{*}{\rightarrow} z \land y \stackrel{*}{\rightarrow} z.$ 

## Central notions: confluence

### Definition 1.2

A relation  $\rightarrow$  is called confluent (C) iff

$$y_1 \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} y_2 \text{ implies } y_1 \downarrow y_2.$$

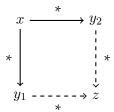
### Central notions: confluence

### Definition 1.2

A relation  $\rightarrow$  is called confluent (C) iff

$$y_1 \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} y_2 \text{ implies } y_1 \downarrow y_2.$$

### Graphically:



Solid arrows represent universal and dashed arrows existential quantification:  $\forall x, y_1, y_2. \ y_1 \overset{*}{\leftarrow} x \overset{*}{\rightarrow} y_2 \Rightarrow \exists z. \ y_1 \overset{*}{\rightarrow} z \overset{*}{\leftarrow} y_2.$ 

## Central notions: local confluence

#### Definition 1.3

A relation → is called locally confluent (LC) iff

 $y_1 \leftarrow x \rightarrow y_2 \text{ implies } y_1 \downarrow y_2.$ 

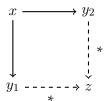
### Central notions: local confluence

### Definition 1.3

A relation  $\rightarrow$  is called locally confluent (LC) iff

$$y_1 \leftarrow x \rightarrow y_2 \text{ implies } y_1 \downarrow y_2.$$

## Graphically:



Solid arrows represent universal and dashed arrows existential quantification:  $\forall x, y_1, y_2. \ y_1 \leftarrow x \rightarrow y_2 \Rightarrow \exists z. \ y_1 \overset{*}{\rightarrow} z \overset{*}{\leftarrow} y_2.$ 

## Central notions: T, N, UN, convergence

### Definition 1.4

A relation  $\rightarrow$  is called

- ▶ terminating (T) iff there is no infinite descending chain  $a_0 \rightarrow a_1 \rightarrow \cdots$ .
- normalizing (N) iff every element has a normal form.
- uniquely normalizing (UN) iff every element has at most one normal form.
- convergent iff it is both confluent and terminating.

## Central notions: T, N, UN, convergence

### Definition 1.4

#### A relation $\rightarrow$ is called

- ▶ terminating (T) iff there is no infinite descending chain  $a_0 \rightarrow a_1 \rightarrow \cdots$ .
- normalizing (N) iff every element has a normal form.
- uniquely normalizing (UN) iff every element has at most one normal form.
- convergent iff it is both confluent and terminating.

### Alternative terminology:

- Strongly normalizing: terminating.
- Weakly normalizing: normalizing.

### Central notions: CR reformulated

Obviously,  $x \downarrow y$  implies  $x \stackrel{*}{\leftrightarrow} y$ .

Therefore, the Church-Rosser property can be formulated as the equivalence:

→ is called Church-Rosser iff

$$x \stackrel{*}{\leftrightarrow} y \text{ iff } x \downarrow y.$$

1.  $T \implies N$ 

- 1.  $T \implies N$
- 2. T  $\Leftarrow$  N  $\stackrel{\bullet}{\subset} a \longrightarrow b$
- 3. CR  $\iff$   $\underset{\longleftrightarrow}{\overset{*}}=\downarrow$

- 1.  $T \implies N$
- 2. T  $\Leftarrow$  N  $\overset{\bullet}{\subset} a \longrightarrow b$
- 3. CR  $\iff$   $\overset{*}{\Leftrightarrow}$  =  $\downarrow$
- 4.  $CR \implies UN$

- 1.  $T \implies N$
- 2. T  $\Leftarrow$  N  $\overset{\bullet}{\subset} a \longrightarrow b$
- 3. CR  $\iff$   $\overset{*}{\Leftrightarrow}$  =  $\downarrow$
- 4.  $CR \implies UN$
- 5. CR **←** UN

- 1.  $T \implies N$
- 2. T  $\Leftarrow$  N  $\subset a \rightarrow b$
- 3. CR  $\iff$   $\overset{*}{\Leftrightarrow}$  =  $\downarrow$
- 4.  $CR \implies UN$
- 5. CR  $\longleftarrow$  UN  $\subset a \leftarrow b \rightarrow c$

- 1.  $T \implies N$
- 2. T  $\Leftarrow$  N  $\subset a \rightarrow b$
- 3. CR  $\iff$   $\overset{*}{\Leftrightarrow}$  =  $\downarrow$
- 4.  $CR \implies UN$
- 5. CR  $\longleftarrow$  UN  $\subset a \leftarrow b \rightarrow c$
- 6.  $N \wedge UN \implies C$

- 1.  $T \implies N$
- 2. T  $\Leftarrow$  N  $\subset a \rightarrow b$
- 3. CR  $\iff$   $\overset{*}{\Leftrightarrow}$  =  $\downarrow$
- 4.  $CR \implies UN$
- 5. CR  $\Leftarrow$  UN  $\overset{\bullet}{\subset} a \leftarrow b \rightarrow c$
- 6.  $N \wedge UN \implies C$
- 7.  $C \implies LC$

- 1.  $T \implies N$
- 2. T  $\Leftarrow$  N  $\subset a \rightarrow b$
- 3. CR  $\iff$   $\overset{*}{\Leftrightarrow}$  =  $\downarrow$
- 4.  $CR \implies UN$
- 5. CR  $\Leftarrow$  UN  $\overset{\bullet}{\subset} a \leftarrow b \rightarrow c$
- 6.  $N \wedge UN \implies C$
- 7.  $C \implies LC$
- 8. C ≠ LC

- 1.  $T \implies N$
- 2. T  $\Leftarrow$  N  $\subset a \rightarrow b$
- 3. CR  $\iff$   $\overset{*}{\Leftrightarrow}$  =  $\downarrow$
- 4.  $CR \implies UN$
- 5. CR  $\Leftarrow$  UN  $\overset{\bullet}{\subset} a \leftarrow b \rightarrow c$
- 6.  $N \wedge UN \implies C$
- 7.  $C \implies LC$
- 8. C  $\Leftarrow$  LC  $a \leftarrow b \gtrsim c \rightarrow d$

Recall what we were looking for.

Ability to check equivalence by the search of a common reduct.

This is exactly the Church-Rosser property.

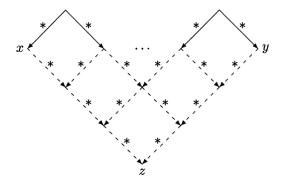
How does it relate to confluence and termination?

## Church-Rosser and confluence

The Church-Rosser property and confluence coincide.

 $CR \Longrightarrow C$  is immediate.

CR ← C has a nice diagrammatic proof:



## Central notions: semi-confluence

### Definition 1.5

A relation  $\rightarrow$  is called semi-confluent (SC) iff

$$y_1 \leftarrow x \xrightarrow{*} y_2 \text{ implies } y_1 \downarrow y_2.$$

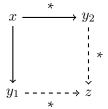
### Central notions: semi-confluence

#### Definition 1.5

A relation  $\rightarrow$  is called semi-confluent (SC) iff

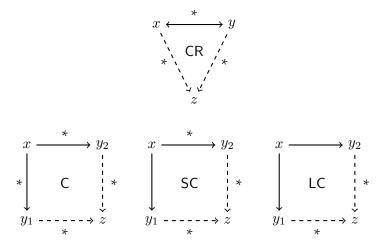
$$y_1 \leftarrow x \xrightarrow{*} y_2 \text{ implies } y_1 \downarrow y_2.$$

### Graphically:



Solid arrows represent universal and dashed arrows existential quantification:  $\forall x, y_1, y_2. \ y_1 \leftarrow x \xrightarrow{*} y_2 \Rightarrow \exists z. \ y_1 \xrightarrow{*} z \xleftarrow{*} y_2.$ 

# CR, C, SC, LC



#### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

### Proof.

 $(1 \Rightarrow 2)$ 

### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

### Proof.

$$(1 \Rightarrow 2)$$

► Assume  $\rightarrow$  is CR and  $y_1 \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} y_2$ . Show  $y_1 \downarrow y_2$ .

### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

### Proof.

$$(1 \Rightarrow 2)$$

- Assume  $\rightarrow$  is CR and  $y_1 \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} y_2$ . Show  $y_1 \downarrow y_2$ .
- $y_1 \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} y_2$  implies  $y_1 \stackrel{*}{\leftrightarrow} y_2$ .

### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

### Proof.

$$(1 \Rightarrow 2)$$

- Assume  $\rightarrow$  is CR and  $y_1 \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} y_2$ . Show  $y_1 \downarrow y_2$ .
- $y_1 \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} y_2$  implies  $y_1 \stackrel{*}{\leftrightarrow} y_2$ .
- CR implies  $y_1 \downarrow y_2$ .

### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

### Proof.

 $(2 \Rightarrow 3)$ 

### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

### Proof.

$$(2 \Rightarrow 3)$$

► Semi-confluence is a special case of confluence.

#### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

### Proof.

 $(3 \Rightarrow 1)$ 

#### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

### Proof.

$$(3 \Rightarrow 1)$$

• Assume  $\rightarrow$  is SC and  $x \stackrel{*}{\leftrightarrow} y$ . Show  $x \downarrow y$ .

#### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

$$(3 \Rightarrow 1)$$

- ▶ Assume  $\rightarrow$  is SC and  $x \stackrel{*}{\leftrightarrow} y$ . Show  $x \downarrow y$ .
- Induction on the length of the chain  $x \stackrel{*}{\leftrightarrow} y$ .

#### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

$$(3 \Rightarrow 1)$$

- Assume  $\rightarrow$  is SC and  $x \stackrel{*}{\leftrightarrow} y$ . Show  $x \downarrow y$ .
- Induction on the length of the chain  $x \stackrel{*}{\leftrightarrow} y$ .
- ▶ Base case: x = y. Trivial.

#### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

$$(3 \Rightarrow 1)$$

- Assume  $\rightarrow$  is SC and  $x \stackrel{*}{\leftrightarrow} y$ . Show  $x \downarrow y$ .
- ▶ Induction on the length of the chain  $x \stackrel{*}{\leftrightarrow} y$ .
- ▶ Base case: x = y. Trivial.
- Assume  $x \stackrel{*}{\leftrightarrow} y' \leftrightarrow y$ . Show  $x \downarrow y$ .

#### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

$$(3 \Rightarrow 1)$$

- Assume  $\rightarrow$  is SC and  $x \stackrel{*}{\leftrightarrow} y$ . Show  $x \downarrow y$ .
- ▶ Induction on the length of the chain  $x \stackrel{*}{\leftrightarrow} y$ .
- ▶ Base case: x = y. Trivial.
- Assume  $x \stackrel{*}{\leftrightarrow} y' \leftrightarrow y$ . Show  $x \downarrow y$ .
- ▶ By IH,  $x \downarrow y'$ , i.e.  $x \xrightarrow{*} z \xleftarrow{*} y'$  for some z.

#### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

#### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

```
(3 \Rightarrow 1) (Cont.)
```

#### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

### Proof.

```
(3 \Rightarrow 1) (Cont.)
```

▶ Show  $x \downarrow y$  by case distinction on  $y' \leftrightarrow y$ .

#### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

$$(3 \Rightarrow 1)$$
 (Cont.)

- Show  $x \downarrow y$  by case distinction on  $y' \leftrightarrow y$ .
- $y' \leftarrow y$ :  $x \downarrow y$  follows directly from  $x \downarrow y'$ :

$$x \xleftarrow{\quad *} y' \leftarrow y$$

#### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

### Proof.

```
(3 \Rightarrow 1) (Cont.)
```

• Show  $x \downarrow y$  by case distinction on  $y' \leftrightarrow y$ .

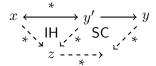
#### Theorem 1.1

The following conditions are equivalent:

- 1.  $\rightarrow$  has the Church-Rosser property.
- 2.  $\rightarrow$  is confluent.
- 3.  $\rightarrow$  is semi-confluent.

$$(3 \Rightarrow 1)$$
 (Cont.)

- Show  $x \downarrow y$  by case distinction on  $y' \leftrightarrow y$ .
- $y' \rightarrow y$ : Semi-confluence implies  $z \downarrow y$  and, hence  $x \downarrow y$ :



### Corollaries

If  $\rightarrow$  is confluent and  $x \stackrel{*}{\leftrightarrow} y$  then

- 1.  $x \xrightarrow{*} y$  if y is in a normal form, and
- 2. x = y if both x and y are in a normal form.

Hence, for confluent relations, convertibility is equivalent to joinability.

Without termination, joinability can not be decided.

### Corollaries

If  $\rightarrow$  is confluent, then every element has at most one normal form (C  $\Longrightarrow$  UN).

If  $\rightarrow$  is normalizing and confluent, then every element has exactly one normal form.

Hence, for confluent and normalizing reductions the notation  $x\downarrow$  is well-defined.

## Goal-directed equivalence test

### Theorem 1.2

If  $\rightarrow$  is confluent and normalizing, then

- every element x has a unique normal form  $x \downarrow$ ,
- $x \stackrel{*}{\leftrightarrow} y \text{ iff } x \downarrow = y \downarrow.$

Normalization requires breadth-first search for normal forms.

## Goal-directed equivalence test

### Theorem 1.2

If  $\rightarrow$  is confluent and normalizing, then

- every element x has a unique normal form  $x \downarrow$ ,
- $x \stackrel{*}{\leftrightarrow} y \text{ iff } x \downarrow = y \downarrow.$

Normalization requires breadth-first search for normal forms.

#### Theorem 1.3

If  $\rightarrow$  is confluent and terminating, then

- every element x has a unique normal form  $x \downarrow$ ,
- $x \stackrel{*}{\leftrightarrow} y \text{ iff } x \downarrow = y \downarrow.$

Termination permits depth-first search for normal forms.

## Confluence and termination

How to show confluence and termination of an ARS?

Idea: Embedding the reduction into a well-founded order.

Idea: Embedding the reduction into a well-founded order.

Well-founded order (B,>): No infinite descending chain  $b_0 > b_1 > b_2 > \cdots$  in B.

### Examples of well-founded orders:

- $(\mathbb{N}, >)$ : The set of natural numbers with the standard ordering.
- ( $\mathbb{N} \setminus \{0\}$ ,>): The set of positive integers where a > b iff  $b \mid a$  and  $b \neq a$ .
- $(\{a,b,c\}^*,>)$ : The set of finite words over a fixed alphabet, where  $w_1 > w_2$  iff  $w_2$  is a proper substring of  $w_1$ .

### Examples of well-founded orders:

- $(\mathbb{N},>)$ : The set of natural numbers with the standard ordering.
- ( $\mathbb{N} \setminus \{0\}$ ,>): The set of positive integers where a > b iff  $b \mid a$  and  $b \neq a$ .
- $(\{a,b,c\}^*,>)$ : The set of finite words over a fixed alphabet, where  $w_1 > w_2$  iff  $w_2$  is a proper substring of  $w_1$ .

### Examples of non-well-founded orders:

- $(\mathbb{Z},>)$ : The set of integers with the standard ordering.
- $(\mathbb{Q}_0^+,>)$ : The set of non-negative rationals with the standard ordering.
- $(\{a,b,c\}^*,>)$ : The set of finite words over a fixed alphabet, where > is the lexicographic ordering, e.g.  $a>ab>abb>\cdots$ .

#### Theorem 1.4

Let  $(A, \rightarrow)$  be an ARS. Then  $\rightarrow$  is terminating iff there exists a well-founded order (B, >) and a mapping  $\varphi : A \rightarrow B$  such that

$$a_1 \rightarrow a_2$$
 implies  $\varphi(a_1) > \varphi(a_2)$ .

## Lemma 1.1 (Newman's Lemma)

If  $\rightarrow$  is terminating and locally confluent, then it is confluent.

### Lemma 1.1 (Newman's Lemma)

If  $\rightarrow$  is terminating and locally confluent, then it is confluent.

### Proof.

▶ Use well-founded induction. Let  $(A, \rightarrow)$  be an ARS. Then WFI is the inference rule:

$$\frac{\forall x \in A. (\forall y \in A. (x \xrightarrow{+} y \Rightarrow P(y)) \Rightarrow P(x))}{\forall x \in A. P(x)}$$
 (WFI)

where P is some property of elements of A.

- ▶ Reads: To prove P(x) for all  $x \in A$ , try to prove P(x) under the assumption that P(y) holds for all successors y of x.
- Holds when → is terminating.

Lemma 1.1 (Newman's Lemma)

If  $\rightarrow$  is terminating and locally confluent, then it is confluent.

Proof. (Cont.)

### Lemma 1.1 (Newman's Lemma)

If  $\rightarrow$  is terminating and locally confluent, then it is confluent.

## Proof. (Cont.)

▶ Let P be

$$P(x) = \forall y, z. \ y \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} z \Rightarrow y \downarrow z.$$

Obviously,  $\rightarrow$  is confluent if P(x) holds for all  $x \in A$ .

## Lemma 1.1 (Newman's Lemma)

If  $\rightarrow$  is terminating and locally confluent, then it is confluent.

## Proof. (Cont.)

▶ Let P be

$$P(x) = \forall y, z. \ y \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} z \Rightarrow y \downarrow z.$$

Obviously,  $\rightarrow$  is confluent if P(x) holds for all  $x \in A$ .

▶ Show P(x) under the assumption P(t) for all  $x \xrightarrow{+} t$ .

## Lemma 1.1 (Newman's Lemma)

If  $\rightarrow$  is terminating and locally confluent, then it is confluent.

## Proof. (Cont.)

▶ Let P be

$$P(x) = \forall y, z. \ y \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} z \Rightarrow y \downarrow z.$$

Obviously,  $\rightarrow$  is confluent if P(x) holds for all  $x \in A$ .

- ► Show P(x) under the assumption P(t) for all  $x \stackrel{+}{\rightarrow} t$ .
- ► Fix x, y, z arbitrarily. Assume  $y \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} z$ . Prove  $y \downarrow z$ .

## Lemma 1.1 (Newman's Lemma)

If  $\rightarrow$  is terminating and locally confluent, then it is confluent.

## Proof. (Cont.)

▶ Let P be

$$P(x) = \forall y, z. \ y \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} z \Rightarrow y \downarrow z.$$

Obviously,  $\rightarrow$  is confluent if P(x) holds for all  $x \in A$ .

- ► Show P(x) under the assumption P(t) for all  $x \xrightarrow{+} t$ .
- ► Fix x, y, z arbitrarily. Assume  $y \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} z$ . Prove  $y \downarrow z$ .
- Case 1: x = y or x = z. Trivial.

Lemma 1.1 (Newman's Lemma)

If  $\rightarrow$  is terminating and locally confluent, then it is confluent.

Proof. (Cont.)

## Lemma 1.1 (Newman's Lemma)

If  $\rightarrow$  is terminating and locally confluent, then it is confluent.

## Proof. (Cont.)

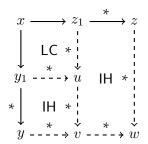
• Case 2:  $x \to y_1 \xrightarrow{*} y$  and  $x \to z_1 \xrightarrow{*} z$ .

## Lemma 1.1 (Newman's Lemma)

If  $\rightarrow$  is terminating and locally confluent, then it is confluent.

## Proof. (Cont.)

• Case 2:  $x \to y_1 \xrightarrow{*} y$  and  $x \to z_1 \xrightarrow{*} z$ .



# Showing confluence (termination not required)

#### Definition 1.6

A relation  $\rightarrow$  is called strongly confluent (StC) iff

$$\forall x, y_1, y_2. \ y_1 \leftarrow x \rightarrow y_2 \Rightarrow \exists z. \ y_1 \stackrel{*}{\rightarrow} z \stackrel{=}{\leftarrow} y_2.$$

Remark: The definition is symmetric:  $y_1 \leftarrow x \rightarrow y_2$  must imply both  $y_1 \overset{*}{\rightarrow} z_1 \overset{=}{\leftarrow} y_2$  and  $y_1 \overset{=}{\rightarrow} z_2 \overset{*}{\leftarrow} y_2$  for suitably chosen  $z_1$  and  $z_2$ .

# Showing confluence (termination not required)

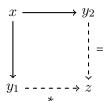
#### Definition 1.6

A relation  $\rightarrow$  is called strongly confluent (StC) iff

$$\forall x, y_1, y_2. \ y_1 \leftarrow x \rightarrow y_2 \Rightarrow \exists z. \ y_1 \stackrel{*}{\rightarrow} z \stackrel{=}{\leftarrow} y_2.$$

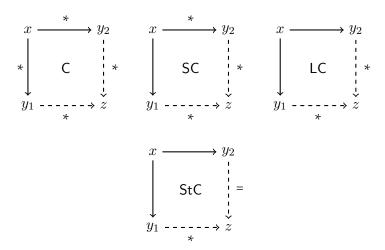
Remark: The definition is symmetric:  $y_1 \leftarrow x \rightarrow y_2$  must imply both  $y_1 \overset{*}{\rightarrow} z_1 \overset{=}{\leftarrow} y_2$  and  $y_1 \overset{=}{\rightarrow} z_2 \overset{*}{\leftarrow} y_2$  for suitably chosen  $z_1$  and  $z_2$ .

### Graphically:



Solid arrows represent universal and dashed arrows existential quantification.

# C, SC, LC, StC



# Showing confluence (termination not required)

#### Theorem 1.5

Any strongly confluent relation is semi-confluent (and, thus, confluent).

### Proof.

59 / 66

# Showing confluence (termination not required)

StC is a pretty strong property.

Trying to show strong confluence of  $\rightarrow$  would not be practical.

StC is a pretty strong property.

Trying to show strong confluence of  $\rightarrow$  would not be practical.

The trick to show confluence of  $\rightarrow$  is not to prove its strong confluence, but to define a StC relation  $\rightarrow_s$  such that  $\stackrel{*}{\rightarrow}_s = \stackrel{*}{\rightarrow}$ .

StC is a pretty strong property.

Trying to show strong confluence of  $\rightarrow$  would not be practical.

The trick to show confluence of  $\rightarrow$  is not to prove its strong confluence, but to define a StC relation  $\rightarrow_s$  such that  $\stackrel{*}{\rightarrow}_s = \stackrel{*}{\rightarrow}$ .

If  $\stackrel{*}{\rightarrow}_1 = \stackrel{*}{\rightarrow}_2$ , then  $\rightarrow_1$  is confluent iff  $\rightarrow_2$  is confluent.

Hence, if  $\overset{*}{\rightarrow}_s = \overset{*}{\rightarrow}$ , then  $StC(\rightarrow_s) \Rightarrow C(\rightarrow_s) \Leftrightarrow C(\rightarrow)$ .

StC is a pretty strong property.

Trying to show strong confluence of  $\rightarrow$  would not be practical.

The trick to show confluence of  $\rightarrow$  is not to prove its strong confluence, but to define a StC relation  $\rightarrow_s$  such that  $\stackrel{*}{\rightarrow}_s = \stackrel{*}{\rightarrow}$ .

If  $\stackrel{*}{\rightarrow}_1 = \stackrel{*}{\rightarrow}_2$ , then  $\rightarrow_1$  is confluent iff  $\rightarrow_2$  is confluent.

Hence, if 
$$\overset{*}{\rightarrow}_s = \overset{*}{\rightarrow}$$
, then  $StC(\rightarrow_s) \Rightarrow C(\rightarrow_s) \Leftrightarrow C(\rightarrow)$ .

To simplify the search of  $\rightarrow_s$ , the condition can be weakened due to following easy lemma:

If 
$$\rightarrow_1 \subseteq \rightarrow_2 \subseteq \stackrel{*}{\rightarrow}_1$$
, then  $\stackrel{*}{\rightarrow}_1 = \stackrel{*}{\rightarrow}_2$ .

Summarizing the ideas from the previous slide:

#### Theorem 1.6

If  $\rightarrow \subseteq \rightarrow_s \subseteq \stackrel{*}{\rightarrow}$  and  $\rightarrow_s$  is strongly confluent, then  $\rightarrow$  is confluent.

The theorem can be made stronger, considering the diamond property:

#### Definition 1.7

A relation → has the diamond property iff

$$\forall x, y_1, y_2. \ y_1 \leftarrow x \rightarrow y_2 \Rightarrow \exists z. \ y_1 \rightarrow z \leftarrow y_2.$$

The theorem can be made stronger, considering the diamond property:

#### Definition 1.7

A relation → has the diamond property iff

$$\forall x, y_1, y_2. \ y_1 \leftarrow x \rightarrow y_2 \Rightarrow \exists z. \ y_1 \rightarrow z \leftarrow y_2.$$

#### Graphically:



The diamond property implies strong confluence, therefore:

#### Theorem 1.7

If  $\rightarrow \subseteq \rightarrow_d \subseteq \stackrel{*}{\rightarrow}$  and  $\rightarrow_d$  has the diamond property, then  $\rightarrow$  is confluent.

Confluence proofs can be localized by splitting a reduction up into several smaller reductions and showing their confluence separately.

An additional property, commuting, should be satisfied.

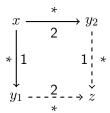
Confluence proofs can be localized by splitting a reduction up into several smaller reductions and showing their confluence separately.

An additional property, commuting, should be satisfied.

#### Definition 1.8

Two relations  $\rightarrow_1$  and  $\rightarrow_2$  commute iff

$$\forall x, y_1, y_2. \ y_1 \overset{*}{\leftarrow}_1 x \overset{*}{\rightarrow}_2 y_2 \Rightarrow \exists z. \ y_1 \overset{*}{\rightarrow}_2 z \overset{*}{\leftarrow}_1 y_2.$$



### Lemma 1.2 (Commutative Union Lemma)

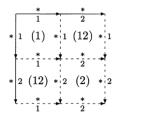
If  $\rightarrow_1$  and  $\rightarrow_2$  are confluent and commute, then  $\rightarrow_1 \cup \rightarrow_2$  is also confluent.

### Lemma 1.2 (Commutative Union Lemma)

If  $\rightarrow_1$  and  $\rightarrow_2$  are confluent and commute, then  $\rightarrow_1 \cup \rightarrow_2$  is also confluent.

#### Proof.

•  $\stackrel{*}{\rightarrow}_1 \circ \stackrel{*}{\rightarrow}_2$  has the diamond property:



- (1) Confluence of  $\rightarrow_1$
- (2) Confluence of  $\rightarrow_2$
- (12) Commutation of  $\rightarrow_1$  and  $\rightarrow_2$

### Lemma 1.3 (Commutative Union Lemma)

If  $\rightarrow_1$  and  $\rightarrow_2$  are confluent and commute, then  $\rightarrow_1 \cup \rightarrow_2$  is also confluent.

### Proof. (Cont.)

► The following inclusions hold:

$$\rightarrow_1 \cup \rightarrow_2 \subseteq \stackrel{*}{\rightarrow}_1 \circ \stackrel{*}{\rightarrow}_2 \subseteq (\rightarrow_1 \cup \rightarrow_2)^*.$$

▶ By Theorem 1.7,  $\rightarrow_1 \cup \rightarrow_2$  is confluent.