
Rewriting
Part 1. Abstract Reduction

Temur Kutsia

RISC, JKU Linz

1 / 66



Literature

Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

Book’s page: http://www21.in.tum.de/˜nipkow/TRaAT/

Resources about rewriting:
http://rewriting.loria.fr/
http://www.jaist.ac.jp/˜hirokawa/tool/
http://cl-informatik.uibk.ac.at/users/ami/research/rr/

2 / 66

http://www21.in.tum.de/~nipkow/TRaAT/
http://rewriting.loria.fr/
http://www.jaist.ac.jp/~hirokawa/tool/
http://cl-informatik.uibk.ac.at/users/ami/research/rr/


Motivation

Abstract Reduction Systems

3 / 66



Equational reasoning

Restricted class of languages.

The only predicate symbol is equality ≈.

Reasoning with equations:

▸ derive consequences of given equations,

▸ find values for variables that satisfy a given equation.

At the heart of many problems in mathematics and computer
science.

4 / 66



Example: addition of natural numbers

Equations (identities):

x + 0 ≈ x

x + s(y) ≈ s(x + y)

How to calculate s(0) + s(s(0))?

5 / 66



Example: addition of natural numbers

Orient equations, obtaining rewriting rules.

Apply the rules to transform expressions.

Rewrite rules:

x + 0→ x (R1)

x + s(y) → s(x + y) (R2)

Rewriting s(0) + s(s(0)):

s(0) + s(s(0)) → (by R2, with x↦ s(0), y ↦ s(0))

s(s(0) + s(0)) → (by R2, with x↦ s(0), y ↦ 0)

s(s(s(0) + 0)) → (by R1, with x↦ s(0))

s(s(s(0)))

6 / 66



Example: addition of natural numbers

Orient equations, obtaining rewriting rules.

Apply the rules to transform expressions. Rewrite rules:

x + 0→ x (R1)

x + s(y) → s(x + y) (R2)

Rewriting s(0) + s(s(0)):

s(0) + s(s(0)) → (by R2, with x↦ s(0), y ↦ s(0))

s(s(0) + s(0)) → (by R2, with x↦ s(0), y ↦ 0)

s(s(s(0) + 0)) → (by R1, with x↦ s(0))

s(s(s(0)))

6 / 66



Example: addition of natural numbers

Orient equations, obtaining rewriting rules.

Apply the rules to transform expressions. Rewrite rules:

x + 0→ x (R1)

x + s(y) → s(x + y) (R2)

Rewriting s(0) + s(s(0)):

s(0) + s(s(0)) → (by R2, with x↦ s(0), y ↦ s(0))

s(s(0) + s(0)) → (by R2, with x↦ s(0), y ↦ 0)

s(s(s(0) + 0)) → (by R1, with x↦ s(0))

s(s(s(0)))

6 / 66



Example: addition of natural numbers

Orient equations, obtaining rewriting rules.

Apply the rules to transform expressions. Rewrite rules:

x + 0→ x (R1)

x + s(y) → s(x + y) (R2)

Rewriting s(0) + s(s(0)):

s(0) + s(s(0)) → (by R2, with x↦ s(0), y ↦ s(0))

s(s(0) + s(0)) → (by R2, with x↦ s(0), y ↦ 0)

s(s(s(0) + 0)) → (by R1, with x↦ s(0))

s(s(s(0)))

6 / 66



Example: addition of natural numbers

Orient equations, obtaining rewriting rules.

Apply the rules to transform expressions. Rewrite rules:

x + 0→ x (R1)

x + s(y) → s(x + y) (R2)

Rewriting s(0) + s(s(0)):

s(0) + s(s(0)) → (by R2, with x↦ s(0), y ↦ s(0))

s(s(0) + s(0)) → (by R2, with x↦ s(0), y ↦ 0)

s(s(s(0) + 0)) → (by R1, with x↦ s(0))

s(s(s(0)))

6 / 66



Example: addition of natural numbers

Orient equations, obtaining rewriting rules.

Apply the rules to transform expressions. Rewrite rules:

x + 0→ x (R1)

x + s(y) → s(x + y) (R2)

Rewriting s(0) + s(s(0)):

s(0) + s(s(0)) → (by R2, with x↦ s(0), y ↦ s(0))

s(s(0) + s(0)) → (by R2, with x↦ s(0), y ↦ 0)

s(s(s(0) + 0)) → (by R1, with x↦ s(0))

s(s(s(0)))

6 / 66



What is rewriting

Process of transforming one expression into another.

Rules describe how one expression can be rewritten into another.

7 / 66



Identities and rewriting

Rewriting as a computational mechanism:

▸ Apply given equations in one direction, as rewrite rules.

▸ Compute normal forms.

▸ Close relationship with functional programming.

▸ Example: symbolic differentiation.

Rewriting as a deduction mechanism:

▸ Apply given equations in both directions.

▸ Define equivalence classes of terms.

▸ Equational reasoning.

▸ Example: group theory.

8 / 66



Identities and rewriting

Rewriting as a computational mechanism:

▸ Apply given equations in one direction, as rewrite rules.

▸ Compute normal forms.

▸ Close relationship with functional programming.

▸ Example: symbolic differentiation.

Rewriting as a deduction mechanism:

▸ Apply given equations in both directions.

▸ Define equivalence classes of terms.

▸ Equational reasoning.

▸ Example: group theory.

8 / 66



Symbolic differentiation

Expressions: Terms built over variables (u, v, . . .) and the following
function symbols:

▸ constants 0,1 (numbers),

▸ constants X,Y (indeterminates),

▸ unary symbol DX (partial derivative with respect to X),

▸ binary symbols +,∗.

Examples of terms:

▸ (X +X) ∗ Y + 1.

▸ DX(u ∗ v).

▸ (X + Y ) ∗DX(X ∗ Y ).

9 / 66



Symbolic differentiation

Expressions: Terms built over variables (u, v, . . .) and the following
function symbols:

▸ constants 0,1 (numbers),

▸ constants X,Y (indeterminates),

▸ unary symbol DX (partial derivative with respect to X),

▸ binary symbols +,∗.

Examples of terms:

▸ (X +X) ∗ Y + 1.

▸ DX(u ∗ v).

▸ (X + Y ) ∗DX(X ∗ Y ).

9 / 66



Symbolic differentiation

Rewrite rules:

DX(X) → 1 (R1)

DX(Y ) → 0 (R2)

DX(u + v) →DX(u) +DX(v) (R3)

DX(u ∗ v) → (u ∗DX(v)) + (DX(u) ∗ v) (R4)

10 / 66



Symbolic differentiation

Rewrite rules:

DX(X) → 1 (R1)

DX(Y ) → 0 (R2)

DX(u + v) →DX(u) +DX(v) (R3)

DX(u ∗ v) → (u ∗DX(v)) + (DX(u) ∗ v) (R4)

Differentiate DX(X ∗X):

DX(X ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(R4)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(R1)

(X ∗ 1) + (DX(X) ∗X)(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

(X ∗ 1) + (1 ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗DX(X)) + (1 ∗X)(X ∗DX(X)) + (1 ∗X)

(R1)

(X ∗DX(X)) + (1 ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

11 / 66



Symbolic differentiation

Rewrite rules:

DX(X) → 1 (R1)

DX(Y ) → 0 (R2)

DX(u + v) →DX(u) +DX(v) (R3)

DX(u ∗ v) → (u ∗DX(v)) + (DX(u) ∗ v) (R4)

Differentiate DX(X ∗X):

DX(X ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(R4)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(R1)

(X ∗ 1) + (DX(X) ∗X)(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

(X ∗ 1) + (1 ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗DX(X)) + (1 ∗X)(X ∗DX(X)) + (1 ∗X)

(R1)

(X ∗DX(X)) + (1 ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

11 / 66



Symbolic differentiation

Rewrite rules:

DX(X) → 1 (R1)

DX(Y ) → 0 (R2)

DX(u + v) →DX(u) +DX(v) (R3)

DX(u ∗ v) → (u ∗DX(v)) + (DX(u) ∗ v) (R4)

Differentiate DX(X ∗X):

DX(X ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(R4)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(R1)

(X ∗ 1) + (DX(X) ∗X)(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

(X ∗ 1) + (1 ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗DX(X)) + (1 ∗X)(X ∗DX(X)) + (1 ∗X)

(R1)

(X ∗DX(X)) + (1 ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

11 / 66



Symbolic differentiation

Rewrite rules:

DX(X) → 1 (R1)

DX(Y ) → 0 (R2)

DX(u + v) →DX(u) +DX(v) (R3)

DX(u ∗ v) → (u ∗DX(v)) + (DX(u) ∗ v) (R4)

Differentiate DX(X ∗X):

DX(X ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(R4)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(R1)

(X ∗ 1) + (DX(X) ∗X)(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

(X ∗ 1) + (1 ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗DX(X)) + (1 ∗X)(X ∗DX(X)) + (1 ∗X)

(R1)

(X ∗DX(X)) + (1 ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

11 / 66



Symbolic differentiation

Rewrite rules:

DX(X) → 1 (R1)

DX(Y ) → 0 (R2)

DX(u + v) →DX(u) +DX(v) (R3)

DX(u ∗ v) → (u ∗DX(v)) + (DX(u) ∗ v) (R4)

Differentiate DX(X ∗X):

DX(X ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(R4)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(R1)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

(X ∗ 1) + (1 ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗DX(X)) + (1 ∗X)(X ∗DX(X)) + (1 ∗X)

(R1)

(X ∗DX(X)) + (1 ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

11 / 66



Symbolic differentiation

Rewrite rules:

DX(X) → 1 (R1)

DX(Y ) → 0 (R2)

DX(u + v) →DX(u) +DX(v) (R3)

DX(u ∗ v) → (u ∗DX(v)) + (DX(u) ∗ v) (R4)

Differentiate DX(X ∗X):

DX(X ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(R4)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(R1)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

(X ∗ 1) + (1 ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗DX(X)) + (1 ∗X)(X ∗DX(X)) + (1 ∗X)

(R1)

(X ∗DX(X)) + (1 ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

11 / 66



Symbolic differentiation

Rewrite rules:

DX(X) → 1 (R1)

DX(Y ) → 0 (R2)

DX(u + v) →DX(u) +DX(v) (R3)

DX(u ∗ v) → (u ∗DX(v)) + (DX(u) ∗ v) (R4)

Differentiate DX(X ∗X):

DX(X ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(R4)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(R1)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

(X ∗ 1) + (1 ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗DX(X)) + (1 ∗X)(X ∗DX(X)) + (1 ∗X)

(R1)

(X ∗DX(X)) + (1 ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

11 / 66



Symbolic differentiation

Rewrite rules:

DX(X) → 1 (R1)

DX(Y ) → 0 (R2)

DX(u + v) →DX(u) +DX(v) (R3)

DX(u ∗ v) → (u ∗DX(v)) + (DX(u) ∗ v) (R4)

Differentiate DX(X ∗X):

DX(X ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(R4)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(R1)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

(X ∗ 1) + (1 ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗DX(X)) + (1 ∗X)(X ∗DX(X)) + (1 ∗X)

(R1)

(X ∗DX(X)) + (1 ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

11 / 66



Symbolic differentiation

Rewrite rules:

DX(X) → 1 (R1)

DX(Y ) → 0 (R2)

DX(u + v) →DX(u) +DX(v) (R3)

DX(u ∗ v) → (u ∗DX(v)) + (DX(u) ∗ v) (R4)

Differentiate DX(X ∗X):

DX(X ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(R4)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(R1)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

(X ∗ 1) + (1 ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗DX(X)) + (1 ∗X)(X ∗DX(X)) + (1 ∗X)

(R1)

(X ∗DX(X)) + (1 ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

11 / 66



Symbolic differentiation

Rewrite rules:

DX(X) → 1 (R1)

DX(Y ) → 0 (R2)

DX(u + v) →DX(u) +DX(v) (R3)

DX(u ∗ v) → (u ∗DX(v)) + (DX(u) ∗ v) (R4)

Differentiate DX(X ∗X):

DX(X ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(R4)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(R1)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

(X ∗ 1) + (1 ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗DX(X)) + (1 ∗X)

(X ∗DX(X)) + (1 ∗X)

(R1)

(X ∗DX(X)) + (1 ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

11 / 66



Symbolic differentiation

Rewrite rules:

DX(X) → 1 (R1)

DX(Y ) → 0 (R2)

DX(u + v) →DX(u) +DX(v) (R3)

DX(u ∗ v) → (u ∗DX(v)) + (DX(u) ∗ v) (R4)

Differentiate DX(X ∗X):

DX(X ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(R4)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(R1)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

(X ∗ 1) + (1 ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗DX(X)) + (1 ∗X)

(X ∗DX(X)) + (1 ∗X)

(R1)

(X ∗DX(X)) + (1 ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

11 / 66



Symbolic differentiation

Rewrite rules:

DX(X) → 1 (R1)

DX(Y ) → 0 (R2)

DX(u + v) →DX(u) +DX(v) (R3)

DX(u ∗ v) → (u ∗DX(v)) + (DX(u) ∗ v) (R4)

Differentiate DX(X ∗X):

DX(X ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(R4)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(R1)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

(X ∗ 1) + (1 ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗DX(X)) + (1 ∗X)(X ∗DX(X)) + (1 ∗X)

(R1)

(X ∗DX(X)) + (1 ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

11 / 66



Symbolic differentiation

Rewrite rules:

DX(X) → 1 (R1)

DX(Y ) → 0 (R2)

DX(u + v) →DX(u) +DX(v) (R3)

DX(u ∗ v) → (u ∗DX(v)) + (DX(u) ∗ v) (R4)

Differentiate DX(X ∗X):

DX(X ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(R4)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(R1)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

(X ∗ 1) + (1 ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗DX(X)) + (1 ∗X)(X ∗DX(X)) + (1 ∗X)

(R1)

(X ∗DX(X)) + (1 ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

11 / 66



Symbolic differentiation

Rewrite rules:

DX(X) → 1 (R1)

DX(Y ) → 0 (R2)

DX(u + v) →DX(u) +DX(v) (R3)

DX(u ∗ v) → (u ∗DX(v)) + (DX(u) ∗ v) (R4)

Differentiate DX(X ∗X):

DX(X ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(R4)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(R1)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (DX(X) ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

(X ∗ 1) + (1 ∗X)

(X ∗DX(X))) + (DX(X) ∗X)

(X ∗DX(X)) + (1 ∗X)

(X ∗DX(X)) + (1 ∗X)

(R1)

(X ∗DX(X)) + (1 ∗X)

(X ∗ 1) + (1 ∗X)

(R1)

11 / 66



Properties of term rewriting systems

The symbolic differentiation example can be used to illustrate two
most important properties of TRSs:

1. Termination:
▸ Is it always the case that after finitely many rule applications

we reach an expression to which no more rules apply (normal
form)?

▸ For symbolic differentiation rules this is the case.
▸ But how to prove it?
▸ An example of non-terminating rule: u + v → v + u

12 / 66



Properties of term rewriting systems

The symbolic differentiation example can be used to illustrate two
most important properties of TRSs:

1. Termination:
▸ Is it always the case that after finitely many rule applications

we reach an expression to which no more rules apply (normal
form)?

▸ For symbolic differentiation rules this is the case.
▸ But how to prove it?
▸ An example of non-terminating rule: u + v → v + u

12 / 66



Properties of term rewriting systems

The symbolic differentiation example can be used to illustrate two
most important properties of TRSs:

2. Confluence:
▸ If there are different ways of applying rules to a given term t,

leading to different terms t1 and t2, can they be reduced by
rule applications to a common term?

▸ For symbolic differentiation rules this is the case.
▸ But how to prove it?

13 / 66



Properties of term rewriting systems

Adding the rule u + 0→ u (R5) destroys confluence:

DX(X + 0)

DX(X)

(R5)

1

(R1)

DX(X) +DX(0)

(R3)

1 +DX(0)

(R1)

Confluence can be regained by adding DX(0) → 0 (completion).

14 / 66



Group theory

Terms are built over variables and the following function symbols:

▸ binary ○,

▸ unary i,

▸ constant e.

Examples of terms:

▸ x ○ (y ○ i(y))

▸ (e ○ x) ○ i(e)

▸ i(x ○ y)

Identities (aka group axioms), defining groups:

Associativity of ○ (x ○ y) ○ z ≈ x ○ (y ○ z) (G1)

e left unit e ○ x ≈ x (G2)

i left inverse i(x) ○ x ≈ e (G3)

15 / 66



Group theory

Identities can be applied in both directions.

Word problem for identities:

▸ Given a set of identities E and two terms s and t.

▸ Is it possible to transform s into t, using the identities in E as
rewrite rules applied in both directions?

For instance, is it possible to transform e into x ○ i(x),
i.e., is the left inverse also a right-inverse?

16 / 66



Group theory

(x ○ y) ○ z ≈ x ○ (y ○ z) (G1)

e ○ x ≈ x (G2)

i(x) ○ x ≈ e (G3)

Transform e into x ○ i(x):

e ≈G3 i(x ○ i(x)) ○ (x ○ i(x))

≈G2 i(x ○ i(x)) ○ (x ○ (e ○ i(x)))

≈G3 i(x ○ i(x)) ○ (x ○ ((i(x) ○ x) ○ i(x)))

≈G1 i(x ○ i(x)) ○ ((x ○ (i(x) ○ x)) ○ i(x))

≈G1 i(x ○ i(x)) ○ (((x ○ i(x)) ○ x) ○ i(x))

≈G1 i(x ○ i(x)) ○ ((x ○ i(x)) ○ (x ○ i(x)))

≈G1 (i(x ○ i(x)) ○ (x ○ i(x))) ○ (x ○ i(x))

≈G3 e ○ (x ○ i(x))

≈G2 x ○ i(x)

17 / 66



Group theory

(x ○ y) ○ z ≈ x ○ (y ○ z) (G1)

e ○ x ≈ x (G2)

i(x) ○ x ≈ e (G3)

Transform e into x ○ i(x):

e ≈G3 i(x ○ i(x)) ○ (x ○ i(x))

≈G2 i(x ○ i(x)) ○ (x ○ (e ○ i(x)))

≈G3 i(x ○ i(x)) ○ (x ○ ((i(x) ○ x) ○ i(x)))

≈G1 i(x ○ i(x)) ○ ((x ○ (i(x) ○ x)) ○ i(x))

≈G1 i(x ○ i(x)) ○ (((x ○ i(x)) ○ x) ○ i(x))

≈G1 i(x ○ i(x)) ○ ((x ○ i(x)) ○ (x ○ i(x)))

≈G1 (i(x ○ i(x)) ○ (x ○ i(x))) ○ (x ○ i(x))

≈G3 e ○ (x ○ i(x))

≈G2 x ○ i(x)

17 / 66



Solving word problems by rewriting?

Is there a simpler way to solve word problems?

Try to solve it by rewriting (uni-directional application of
identities):

s

ŝ

∗

t

t̂

∗

=

Reduce s and t to normal forms ŝ and t̂.

Check whether ŝ = t̂, i.e., syntactically equal.
(= is the meta-equality.)

But... it would only work if normal forms exist and are unique.

18 / 66



Solving word problems by rewriting?

Is there a simpler way to solve word problems?

Try to solve it by rewriting (uni-directional application of
identities):

s

ŝ

∗

t

t̂

∗

=

Reduce s and t to normal forms ŝ and t̂.

Check whether ŝ = t̂, i.e., syntactically equal.
(= is the meta-equality.)

But... it would only work if normal forms exist and are unique.

18 / 66



Solving word problems by rewriting?

In the group theory example, e and x ○ i(x) are equivalent, but it
can not be decided by (left-to-right) rewriting: Both terms are in
the normal form.

Uniqueness of normal forms is violated: non-confluence.

Normal forms may not exist: The process of reducing a term may
lead to an infinite chain of transformations: non-termination.

Termination and confluence ensure existence and uniqueness of
normal forms.

If a given set of identities leads to non-confluent system, we will
try to apply the idea of completion to extend the rewrite system to
a confluent one.

19 / 66



Solving word problems by rewriting?

In the group theory example, e and x ○ i(x) are equivalent, but it
can not be decided by (left-to-right) rewriting: Both terms are in
the normal form.

Uniqueness of normal forms is violated: non-confluence.

Normal forms may not exist: The process of reducing a term may
lead to an infinite chain of transformations: non-termination.

Termination and confluence ensure existence and uniqueness of
normal forms.

If a given set of identities leads to non-confluent system, we will
try to apply the idea of completion to extend the rewrite system to
a confluent one.

19 / 66



Solving word problems by rewriting?

In the group theory example, e and x ○ i(x) are equivalent, but it
can not be decided by (left-to-right) rewriting: Both terms are in
the normal form.

Uniqueness of normal forms is violated: non-confluence.

Normal forms may not exist: The process of reducing a term may
lead to an infinite chain of transformations: non-termination.

Termination and confluence ensure existence and uniqueness of
normal forms.

If a given set of identities leads to non-confluent system, we will
try to apply the idea of completion to extend the rewrite system to
a confluent one.

19 / 66



Motivation

Abstract Reduction Systems

20 / 66



Abstract vs concrete

Concrete rewrite formalisms:

▸ string rewriting

▸ term rewriting

▸ graph rewriting

▸ λ calculus

▸ etc.

Abstract reduction:

▸ No structure on objects to be rewritten.

▸ Abstract treatment of reductions.

21 / 66



Abstract reduction systems

Abstract reduction system (ARS): A pair (A,→), where

▸ A is a set,

▸ the reduction → is a binary relation on A: → ⊆ A ×A.

Write a→ b for (a, b) ∈→.

22 / 66



Abstract reduction system: example

A = {a, b, c, d, e, f, g}

→= {
(a, e), (b, a), (b, c), (c, d), (c, f)
(e, b), (e, g), (f, e), (f, g)

}

a b c d

e f

g

23 / 66



Equivalence and reduction

Again, two views at reductions.

1. Directed computation: Follow the reductions, trying to
compute a normal form: a0 → a1 → ⋯

2. View → as description of
∗

←→.

▸ a
∗

←→ b means there is a path between a and b, with arrows
traversed in both directions: a← c→ d← b

▸ Goal: Decide whether a
∗

←→ b.
▸ Bidirectional rewriting is expensive.
▸ Unidirectional rewriting with subsequent comparison of normal

form works if the reduction system is confluent and
terminating.

Termination, confluence: central topics.

24 / 66



Basic notions

Composition of two relations.

Given two relations R ⊆ A ×B and S ⊆ B ×C, their composition is
defined as

R ○ S ∶= {(x, z) ∣ ∃y ∈ B. (x, y) ∈ R ∧ (y, z) ∈ S}

25 / 66



Abstract reduction system: example

a b c d

e f

g

a

e

b c

f

▸ Finite rewrite sequence: a→ e→ b→ c→ f

▸ Empty rewrite sequence: a

▸ Infinite rewrite sequence: a→ e→ b→ a→ ⋯

26 / 66



Abstract reduction system: example

a b c

d

e f

g

a

e

b c

f

▸ Finite rewrite sequence: a→ e→ b→ c→ f

▸ Empty rewrite sequence: a

▸ Infinite rewrite sequence: a→ e→ b→ a→ ⋯

26 / 66



Abstract reduction system: example

a

b c d

e f

g

a

e

b c

f

▸ Finite rewrite sequence: a→ e→ b→ c→ f

▸ Empty rewrite sequence: a

▸ Infinite rewrite sequence: a→ e→ b→ a→ ⋯

26 / 66



Abstract reduction system: example

a

b c d

e

f

g

a

e

b

c

f

▸ Finite rewrite sequence: a→ e→ b→ c→ f

▸ Empty rewrite sequence: a

▸ Infinite rewrite sequence: a→ e→ b→ a→ ⋯

26 / 66



Relations derived from →

0
Ð→ ∶= {(x,x) ∣ x ∈ A} identity

=

Ð→ ∶= → ∪
0
Ð→ reflexive closure

i+1
ÐÐ→ ∶=

i
Ð→ ○ → (i + 1)-fold composition, i ≥ 0

+

Ð→ ∶= ∪i>0
i
Ð→ transitive closure

∗

Ð→ ∶=
+

Ð→ ∪
0
Ð→ reflexive transitive closure

−1
Ð→ ∶= {(y, x) ∣ (x, y) ∈ →} inverse

← ∶=
−1
Ð→ inverse

↔ ∶= → ∪ ← symmetric closure
+

←→ ∶= (↔)
+ transitive symmetric closure

∗

←→ ∶= (↔)
∗ reflexive transitive symmetric closure

27 / 66



Terminology

If x
∗

Ð→ y then we say:

▸ x rewrites to y, or

▸ there is some finite path from x to y, or

▸ y is a reduct of x.

a b c

d

e f

g

a

e

b c

f a
∗

Ð→ f

28 / 66



Terminology

If x
∗

Ð→ y then we say:

▸ x rewrites to y, or

▸ there is some finite path from x to y, or

▸ y is a reduct of x.

a b c d

e f

g

a

e

b c

f a
∗

Ð→ f

28 / 66



Terminology

If x
∗

Ð→ y then we say:

▸ x rewrites to y, or

▸ there is some finite path from x to y, or

▸ y is a reduct of x.

a b c

d

e f

g

a

e

b c

f a
∗

Ð→ f

28 / 66



Terminology
x is reducible iff there exists y such that x→ y.

x is in normal form (irreducible) iff x is not reducible.

y is a normal form of x iff x
∗

Ð→ y and y is in normal form.

We write x
!
Ð→ y if y is a normal form of x.

If x has a unique normal form, it is denoted by x ↓.

a b c d

e f

g

a, b, c, e, f are reducibled, g are in a normal form
b

!
Ð→ d

b
!
Ð→ g

g
!
Ð→ g

29 / 66



Terminology
x is reducible iff there exists y such that x→ y.

x is in normal form (irreducible) iff x is not reducible.

y is a normal form of x iff x
∗

Ð→ y and y is in normal form.

We write x
!
Ð→ y if y is a normal form of x.

If x has a unique normal form, it is denoted by x ↓.

a b c d

e f

g

a, b, c, e, f are reducibled, g are in a normal form
b

!
Ð→ d

b
!
Ð→ g

g
!
Ð→ g

29 / 66



Terminology
x is reducible iff there exists y such that x→ y.

x is in normal form (irreducible) iff x is not reducible.

y is a normal form of x iff x
∗

Ð→ y and y is in normal form.

We write x
!
Ð→ y if y is a normal form of x.

If x has a unique normal form, it is denoted by x ↓.

a b c d

e f

g

a, b, c, e, f are reducibled, g are in a normal form
b

!
Ð→ d

b
!
Ð→ g

g
!
Ð→ g

29 / 66



Terminology
x is reducible iff there exists y such that x→ y.

x is in normal form (irreducible) iff x is not reducible.

y is a normal form of x iff x
∗

Ð→ y and y is in normal form.

We write x
!
Ð→ y if y is a normal form of x.

If x has a unique normal form, it is denoted by x ↓.

a b c d

e f

g

a, b, c, e, f are reducibled, g are in a normal form
b

!
Ð→ d

b
!
Ð→ g

g
!
Ð→ g

29 / 66



Terminology
x is reducible iff there exists y such that x→ y.

x is in normal form (irreducible) iff x is not reducible.

y is a normal form of x iff x
∗

Ð→ y and y is in normal form.

We write x
!
Ð→ y if y is a normal form of x.

If x has a unique normal form, it is denoted by x ↓.

a b c d

e f

g

a, b, c, e, f are reducible

d, g are in a normal form
b

!
Ð→ d

b
!
Ð→ g

g
!
Ð→ g

29 / 66



Terminology
x is reducible iff there exists y such that x→ y.

x is in normal form (irreducible) iff x is not reducible.

y is a normal form of x iff x
∗

Ð→ y and y is in normal form.

We write x
!
Ð→ y if y is a normal form of x.

If x has a unique normal form, it is denoted by x ↓.

a b c d

e f

g

a, b, c, e, f are reducible

d, g are in a normal form

b
!
Ð→ d

b
!
Ð→ g

g
!
Ð→ g

29 / 66



Terminology
x is reducible iff there exists y such that x→ y.

x is in normal form (irreducible) iff x is not reducible.

y is a normal form of x iff x
∗

Ð→ y and y is in normal form.

We write x
!
Ð→ y if y is a normal form of x.

If x has a unique normal form, it is denoted by x ↓.

a b c d

e f

g

a, b, c, e, f are reducibled, g are in a normal form

b
!
Ð→ d

b
!
Ð→ g

g
!
Ð→ g

29 / 66



Terminology
y is direct successor of x iff x→ y.

y is successor of x iff x
+

Ð→ y.

x and y are convertible iff x
∗

←→ y.

x and y are joinable iff there exists z such that x
∗

Ð→ z
∗

←Ð y.

We write x ↓ y iff x and y are joinable.

a b c d

e f

g

e ↓ f , f ↓ d, a ↓ f , not g ↓ dg
∗

←→ d

30 / 66



Terminology
y is direct successor of x iff x→ y.

y is successor of x iff x
+

Ð→ y.

x and y are convertible iff x
∗

←→ y.

x and y are joinable iff there exists z such that x
∗

Ð→ z
∗

←Ð y.

We write x ↓ y iff x and y are joinable.

a b c d

e f

g

e ↓ f , f ↓ d, a ↓ f , not g ↓ dg
∗

←→ d

30 / 66



Terminology
y is direct successor of x iff x→ y.

y is successor of x iff x
+

Ð→ y.

x and y are convertible iff x
∗

←→ y.

x and y are joinable iff there exists z such that x
∗

Ð→ z
∗

←Ð y.

We write x ↓ y iff x and y are joinable.

a b c d

e f

g

e ↓ f , f ↓ d, a ↓ f , not g ↓ dg
∗

←→ d

30 / 66



Terminology
y is direct successor of x iff x→ y.

y is successor of x iff x
+

Ð→ y.

x and y are convertible iff x
∗

←→ y.

x and y are joinable iff there exists z such that x
∗

Ð→ z
∗

←Ð y.

We write x ↓ y iff x and y are joinable.

a b c d

e f

g

e ↓ f , f ↓ d, a ↓ f , not g ↓ dg
∗

←→ d

30 / 66



Terminology
y is direct successor of x iff x→ y.

y is successor of x iff x
+

Ð→ y.

x and y are convertible iff x
∗

←→ y.

x and y are joinable iff there exists z such that x
∗

Ð→ z
∗

←Ð y.

We write x ↓ y iff x and y are joinable.

a b c d

e f

g

e ↓ f , f ↓ d, a ↓ f , not g ↓ dg
∗

←→ d

30 / 66



Terminology
y is direct successor of x iff x→ y.

y is successor of x iff x
+

Ð→ y.

x and y are convertible iff x
∗

←→ y.

x and y are joinable iff there exists z such that x
∗

Ð→ z
∗

←Ð y.

We write x ↓ y iff x and y are joinable.

a b c d

e f

g

e ↓ f , f ↓ d, a ↓ f , not g ↓ d

g
∗

←→ d

30 / 66



Terminology
y is direct successor of x iff x→ y.

y is successor of x iff x
+

Ð→ y.

x and y are convertible iff x
∗

←→ y.

x and y are joinable iff there exists z such that x
∗

Ð→ z
∗

←Ð y.

We write x ↓ y iff x and y are joinable.

a b c d

e f

g

e ↓ f , f ↓ d, a ↓ f , not g ↓ d

g
∗

←→ d

30 / 66



Example

31 / 66



Central notions: Church-Rosser

Definition 1.1
A relation → is called Church-Rosser (CR) iff

x
∗

←→ y implies x ↓ y.

Graphically:

x y

z

∗

∗ ∗

Solid arrows represent universal and dashed arrows existential

quantification: ∀x, y. x
∗

←→ y⇒ ∃z. x
∗

Ð→ z ∧ y
∗

Ð→ z.

32 / 66



Central notions: Church-Rosser

Definition 1.1
A relation → is called Church-Rosser (CR) iff

x
∗

←→ y implies x ↓ y.

Graphically:

x y

z

∗

∗ ∗

Solid arrows represent universal and dashed arrows existential

quantification: ∀x, y. x
∗

←→ y⇒ ∃z. x
∗

Ð→ z ∧ y
∗

Ð→ z.

32 / 66



Central notions: confluence

Definition 1.2
A relation → is called confluent (C) iff

y1
∗

←Ð x
∗

Ð→ y2 implies y1 ↓ y2.

Graphically:

x y2

y1 z

∗

∗

∗∗

Solid arrows represent universal and dashed arrows existential

quantification: ∀x, y1, y2. y1
∗

←Ð x
∗

Ð→ y2 ⇒ ∃z. y1
∗

Ð→ z
∗

←Ð y2.

33 / 66



Central notions: confluence

Definition 1.2
A relation → is called confluent (C) iff

y1
∗

←Ð x
∗

Ð→ y2 implies y1 ↓ y2.

Graphically:

x y2

y1 z

∗

∗

∗∗

Solid arrows represent universal and dashed arrows existential

quantification: ∀x, y1, y2. y1
∗

←Ð x
∗

Ð→ y2 ⇒ ∃z. y1
∗

Ð→ z
∗

←Ð y2.

33 / 66



Central notions: local confluence

Definition 1.3
A relation → is called locally confluent (LC) iff

y1 ← x→ y2 implies y1 ↓ y2.

Graphically:
x y2

y1 z
∗

∗

Solid arrows represent universal and dashed arrows existential

quantification: ∀x, y1, y2. y1 ← x→ y2 ⇒ ∃z. y1
∗

Ð→ z
∗

←Ð y2.

34 / 66



Central notions: local confluence

Definition 1.3
A relation → is called locally confluent (LC) iff

y1 ← x→ y2 implies y1 ↓ y2.

Graphically:
x y2

y1 z
∗

∗

Solid arrows represent universal and dashed arrows existential

quantification: ∀x, y1, y2. y1 ← x→ y2 ⇒ ∃z. y1
∗

Ð→ z
∗

←Ð y2.

34 / 66



Central notions: T, N, UN, convergence

Definition 1.4
A relation → is called

▸ terminating (T) iff there is no infinite descending chain
a0 → a1 → ⋯.

▸ normalizing (N) iff every element has a normal form.

▸ uniquely normalizing (UN) iff every element has at most one
normal form.

▸ convergent iff it is both confluent and terminating.

Alternative terminology:

▸ Strongly normalizing: terminating.

▸ Weakly normalizing: normalizing.

35 / 66



Central notions: T, N, UN, convergence

Definition 1.4
A relation → is called

▸ terminating (T) iff there is no infinite descending chain
a0 → a1 → ⋯.

▸ normalizing (N) iff every element has a normal form.

▸ uniquely normalizing (UN) iff every element has at most one
normal form.

▸ convergent iff it is both confluent and terminating.

Alternative terminology:

▸ Strongly normalizing: terminating.

▸ Weakly normalizing: normalizing.

35 / 66



Central notions: CR reformulated

Obviously, x ↓ y implies x
∗

←→ y.

Therefore, the Church-Rosser property can be formulated as the
equivalence:

→ is called Church-Rosser iff

x
∗

←→ y iff x ↓ y.

36 / 66



Properties

1. T Ô⇒ N

2. T /⇐Ô N a b

3. CR ⇐⇒ ∗

←→= ↓

4. CR Ô⇒ UN

5. CR /⇐Ô UN a b c

6. N ∧ UN Ô⇒ C

7. C Ô⇒ LC

8. C /⇐Ô LC a b c d

37 / 66



Properties

1. T Ô⇒ N

2. T /⇐Ô N

a b

3. CR ⇐⇒ ∗

←→= ↓

4. CR Ô⇒ UN

5. CR /⇐Ô UN a b c

6. N ∧ UN Ô⇒ C

7. C Ô⇒ LC

8. C /⇐Ô LC a b c d

37 / 66



Properties

1. T Ô⇒ N

2. T /⇐Ô N a b

3. CR ⇐⇒ ∗

←→= ↓

4. CR Ô⇒ UN

5. CR /⇐Ô UN a b c

6. N ∧ UN Ô⇒ C

7. C Ô⇒ LC

8. C /⇐Ô LC a b c d

37 / 66



Properties

1. T Ô⇒ N

2. T /⇐Ô N a b

3. CR ⇐⇒ ∗

←→= ↓

4. CR Ô⇒ UN

5. CR /⇐Ô UN a b c

6. N ∧ UN Ô⇒ C

7. C Ô⇒ LC

8. C /⇐Ô LC a b c d

37 / 66



Properties

1. T Ô⇒ N

2. T /⇐Ô N a b

3. CR ⇐⇒ ∗

←→= ↓

4. CR Ô⇒ UN

5. CR /⇐Ô UN a b c

6. N ∧ UN Ô⇒ C

7. C Ô⇒ LC

8. C /⇐Ô LC a b c d

37 / 66



Properties

1. T Ô⇒ N

2. T /⇐Ô N a b

3. CR ⇐⇒ ∗

←→= ↓

4. CR Ô⇒ UN

5. CR /⇐Ô UN

a b c

6. N ∧ UN Ô⇒ C

7. C Ô⇒ LC

8. C /⇐Ô LC a b c d

37 / 66



Properties

1. T Ô⇒ N

2. T /⇐Ô N a b

3. CR ⇐⇒ ∗

←→= ↓

4. CR Ô⇒ UN

5. CR /⇐Ô UN a b c

6. N ∧ UN Ô⇒ C

7. C Ô⇒ LC

8. C /⇐Ô LC a b c d

37 / 66



Properties

1. T Ô⇒ N

2. T /⇐Ô N a b

3. CR ⇐⇒ ∗

←→= ↓

4. CR Ô⇒ UN

5. CR /⇐Ô UN a b c

6. N ∧ UN Ô⇒ C

7. C Ô⇒ LC

8. C /⇐Ô LC a b c d

37 / 66



Properties

1. T Ô⇒ N

2. T /⇐Ô N a b

3. CR ⇐⇒ ∗

←→= ↓

4. CR Ô⇒ UN

5. CR /⇐Ô UN a b c

6. N ∧ UN Ô⇒ C

7. C Ô⇒ LC

8. C /⇐Ô LC a b c d

37 / 66



Properties

1. T Ô⇒ N

2. T /⇐Ô N a b

3. CR ⇐⇒ ∗

←→= ↓

4. CR Ô⇒ UN

5. CR /⇐Ô UN a b c

6. N ∧ UN Ô⇒ C

7. C Ô⇒ LC

8. C /⇐Ô LC

a b c d

37 / 66



Properties

1. T Ô⇒ N

2. T /⇐Ô N a b

3. CR ⇐⇒ ∗

←→= ↓

4. CR Ô⇒ UN

5. CR /⇐Ô UN a b c

6. N ∧ UN Ô⇒ C

7. C Ô⇒ LC

8. C /⇐Ô LC a b c d

37 / 66



Properties

Recall what we were looking for.

Ability to check equivalence by the search of a common reduct.

This is exactly the Church-Rosser property.

How does it relate to confluence and termination?

38 / 66



Church-Rosser and confluence

The Church-Rosser property and confluence coincide.

CRÔ⇒ C is immediate.

CR⇐Ô C has a nice diagrammatic proof:

39 / 66



Central notions: semi-confluence

Definition 1.5
A relation → is called semi-confluent (SC) iff

y1 ← x
∗

Ð→ y2 implies y1 ↓ y2.

Graphically:

x y2

y1 z

∗

∗

∗

Solid arrows represent universal and dashed arrows existential

quantification: ∀x, y1, y2. y1 ← x
∗

Ð→ y2 ⇒ ∃z. y1
∗

Ð→ z
∗

←Ð y2.

40 / 66



Central notions: semi-confluence

Definition 1.5
A relation → is called semi-confluent (SC) iff

y1 ← x
∗

Ð→ y2 implies y1 ↓ y2.

Graphically:

x y2

y1 z

∗

∗

∗

Solid arrows represent universal and dashed arrows existential

quantification: ∀x, y1, y2. y1 ← x
∗

Ð→ y2 ⇒ ∃z. y1
∗

Ð→ z
∗

←Ð y2.

40 / 66



CR, C, SC, LC

x y

z

∗

∗ ∗
CR

x y2

y1 z

∗

∗

∗∗ C

x y2

y1 z

∗

∗

∗SC

x y2

y1 z
∗

∗LC

41 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(1⇒ 2)

▸ Assume → is CR and y1
∗

←Ð x
∗

Ð→ y2. Show y1 ↓ y2.

▸ y1
∗

←Ð x
∗

Ð→ y2 implies y1
∗

←→ y2.

▸ CR implies y1 ↓ y2.

42 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(1⇒ 2)

▸ Assume → is CR and y1
∗

←Ð x
∗

Ð→ y2. Show y1 ↓ y2.

▸ y1
∗

←Ð x
∗

Ð→ y2 implies y1
∗

←→ y2.

▸ CR implies y1 ↓ y2.

42 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(1⇒ 2)

▸ Assume → is CR and y1
∗

←Ð x
∗

Ð→ y2. Show y1 ↓ y2.

▸ y1
∗

←Ð x
∗

Ð→ y2 implies y1
∗

←→ y2.

▸ CR implies y1 ↓ y2.

42 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(1⇒ 2)

▸ Assume → is CR and y1
∗

←Ð x
∗

Ð→ y2. Show y1 ↓ y2.

▸ y1
∗

←Ð x
∗

Ð→ y2 implies y1
∗

←→ y2.

▸ CR implies y1 ↓ y2.

42 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(1⇒ 2)

▸ Assume → is CR and y1
∗

←Ð x
∗

Ð→ y2. Show y1 ↓ y2.

▸ y1
∗

←Ð x
∗

Ð→ y2 implies y1
∗

←→ y2.

▸ CR implies y1 ↓ y2.

42 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(2⇒ 3)

▸ Semi-confluence is a special case of confluence.

43 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(2⇒ 3)

▸ Semi-confluence is a special case of confluence.

43 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(2⇒ 3)

▸ Semi-confluence is a special case of confluence.

43 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(3⇒ 1)

▸ Assume → is SC and x
∗

←→ y. Show x ↓ y.

▸ Induction on the length of the chain x
∗

←→ y.

▸ Base case: x = y. Trivial.

▸ Assume x
∗

←→ y′ ↔ y. Show x ↓ y.

▸ By IH, x ↓ y′, i.e. x
∗

Ð→ z
∗

←Ð y′ for some z.

44 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(3⇒ 1)

▸ Assume → is SC and x
∗

←→ y. Show x ↓ y.

▸ Induction on the length of the chain x
∗

←→ y.

▸ Base case: x = y. Trivial.

▸ Assume x
∗

←→ y′ ↔ y. Show x ↓ y.

▸ By IH, x ↓ y′, i.e. x
∗

Ð→ z
∗

←Ð y′ for some z.

44 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(3⇒ 1)

▸ Assume → is SC and x
∗

←→ y. Show x ↓ y.

▸ Induction on the length of the chain x
∗

←→ y.

▸ Base case: x = y. Trivial.

▸ Assume x
∗

←→ y′ ↔ y. Show x ↓ y.

▸ By IH, x ↓ y′, i.e. x
∗

Ð→ z
∗

←Ð y′ for some z.

44 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(3⇒ 1)

▸ Assume → is SC and x
∗

←→ y. Show x ↓ y.

▸ Induction on the length of the chain x
∗

←→ y.

▸ Base case: x = y. Trivial.

▸ Assume x
∗

←→ y′ ↔ y. Show x ↓ y.

▸ By IH, x ↓ y′, i.e. x
∗

Ð→ z
∗

←Ð y′ for some z.

44 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(3⇒ 1)

▸ Assume → is SC and x
∗

←→ y. Show x ↓ y.

▸ Induction on the length of the chain x
∗

←→ y.

▸ Base case: x = y. Trivial.

▸ Assume x
∗

←→ y′ ↔ y. Show x ↓ y.

▸ By IH, x ↓ y′, i.e. x
∗

Ð→ z
∗

←Ð y′ for some z.

44 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(3⇒ 1)

▸ Assume → is SC and x
∗

←→ y. Show x ↓ y.

▸ Induction on the length of the chain x
∗

←→ y.

▸ Base case: x = y. Trivial.

▸ Assume x
∗

←→ y′ ↔ y. Show x ↓ y.

▸ By IH, x ↓ y′, i.e. x
∗

Ð→ z
∗

←Ð y′ for some z.

44 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(3⇒ 1)

▸ Assume → is SC and x
∗

←→ y. Show x ↓ y.

▸ Induction on the length of the chain x
∗

←→ y.

▸ Base case: x = y. Trivial.

▸ Assume x
∗

←→ y′ ↔ y. Show x ↓ y.

▸ By IH, x ↓ y′, i.e. x
∗

Ð→ z
∗

←Ð y′ for some z.

44 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(3⇒ 1) (Cont.)

▸ Show x ↓ y by case distinction on y′ ↔ y.

▸ y′ ← y: x ↓ y follows directly from x ↓ y′:

x y′ y
∗

∗∗ IH

45 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(3⇒ 1) (Cont.)

▸ Show x ↓ y by case distinction on y′ ↔ y.

▸ y′ ← y: x ↓ y follows directly from x ↓ y′:

x y′ y
∗

∗∗ IH

45 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(3⇒ 1) (Cont.)

▸ Show x ↓ y by case distinction on y′ ↔ y.

▸ y′ ← y: x ↓ y follows directly from x ↓ y′:

x y′ y
∗

∗∗ IH

45 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(3⇒ 1) (Cont.)

▸ Show x ↓ y by case distinction on y′ ↔ y.

▸ y′ ← y: x ↓ y follows directly from x ↓ y′:

x y′ y
∗

∗∗ IH

45 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(3⇒ 1) (Cont.)

▸ Show x ↓ y by case distinction on y′ ↔ y.

▸ y′ → y: Semi-confluence implies z ↓ y and, hence x ↓ y:

x y′ y

z

∗

∗∗

∗

∗IH SC

46 / 66



Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Church-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(3⇒ 1) (Cont.)

▸ Show x ↓ y by case distinction on y′ ↔ y.

▸ y′ → y: Semi-confluence implies z ↓ y and, hence x ↓ y:

x y′ y

z

∗

∗∗

∗

∗IH SC

46 / 66



Corollaries

If → is confluent and x
∗

←→ y then

1. x
∗

Ð→ y if y is in a normal form, and

2. x = y if both x and y are in a normal form.

Hence, for confluent relations, convertibility is equivalent to
joinability.

Without termination, joinability can not be decided.

47 / 66



Corollaries

If → is confluent, then every element has at most one normal form
(CÔ⇒ UN).

If → is normalizing and confluent, then every element has exactly
one normal form.

Hence, for confluent and normalizing reductions the notation x ↓ is
well-defined.

48 / 66



Goal-directed equivalence test

Theorem 1.2
If → is confluent and normalizing, then

▸ every element x has a unique normal form x ↓,

▸ x
∗

←→ y iff x ↓= y ↓.

Normalization requires breadth-first search for normal forms.

Theorem 1.3
If → is confluent and terminating, then

▸ every element x has a unique normal form x ↓,

▸ x
∗

←→ y iff x ↓= y ↓.

Termination permits depth-first search for normal forms.

49 / 66



Goal-directed equivalence test

Theorem 1.2
If → is confluent and normalizing, then

▸ every element x has a unique normal form x ↓,

▸ x
∗

←→ y iff x ↓= y ↓.

Normalization requires breadth-first search for normal forms.

Theorem 1.3
If → is confluent and terminating, then

▸ every element x has a unique normal form x ↓,

▸ x
∗

←→ y iff x ↓= y ↓.

Termination permits depth-first search for normal forms.

49 / 66



Confluence and termination

How to show confluence and termination of an ARS?

50 / 66



Showing termination

Idea: Embedding the reduction into a well-founded order.

Well-founded order (B,>): No infinite descending chain
b0 > b1 > b2 > ⋯ in B.

51 / 66



Showing termination

Idea: Embedding the reduction into a well-founded order.

Well-founded order (B,>): No infinite descending chain
b0 > b1 > b2 > ⋯ in B.

51 / 66



Showing termination

Examples of well-founded orders:

▸ (N,>): The set of natural numbers with the standard
ordering.

▸ (N ∖ {0},>): The set of positive integers where a > b iff b ∣ a
and b ≠ a.

▸ ({a, b, c}∗,>): The set of finite words over a fixed alphabet,
where w1 > w2 iff w2 is a proper substring of w1.

Examples of non-well-founded orders:

▸ (Z,>): The set of integers with the standard ordering.

▸ (Q+

0 ,>): The set of non-negative rationals with the standard
ordering.

▸ ({a, b, c}∗,>): The set of finite words over a fixed alphabet,
where > is the lexicographic ordering, e.g. a > ab > abb > ⋯.

52 / 66



Showing termination

Examples of well-founded orders:

▸ (N,>): The set of natural numbers with the standard
ordering.

▸ (N ∖ {0},>): The set of positive integers where a > b iff b ∣ a
and b ≠ a.

▸ ({a, b, c}∗,>): The set of finite words over a fixed alphabet,
where w1 > w2 iff w2 is a proper substring of w1.

Examples of non-well-founded orders:

▸ (Z,>): The set of integers with the standard ordering.

▸ (Q+

0 ,>): The set of non-negative rationals with the standard
ordering.

▸ ({a, b, c}∗,>): The set of finite words over a fixed alphabet,
where > is the lexicographic ordering, e.g. a > ab > abb > ⋯.

52 / 66



Showing termination

Theorem 1.4
Let (A,→) be an ARS. Then → is terminating iff there exists a
well-founded order (B,>) and a mapping ϕ ∶ A→ B such that

a1 → a2 implies ϕ(a1) > ϕ(a2).

53 / 66



Showing confluence (for a terminating relation)

Lemma 1.1 (Newman’s Lemma)

If → is terminating and locally confluent, then it is confluent.

Proof.

▸ Use well-founded induction. Let (A,→) be an ARS. Then
WFI is the inference rule:

∀x ∈ A.(∀y ∈ A.(x
+

Ð→ y⇒ P (y)) ⇒ P (x))

∀x ∈ A.P (x)
(WFI)

where P is some property of elements of A.

▸ Reads: To prove P (x) for all x ∈ A, try to prove P (x) under
the assumption that P (y) holds for all successors y of x.

▸ Holds when → is terminating.

54 / 66



Showing confluence (for a terminating relation)

Lemma 1.1 (Newman’s Lemma)

If → is terminating and locally confluent, then it is confluent.

Proof.

▸ Use well-founded induction. Let (A,→) be an ARS. Then
WFI is the inference rule:

∀x ∈ A.(∀y ∈ A.(x
+

Ð→ y⇒ P (y)) ⇒ P (x))

∀x ∈ A.P (x)
(WFI)

where P is some property of elements of A.

▸ Reads: To prove P (x) for all x ∈ A, try to prove P (x) under
the assumption that P (y) holds for all successors y of x.

▸ Holds when → is terminating.

54 / 66



Showing confluence (for a terminating relation)

Lemma 1.1 (Newman’s Lemma)

If → is terminating and locally confluent, then it is confluent.

Proof. (Cont.)

▸ Let P be

P (x) = ∀y, z. y
∗

←Ð x
∗

Ð→ z ⇒ y ↓ z.

Obviously, → is confluent if P (x) holds for all x ∈ A.

▸ Show P (x) under the assumption P (t) for all x
+

Ð→ t.

▸ Fix x, y, z arbitrarily. Assume y
∗

←Ð x
∗

Ð→ z. Prove y ↓ z.

▸ Case 1: x = y or x = z. Trivial.

55 / 66



Showing confluence (for a terminating relation)

Lemma 1.1 (Newman’s Lemma)

If → is terminating and locally confluent, then it is confluent.

Proof. (Cont.)

▸ Let P be

P (x) = ∀y, z. y
∗

←Ð x
∗

Ð→ z ⇒ y ↓ z.

Obviously, → is confluent if P (x) holds for all x ∈ A.

▸ Show P (x) under the assumption P (t) for all x
+

Ð→ t.

▸ Fix x, y, z arbitrarily. Assume y
∗

←Ð x
∗

Ð→ z. Prove y ↓ z.

▸ Case 1: x = y or x = z. Trivial.

55 / 66



Showing confluence (for a terminating relation)

Lemma 1.1 (Newman’s Lemma)

If → is terminating and locally confluent, then it is confluent.

Proof. (Cont.)

▸ Let P be

P (x) = ∀y, z. y
∗

←Ð x
∗

Ð→ z ⇒ y ↓ z.

Obviously, → is confluent if P (x) holds for all x ∈ A.

▸ Show P (x) under the assumption P (t) for all x
+

Ð→ t.

▸ Fix x, y, z arbitrarily. Assume y
∗

←Ð x
∗

Ð→ z. Prove y ↓ z.

▸ Case 1: x = y or x = z. Trivial.

55 / 66



Showing confluence (for a terminating relation)

Lemma 1.1 (Newman’s Lemma)

If → is terminating and locally confluent, then it is confluent.

Proof. (Cont.)

▸ Let P be

P (x) = ∀y, z. y
∗

←Ð x
∗

Ð→ z ⇒ y ↓ z.

Obviously, → is confluent if P (x) holds for all x ∈ A.

▸ Show P (x) under the assumption P (t) for all x
+

Ð→ t.

▸ Fix x, y, z arbitrarily. Assume y
∗

←Ð x
∗

Ð→ z. Prove y ↓ z.

▸ Case 1: x = y or x = z. Trivial.

55 / 66



Showing confluence (for a terminating relation)

Lemma 1.1 (Newman’s Lemma)

If → is terminating and locally confluent, then it is confluent.

Proof. (Cont.)

▸ Let P be

P (x) = ∀y, z. y
∗

←Ð x
∗

Ð→ z ⇒ y ↓ z.

Obviously, → is confluent if P (x) holds for all x ∈ A.

▸ Show P (x) under the assumption P (t) for all x
+

Ð→ t.

▸ Fix x, y, z arbitrarily. Assume y
∗

←Ð x
∗

Ð→ z. Prove y ↓ z.

▸ Case 1: x = y or x = z. Trivial.

55 / 66



Showing confluence (for a terminating relation)

Lemma 1.1 (Newman’s Lemma)

If → is terminating and locally confluent, then it is confluent.

Proof. (Cont.)

▸ Case 2: x→ y1
∗

Ð→ y and x→ z1
∗

Ð→ z.

x z1 z

y1

y

u

v

∗

∗

∗∗

w

∗

∗

∗

∗

IH

IH

LC

56 / 66



Showing confluence (for a terminating relation)

Lemma 1.1 (Newman’s Lemma)

If → is terminating and locally confluent, then it is confluent.

Proof. (Cont.)

▸ Case 2: x→ y1
∗

Ð→ y and x→ z1
∗

Ð→ z.

x z1 z

y1

y

u

v

∗

∗

∗∗

w

∗

∗

∗

∗

IH

IH

LC

56 / 66



Showing confluence (for a terminating relation)

Lemma 1.1 (Newman’s Lemma)

If → is terminating and locally confluent, then it is confluent.

Proof. (Cont.)

▸ Case 2: x→ y1
∗

Ð→ y and x→ z1
∗

Ð→ z.

x z1 z

y1

y

u

v

∗

∗

∗∗

w

∗

∗

∗

∗

IH

IH

LC

56 / 66



Showing confluence (termination not required)

Definition 1.6
A relation → is called strongly confluent (StC) iff

∀x, y1, y2. y1 ← x→ y2 ⇒ ∃z. y1
∗

Ð→ z
=

←Ð y2.

Remark: The definition is symmetric: y1 ← x→ y2 must imply both

y1
∗

Ð→ z1
=

←Ð y2 and y1
=

Ð→ z2
∗

←Ð y2 for suitably chosen z1 and z2.

Graphically:
x y2

y1 z
∗

=

Solid arrows represent universal and dashed arrows existential
quantification.

57 / 66



Showing confluence (termination not required)

Definition 1.6
A relation → is called strongly confluent (StC) iff

∀x, y1, y2. y1 ← x→ y2 ⇒ ∃z. y1
∗

Ð→ z
=

←Ð y2.

Remark: The definition is symmetric: y1 ← x→ y2 must imply both

y1
∗

Ð→ z1
=

←Ð y2 and y1
=

Ð→ z2
∗

←Ð y2 for suitably chosen z1 and z2.

Graphically:
x y2

y1 z
∗

=

Solid arrows represent universal and dashed arrows existential
quantification.

57 / 66



C, SC, LC, StC

x y2

y1 z

∗

∗

∗∗ C

x y2

y1 z

∗

∗

∗SC

x y2

y1 z
∗

∗LC

x y2

y1 z
∗

=StC

58 / 66



Showing confluence (termination not required)

Theorem 1.5
Any strongly confluent relation is semi-confluent (and, thus,
confluent).

Proof.

x x2

y1 y2
∗

=StC

xn−1

yn−1

xn

yn
∗

= =StC

59 / 66



Showing confluence (termination not required)

StC is a pretty strong property.

Trying to show strong confluence of → would not be practical.

The trick to show confluence of → is not to prove its strong

confluence, but to define a StC relation →s such that
∗

Ð→s =
∗

Ð→.

If
∗

Ð→1 =
∗

Ð→2, then →1 is confluent iff →2 is confluent.

Hence, if
∗

Ð→s =
∗

Ð→, then StC(→s) ⇒ C(→s) ⇔ C(→).

To simplify the search of →s, the condition can be weakened due
to following easy lemma:

If →1 ⊆ →2 ⊆
∗

Ð→1, then
∗

Ð→1 =
∗

Ð→2.

60 / 66



Showing confluence (termination not required)

StC is a pretty strong property.

Trying to show strong confluence of → would not be practical.

The trick to show confluence of → is not to prove its strong

confluence, but to define a StC relation →s such that
∗

Ð→s =
∗

Ð→.

If
∗

Ð→1 =
∗

Ð→2, then →1 is confluent iff →2 is confluent.

Hence, if
∗

Ð→s =
∗

Ð→, then StC(→s) ⇒ C(→s) ⇔ C(→).

To simplify the search of →s, the condition can be weakened due
to following easy lemma:

If →1 ⊆ →2 ⊆
∗

Ð→1, then
∗

Ð→1 =
∗

Ð→2.

60 / 66



Showing confluence (termination not required)

StC is a pretty strong property.

Trying to show strong confluence of → would not be practical.

The trick to show confluence of → is not to prove its strong

confluence, but to define a StC relation →s such that
∗

Ð→s =
∗

Ð→.

If
∗

Ð→1 =
∗

Ð→2, then →1 is confluent iff →2 is confluent.

Hence, if
∗

Ð→s =
∗

Ð→, then StC(→s) ⇒ C(→s) ⇔ C(→).

To simplify the search of →s, the condition can be weakened due
to following easy lemma:

If →1 ⊆ →2 ⊆
∗

Ð→1, then
∗

Ð→1 =
∗

Ð→2.

60 / 66



Showing confluence (termination not required)

StC is a pretty strong property.

Trying to show strong confluence of → would not be practical.

The trick to show confluence of → is not to prove its strong

confluence, but to define a StC relation →s such that
∗

Ð→s =
∗

Ð→.

If
∗

Ð→1 =
∗

Ð→2, then →1 is confluent iff →2 is confluent.

Hence, if
∗

Ð→s =
∗

Ð→, then StC(→s) ⇒ C(→s) ⇔ C(→).

To simplify the search of →s, the condition can be weakened due
to following easy lemma:

If →1 ⊆ →2 ⊆
∗

Ð→1, then
∗

Ð→1 =
∗

Ð→2.

60 / 66



Showing confluence (termination not required)

Summarizing the ideas from the previous slide:

Theorem 1.6
If → ⊆ →s ⊆

∗

Ð→ and →s is strongly confluent, then → is confluent.

61 / 66



Showing confluence (termination not required)

The theorem can be made stronger, considering the diamond
property:

Definition 1.7
A relation → has the diamond property iff

∀x, y1, y2. y1 ← x→ y2 ⇒ ∃z. y1 → z ← y2.

Graphically:
x y2

y1 z

62 / 66



Showing confluence (termination not required)

The theorem can be made stronger, considering the diamond
property:

Definition 1.7
A relation → has the diamond property iff

∀x, y1, y2. y1 ← x→ y2 ⇒ ∃z. y1 → z ← y2.

Graphically:
x y2

y1 z

62 / 66



Showing confluence (termination not required)

The diamond property implies strong confluence, therefore:

Theorem 1.7
If → ⊆ →d ⊆

∗

Ð→ and →d has the diamond property, then → is
confluent.

63 / 66



Confluence by commutation

Confluence proofs can be localized by splitting a reduction up into
several smaller reductions and showing their confluence separately.

An additional property, commuting, should be satisfied.

Definition 1.8
Two relations →1 and →2 commute iff

∀x, y1, y2. y1
∗

←Ð1 x
∗

Ð→2 y2 ⇒ ∃z. y1
∗

Ð→2 z
∗

←Ð1 y2.

x y2

y1 z

∗

∗

∗∗

2

2

1 1

64 / 66



Confluence by commutation

Confluence proofs can be localized by splitting a reduction up into
several smaller reductions and showing their confluence separately.

An additional property, commuting, should be satisfied.

Definition 1.8
Two relations →1 and →2 commute iff

∀x, y1, y2. y1
∗

←Ð1 x
∗

Ð→2 y2 ⇒ ∃z. y1
∗

Ð→2 z
∗

←Ð1 y2.

x y2

y1 z

∗

∗

∗∗

2

2

1 1

64 / 66



Confluence by commutation

Lemma 1.2 (Commutative Union Lemma)

If →1 and →2 are confluent and commute, then →1 ∪ →2 is also
confluent.

Proof.

▸
∗

Ð→1 ○
∗

Ð→2 has the diamond property:

65 / 66



Confluence by commutation

Lemma 1.2 (Commutative Union Lemma)

If →1 and →2 are confluent and commute, then →1 ∪ →2 is also
confluent.

Proof.

▸
∗

Ð→1 ○
∗

Ð→2 has the diamond property:

65 / 66



Confluence by commutation

Lemma 1.3 (Commutative Union Lemma)

If →1 and →2 are confluent and commute, then →1 ∪ →2 is also
confluent.

Proof. (Cont.)

▸ The following inclusions hold:

→1 ∪ →2 ⊆
∗

Ð→1 ○
∗

Ð→2 ⊆ (→1 ∪ →2)
∗.

▸ By Theorem 1.7, →1 ∪ →2 is confluent.

66 / 66


	*
	Motivation
	Abstract Reduction Systems




