Rewriting
Part 1. Abstract Reduction

Temur Kutsia

RISC, JKU Linz

1/66

Literature

Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

Book's page: http://www21l.in.tum.de/~nipkow/TRaAT/

Resources about rewriting:
http://rewriting.loria.fr/
http://www.jaist.ac.jp/~hirokawa /tool /
http://cl-informatik.uibk.ac.at/users/ami/research/rr/

2 /66

http://www21.in.tum.de/~nipkow/TRaAT/
http://rewriting.loria.fr/
http://www.jaist.ac.jp/~hirokawa/tool/
http://cl-informatik.uibk.ac.at/users/ami/research/rr/

Motivation

3/66

Equational reasoning

Restricted class of languages.
The only predicate symbol is equality ~.

Reasoning with equations:
» derive consequences of given equations,

» find values for variables that satisfy a given equation.

At the heart of many problems in mathematics and computer
science.

4 /66

Example: addition of natural numbers

Equations (identities):

r+0=~x

x+s(y)~s(z+y)

How to calculate s(0) + s(s(0))?

/ 66

Example: addition of natural numbers

Orient equations, obtaining rewriting rules.

Apply the rules to transform expressions.

66

Example: addition of natural numbers

Orient equations, obtaining rewriting rules.
Apply the rules to transform expressions. Rewrite rules:
r+0->2x (R1)
z+5(y) > s(z+y) (R2)

Rewriting s(0) + s(s(0)):

66

Example: addition of natural numbers

Orient equations, obtaining rewriting rules.

Apply the rules to transform expressions. Rewrite rules:

r+0 >z (R1)
z+5(y) > s(z+y) (R2)
Rewriting s(0) + s(s(0)):

s(0) +s(s(0)) — (by Ra, with z — s(0),y ~ s(0))

66

Example: addition of natural numbers

Orient equations, obtaining rewriting rules.
Apply the rules to transform expressions. Rewrite rules:
r+0->2x (R1)
z+5(y) > s(z+y) (R2)
Rewriting s(0) + s(s(0)):

s(0) +s(s(0)) — (by Ra, with z — s(0),y ~ s(0))
s(s(0) +s(0)) —» (by Ra, with x — s(0),y ~ 0)

6

66

Example: addition of natural numbers

Orient equations, obtaining rewriting rules.
Apply the rules to transform expressions. Rewrite rules:
r+0->2x (R1)
z+5(y) = s(z+y) (R2)
Rewriting s(0) + s(s(0)):
s(0) + s(s(0)) - (by Ra, with z — s(0),y ~ s(0))

s(s(0) +s(0)) —» (by Ra, with x — s(0),y ~ 0)
s(s(s(0)+0)) —» (by Ry, with =~ s(0))

6

66

Example: addition of natural numbers

Orient equations, obtaining rewriting rules.
Apply the rules to transform expressions. Rewrite rules:
r+0->2x (R1)
z+5(y) > s(z+y) (R2)
Rewriting s(0) + s(s(0)):
s(0) + s(s(0)) - (by Ra, with z — s(0),y ~ s(0))
s(s(0) +s(0)) —» (by Ra, with x — s(0),y ~ 0)
s(s(s(0)+0)) —» (by Ry, with =~ s(0))
s(s(s(0)))

6

66

What is rewriting

Process of transforming one expression into another.

Rules describe how one expression can be rewritten into another.

7 /66

|dentities and rewriting

Rewriting as a computational mechanism:
» Apply given equations in one direction, as rewrite rules.
» Compute normal forms.
» Close relationship with functional programming.

» Example: symbolic differentiation.

8 /66

|dentities and rewriting

Rewriting as a computational mechanism:
» Apply given equations in one direction, as rewrite rules.
» Compute normal forms.
» Close relationship with functional programming.

» Example: symbolic differentiation.

Rewriting as a deduction mechanism:
» Apply given equations in both directions.
» Define equivalence classes of terms.
» Equational reasoning.

» Example: group theory.

8 /66

Symbolic differentiation

Expressions: Terms built over variables (u,v,...) and the following
function symbols:

» constants 0,1 (numbers),
» constants X,Y (indeterminates),
» unary symbol Dx (partial derivative with respect to X),

» binary symbols +, *.

9/66

Symbolic differentiation

Expressions: Terms built over variables (u,v,...) and the following
function symbols:

» constants 0,1 (numbers),
» constants X,Y (indeterminates),

» unary symbol Dx (partial derivative with respect to X),
» binary symbols +, *.

Examples of terms:
» (X +X)*xY + 1
» Dx(ux*v).
» (X +Y)*Dx(X *Y).

9/66

Symbolic differentiation

Rewrite rules:

Dx(X)->1

Dx(Y) >0
Dx(u+v) - Dx(u)+ Dx(v)
Dx(uxv) > (u* Dx(v))+ (Dx(u) *v)

(R1)
(R2)
(Rs3)
(R4)

10 /66

Symbolic differentiation

Rewrite rules:

Dx(X)-1
Dx(Y)-0
Dx(u+v) > Dx(u)+ Dx(v)
Dx (uxv) = (ux Dx(v)) + (Dx(u) *v)

Differentiate Dx (X * X):

Dx (X % X)

(R1)
(R2)
(1t3)
(R4)

11/66

Symbolic differentiation

Rewrite rules:

Dx(X) ~ (R1)
Dx(Y)~ (R2)
Dx (u+v) —’DX(U)+DX(U) (R3)
Dx(u*v) > (u* Dx(v))+(Dx(u) *v) (R4)

Differentiate Dx (X * X):
Dx(X x X)

1 &)
(X * Dx(X))) + (Dx (X) * X)

11/66

Symbolic differentiation

Rewrite rules:

Dx(X) -1 (Rl)
Dx(Y)-0 (R2)
Dx (u+v) - Dx(u) + Dx(v) (R3)

Dx(uxv) = (ux Dx(v)) + (Dx(u) *v) (Ra)
Differentiate Dx (X * X):
Dx(X x X)

1 &)
(X * Dx (X)) + (Dx (X) * X)

11/66

Symbolic differentiation

Rewrite rules:

Dx(X) ~ (R1)
Dx(Y)~ (R2)
Dx (u+v) —’DX(U)+DX(U) (R3)
Dx(u*v) > (u* Dx(v))+(Dx(u) *v) (R4)

Differentiate Dx (X * X):

Dx (X + X)
1 &)
(X * Dx (X)) + (Dx (X) * X)

(R)) "

(X % 1)+ (Dx (X) * X)

11/66

Symbolic differentiation

Rewrite rules:

Dx(X) ~ (R1)
Dx(Y)~ (R2)
Dx (u+v) —’DX(U)+DX(U) (R3)
Dx(u*v) > (u* Dx(v))+(Dx(u) *v) (R4)

Differentiate Dx (X * X):

Dx (X + X)
1 &)
(X * Dx (X)) + (Dx (X) * X)

(R)) "

(X *1) + (Dx (X) * X)

11/66

Symbolic differentiation

Rewrite rules:

Dx(X) ~ (R1)
Dx(Y)~ (R2)
Dx (u+v) —’DX(U)+DX(U) (R3)
Dx(u*v) > (u* Dx(v))+(Dx(u) *v) (R4)

Differentiate Dx (X * X):

Dx (X + X)
1 &)
(X * Dx (X)) + (Dx (X) * X)

(R)) "

(X #1) + (Dx (X) * X)

11/66

Symbolic differentiation

Rewrite rules:

Dx(X) ~ (R1)
Dx(Y)~ (R2)
Dx (u+v) —’DX(U)+DX(U) (R3)
Dx(u*v) > (u* Dx(v))+(Dx(u) *v) (R4)

Differentiate Dx (X * X):

Dx(X x X)
1 &)
(X * Dx(X))) + (Dx(X) * X)
(R)) "

(X #1) + (Dx (X) * X)

(R1)

(X *1)+ (1% X)

11/66

Symbolic differentiation

Rewrite rules:

Dx(X) ~ (R1)
Dx(Y)~ (R2)
Dx (u+v) —’DX(U)+DX(U) (R3)
Dx(u*v) > (u* Dx(v))+(Dx(u) *v) (R4)

Differentiate Dx (X * X):

Dx(X x X)
1 &)
(X * Dx(X))) + (Dx(X) * X)
(R)) "

(X *1) + (Dx (X) * X)

(R1)

(X *+1)+(1%X)

11/66

Symbolic differentiation

Rewrite rules:

Dx(X) ~ (R1)
Dx(Y)~ (R2)
Dx (u+v) —’DX(U)+DX(U) (R3)
Dx(u*v) > (u* Dx(v))+(Dx(u) *v) (R4)

Differentiate Dx (X * X):

Dx(X x X)
1 &)
(X * Dx(X))) +(Dx(X) * X)
(R)) "

(X *1) + (Dx (X) * X)

(R1)

(X *+1)+(1%X)

11/66

Symbolic differentiation

Rewrite rules:

Dx(X) ~ (R1)
Dx(Y)~ (R2)
Dx (u+v) —’DX(U)+DX(U) (R3)
Dx(u*v) > (u* Dx(v))+(Dx(u) *v) (R4)

Differentiate Dx (X * X):

Dx(X x X)
1 &)
(X * Dx (X)) + (Dx (X) » X)
(R) " S ()

(X +1)+(Dx(X)*X) (X *Dx(X))+(1*X)

(R1)

(X *+1)+(1%X)

11/66

Symbolic differentiation

Rewrite rules:

Dx(X) ~ (R1)
Dx(Y)~ (R2)
Dx (u+v) —’DX(U)+DX(U) (R3)
Dx(u*v) > (u* Dx(v))+(Dx(u) *v) (R4)

Differentiate Dx (X * X):

Dx(X x X)
1 &)
(X * Dx (X)) + (Dx (X) » X)
(R) " S ()

(X +1)+(Dx(X)*X) (X *Dx(X))+(1*X)

(R1)

(X *+1)+(1%X)

11 /66

Symbolic differentiation

Rewrite rules:

Dx(X) ~ (R1)
Dx(Y)~ (R2)
Dx (u+v) —’DX(U)+DX(U) (R3)
Dx(u*v) > (u* Dx(v))+(Dx(u) *v) (R4)

Differentiate Dx (X * X):

Dx(X x X)
1 &)
(X * Dx (X)) + (Dx (X) » X)
(R) " S ()

(X +1)+(Dx(X)*X) (X *Dx(X))+(1*X)

(R1)

(X *+1)+(1%X)

11/66

Symbolic differentiation

Rewrite rules:

Dx(X) ~ (R1)
Dx(Y)~ (R2)
Dx (u+v) —’DX(U)+DX(U) (R3)
Dx(u*v) > (u* Dx(v))+(Dx(u) *v) (R4)

Differentiate Dx (X * X):

Dx(X x X)
1 &)
(X * Dx (X)) + (Dx (X) » X)
(R) " S ()

(X +1)+(Dx(X)*X) (X *Dx(X))+(1*X)

(1) ()

(X*1)+ (1% X)

11/66

Symbolic differentiation

Rewrite rules:

Dx(X) ~ (R1)
Dx(Y)~ (R2)
Dx (u+v) —’DX(U)+DX(U) (R3)
Dx(u*v) > (u* Dx(v))+(Dx(u) *v) (R4)

Differentiate Dx (X * X):

Dx(X x X)
1 &)
(X * Dx (X)) + (Dx (X) » X)
(R) " S ()

(X +1)+(Dx(X)*X) (X *Dx(X))+(1*X)

(1) ()

(X *+1)+(1%X)

11 /66

Properties of term rewriting systems

The symbolic differentiation example can be used to illustrate two
most important properties of TRSs:

12 /66

Properties of term rewriting systems

The symbolic differentiation example can be used to illustrate two
most important properties of TRSs:

1. Termination:

» Is it always the case that after finitely many rule applications
we reach an expression to which no more rules apply (normal
form)?

» For symbolic differentiation rules this is the case.

» But how to prove it?

» An example of non-terminating rule: u+v > v+u

12 /66

Properties of term rewriting systems

The symbolic differentiation example can be used to illustrate two
most important properties of TRSs:

2. Confluence:

» If there are different ways of applying rules to a given term ¢,
leading to different terms ¢; and ¢35, can they be reduced by
rule applications to a common term?

» For symbolic differentiation rules this is the case.

» But how to prove it?

13 /66

Properties of term rewriting systems

Adding the rule u + 0 — u (R5) destroys confluence:

(R5)DX(X + 0)(R3)
/ ~
Dx(X) Dx(X)+ Dx(0)
(Rl)l l(Rl)
1 1+ Dx(0)

Confluence can be regained by adding Dx(0) — 0 (completion).

14 /66

Group theory

Terms are built over variables and the following function symbols:

» binary o,
> unary i,

» constant e.

Examples of terms:

» zo(yoi(y))
» (eox)oi(e)

o)
Identities (aka group axioms), defining groups:
Associativity of o (zoy)ozmzo(yoz)
e left unit eoxr NI

i left inverse i(x)oxwme

(G1)
(G2)
(Gs)

15 /66

Group theory

Identities can be applied in both directions.

Word problem for identities:

» Given a set of identities ¥ and two terms s and t.

» Is it possible to transform s into ¢, using the identities in E as
rewrite rules applied in both directions?

For instance, is it possible to transform e into x o i(x),
i.e., is the left inverse also a right-inverse?

16 /66

Group theory

(woy)oznzo(yos)
eor~8XxT

i(x)oxwme

Transform e into x o i(x):

(G1)
(G2)
(Gs)

17 /66

Group theory

(zoy)ozmmo(yoz) (Gi)
eoxr (G2)
i(x)oxwe (Gs)

Transform e into z o i(x):

eng, i(xoi(xz))o(xoi(x))

e, i(zoi(x)) o (zo(eoi(x)))

v, H(zoi(x)) o (zo ((i(x) ox)oi(x)))
v, i(@oi(x)) o ((zo(i(x) ox)) 0i(x))
va, i(@oi(x)) o ((woi(x)) o) oi(x))
rg, (zoi(z))o((zoi(x))o (zoi(x)))
ra, (i(xoi(x))o(xzoi(x))) o (zoi(x))
G, €0 (zoi(x))

~a, € oi(T)

17 /66

Solving word problems by rewriting?

Is there a simpler way to solve word problems?

Try to solve it by rewriting (uni-directional application of
identities):

Reduce s and ¢ to normal forms § and t.

Check whether § =7, i.e., syntactically equal.
(= is the meta-equality.)

18 /66

Solving word problems by rewriting?

Is there a simpler way to solve word problems?

Try to solve it by rewriting (uni-directional application of
identities):

Reduce s and ¢ to normal forms § and t.

Check whether § =7, i.e., syntactically equal.
(= is the meta-equality.)

But... it would only work if normal forms exist and are unique.

18 /66

Solving word problems by rewriting?

In the group theory example, e and z o i(z) are equivalent, but it
can not be decided by (left-to-right) rewriting: Both terms are in
the normal form.

Uniqueness of normal forms is violated: non-confluence.

Normal forms may not exist: The process of reducing a term may
lead to an infinite chain of transformations: non-termination.

19 /66

Solving word problems by rewriting?

In the group theory example, e and z o i(z) are equivalent, but it
can not be decided by (left-to-right) rewriting: Both terms are in
the normal form.

Uniqueness of normal forms is violated: non-confluence.

Normal forms may not exist: The process of reducing a term may
lead to an infinite chain of transformations: non-termination.

Termination and confluence ensure existence and uniqueness of
normal forms.

19 /66

Solving word problems by rewriting?

In the group theory example, e and z o i(z) are equivalent, but it
can not be decided by (left-to-right) rewriting: Both terms are in
the normal form.

Uniqueness of normal forms is violated: non-confluence.

Normal forms may not exist: The process of reducing a term may
lead to an infinite chain of transformations: non-termination.

Termination and confluence ensure existence and uniqueness of
normal forms.

If a given set of identities leads to non-confluent system, we will
try to apply the idea of completion to extend the rewrite system to
a confluent one.

19 /66

Abstract Reduction Systems

20/ 66

Abstract vs concrete

Concrete rewrite formalisms:
» string rewriting
» term rewriting
» graph rewriting
» X calculus

> etc.

Abstract reduction:

» No structure on objects to be rewritten.

» Abstract treatment of reductions.

21 /66

Abstract reduction systems

Abstract reduction system (ARS): A pair (A, —), where
» Ais a set,

» the reduction — is a binary relation on A: > c Ax A.

Write a — b for (a,b) € —.

22 /66

Abstract reduction system: example

A={a,b,c,d,e, f, g}
(a,e€),(b,a), (b,c),(c,d), (c, f)

*{(e,b>,<e,g>,<f,e>,(f,g> }

N

a

c d

S

N

23 /66

Equivalence and reduction

Again, two views at reductions.

1. Directed computation: Follow the reductions, trying to
compute a normal form: ag - a; - -

2. View — as description of S

» a <> b means there is a path between a and b, with arrows
traversed in both directions: a <~ c—>d <« b

» Goal: Decide whether a <> b.

» Bidirectional rewriting is expensive.

» Unidirectional rewriting with subsequent comparison of normal
form works if the reduction system is confluent and
terminating.

Termination, confluence: central topics.

24 /66

Basic notions

Composition of two relations.

Given two relations R<€ A x B and S ¢ B x C, their composition is
defined as

RoS:={(z,2)|yeB. (r,y) e RA(y,z) €S}

25 /66

Abstract reduction system: example

>

j

26 /66

Abstract reduction system: example

>

|

» Finite rewrite sequence: a > e—>b—>c— f

26 /66

Abstract reduction system: example

>

j

» Finite rewrite sequence: a > e—>b—>c— f

» Empty rewrite sequence: a

26 /66

Abstract reduction system: example

Q>

j

» Finite rewrite sequence: a > e—>b—>c— f
» Empty rewrite sequence: a

» Infinite rewrite sequence: a > e >b—>a — -

26 /66

Relations derived from —

0
e
4

i+1

ooy |

T+ 0 1

T+

{(z,2) |z e A}

0
= —->U —

7

—> 0 —>
7

= U0 —

+ 0
— U —

{(y,z) [(z,y) € =}

-1
—

= > U <«
= (<—>)+
= ((—))*

identity

reflexive closure

(i + 1)-fold composition, i >0
transitive closure

reflexive transitive closure
inverse

inverse

symmetric closure
transitive symmetric closure

reflexive transitive symmetric closure

27 /66

Terminology

If 2 5 y then we say:
» x rewrites to y, or
» there is some finite path from z to y, or

» gy is a reduct of x.

28/ 66

Terminology

If 2 5 y then we say:
» x rewrites to y, or
» there is some finite path from z to y, or
» gy is a reduct of x.

|

a

|

28 /66

Terminology

If 2 5 y then we say:
» x rewrites to y, or
» there is some finite path from z to y, or

» gy is a reduct of x.

a b c d
Ce— f o
g

28 /66

Terminology

x is reducible iff there exists y such that x — y.

29 /66

Terminology

x is reducible iff there exists y such that x — y.

x is in normal form (irreducible) iff x is not reducible.

29 /66

Terminology

x is reducible iff there exists y such that x — y.

x is in normal form (irreducible) iff x is not reducible.

. . * . .
y is a normal form of z iff x — y and y is in normal form.

29 /66

Terminology
x is reducible iff there exists y such that x — y.

x is in normal form (irreducible) iff x is not reducible.
y is a normal form of z iff = 5 y and y is in normal form.

!
We write x — y if y is a normal form of x.

If z has a unique normal form, it is denoted by x |.

29 /66

Terminology
x is reducible iff there exists y such that x — y.

x is in normal form (irreducible) iff x is not reducible.

. . * . .
y is a normal form of z iff x — y and y is in normal form.

!
We write x — y if y is a normal form of x.

If z has a unique normal form, it is denoted by x |.

a b c d
e+— f a,b,c,e, f are reducible
g

29 /66

Terminology
x is reducible iff there exists y such that x — y.

x is in normal form (irreducible) iff x is not reducible.

. . * . .
y is a normal form of z iff x — y and y is in normal form.

!
We write x — y if y is a normal form of x.

If z has a unique normal form, it is denoted by x |.

a b c d
e+— f d, g are in a normal form
g

29 /66

Terminology
x is reducible iff there exists y such that x — y.
x is in normal form (irreducible) iff x is not reducible.
y is a normal form of z iff = 5 y and y is in normal form.
We write x iR y if y is a normal form of z.

If z has a unique normal form, it is denoted by x |.

a b c d
!
)[b—>d
e ¥ b g
!
g—4g
g

29 /66

Terminology

1y is direct successor of x iff z — y.

30/66

Terminology

1y is direct successor of x iff z — y.

. . +
y is successor of x iff x — y.

30/66

Terminology

1y is direct successor of x iff z — y.
vy is successor of x iff z 5 Y.

x and y are convertible iff x & Y.

30/66

Terminology

1y is direct successor of x iff x — .
vy is successor of x iff z 5 Y.
x and y are convertible iff x & Y.

x and y are joinable iff there exists z such that x 524 Y.

30/66

Terminology

1y is direct successor of x iff x — .

vy is successor of x iff z 5 Y.

x and y are convertible iff x & Y.

x and y are joinable iff there exists z such that x 524 Y.

We write x | y iff x and y are joinable.

30/66

Terminology

1y is direct successor of x iff x — .
vy is successor of x iff z 5 Y.

x and y are convertible iff x & Y.

x and y are joinable iff there exists z such that x 524 Y.

We write x | y iff x and y are joinable.

|

a

c d

«———f elf. fldalf, notgld

30/66

Terminology

1y is direct successor of x iff x — .

vy is successor of x iff z 5 Y.

x and y are convertible iff x & Y.

x and y are joinable iff there exists z such that x 524 Y.

We write x | y iff x and y are joinable.

|

a c d

— g<d

30/66

Example

1. Let A:=N—-{0,1} and — := {(m,n) | m > n and n divides m}. Then
(a) m is in normal form iff m is prime.
(b) p is a normal form of m iff p is a prime factor of m.
(c) m | n iff m and n are not relatively prime.
(d) 55 = — because > and “divides” are already transitive.
(e) &=Ax A

2. Let A := {a,b}* (the set of words over the alphabet {a,b}) and — :=
{(ubav,uabv) | u,v € A}. Then

(a) w is in normal form iff w is sorted, i.e. of the form a*b*.
(b) Every w has a unique normal form w|, the result of sorting w.

(c) wy | wo iff wy & wy iff wy and wsy contain the same number of as
and bs.

31/66

Central notions: Church-Rosser

Definition 1.1
A relation — is called Church-Rosser (CR) iff

TS y implies = | .

32/66

Central notions: Church-Rosser

Definition 1.1
A relation — is called Church-Rosser (CR) iff

TS y implies = | .

Graphically:

Solid arrows represent universal and dashed arrows existential

quantification: Vx,y. x &S y=3z. x Szn Y 5z

32/66

Central notions: confluence

Definition 1.2
A relation — is called confluent (C) iff

y1 < 2> yo implies y1 | yo.

33/66

Central notions: confluence

Definition 1.2
A relation — is called confluent (C) iff

y1 < 2> yo implies y1 | yo.

Graphically:

8
*
<
)

<
S
1
1
1
1
I
v
W= mmmm -

*

Solid arrows represent universal and dashed arrows existential
. . * * * *
quantification: Va,y1,y2. y1 < & — y2 = 32. y1 — 2 < Ya.

33 /66

Central notions: local confluence

Definition 1.3
A relation — is called locally confluent (LC) iff

y1 < x — y2 implies y1 | yo.

34/66

Central notions: local confluence

Definition 1.3
A relation — is called locally confluent (LC) iff

y1 < x — y2 implies y1 | yo.

Graphically:

Solid arrows represent universal and dashed arrows existential
“pe . * *
quantification: VYa,y1,y2. Y1 < & = yo = Iz. y1 — 2 < Yo.

34 /66

Central notions: T, N, UN, convergence

Definition 1.4
A relation — is called

>

terminating (T) iff there is no infinite descending chain
ag > agp —> ---.

normalizing (N) iff every element has a normal form.

uniquely normalizing (UN) iff every element has at most one
normal form.

convergent iff it is both confluent and terminating.

35/66

Central notions: T, N, UN, convergence

Definition 1.4
A relation — is called

» terminating (T) iff there is no infinite descending chain
ag > agp —> ---.

» normalizing (N) iff every element has a normal form.

» uniquely normalizing (UN) iff every element has at most one
normal form.

» convergent iff it is both confluent and terminating.

Alternative terminology:
» Strongly normalizing: terminating.

» Weakly normalizing: normalizing.

35/66

Central notions: CR reformulated

Obviously, x | y implies z &S V.

Therefore, the Church-Rosser property can be formulated as the
equivalence:

— is called Church-Rosser iff

x&yiffxiy.

36 /66

Properties

37/66

Properties

37/66

Properties

- -

<+ N Ca—b

37/66

Properties

. T = N
2. T <= N Ca—b
3. CR = 4=

37/66

Properties

1. — N
2, <= N Ca—b
3. CR = 4L=1|

4. CR == UN

37/66

Properties

1. — N
2, <= N Ca—b
3. CR = 4L=1|

4. CR == UN

5. CR <~ UN

37/66

Properties

1. = N
2, <= N Ca—b

3. CR = 4=

4. CR == UN

5. CR <~ UN Cae—b—c

37 /66

Properties

1. = N
2 < N Ca—b

3. CR = 4=

4. CR == UN

5. CR <~ UN Cae—b—c
6. NAUN = C

37 /66

Properties

. T = N
2. T <= N Ca—b

3. CR = 4=|

4. CR == UN

5. CR <~ UN Cae—b—c
6. NAUN = C

7. C = LC

37 /66

Properties

. T = N
T <= N Ca—b
CR = &L=
CR == UN
CR <~ UN Cae—b—c

NAUN == C
C =— LC

C <:/: LC

© N o o A w N

37 /66

Properties

© N o o A w N

T =
T <=
(R <«
(R =
CR <=
N A UN
C -

Ca—p

Ca—p—c

37 /66

Properties

Recall what we were looking for.
Ability to check equivalence by the search of a common reduct.
This is exactly the Church-Rosser property.

How does it relate to confluence and termination?

38 /66

Church-Rosser and confluence
The Church-Rosser property and confluence coincide.
CR = C is immediate.

CR <= C has a nice diagrammatic proof:

N % x .k %
N N N
“@ @ 4

. AN p
* *,/ * *,l
\\ /I \\ //

@ LV
N p
. ,

...
eV
z

39 /66

Central notions: semi-confluence

Definition 1.5
A relation — is called semi-confluent (SC) iff

y1 < x = yo implies y1 | yo.

40/ 66

Central notions: semi-confluence

Definition 1.5
A relation — is called semi-confluent (SC) iff

y1 < x — yo implies yq | ya.

Graphically:

Solid arrows represent universal and dashed arrows existential
quantification: Va,y1,y2. y1 < = 5 Yo = 2. 1 528 Y2-

40 /66

*
SN N >
S * =
x %
* N |
) \\\4 * N
PR
8 8 ——
*
He------- >
*— |
&8 —
*

CR, C, SC, LC

Y1 ------>2 Yr------>2

Yl oooomns 2

41 /66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

42 /66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

Proof.
(1=2)

42 /66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

Proof.
(1=2)

» Assume — is CR and y; Sl yo. Show y1 | ys.

42 /66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.
Proof.
(1=2)
» Assume — is CR and y; < 2 — ya. Show y1 | ys.

* * . . *
» Y1 < = — yo implies y; < yo.

42 /66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

Proof.
(1=2)

» Assume — is CR and y; Sl yo. Show y1 | ys.
>y < x> yo implies y1 <> yo.

» CR implies y1 | ¥o.

42 /66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

43 /66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

Proof.
(2=13)

43 /66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

Proof.
(2=13)

» Semi-confluence is a special case of confluence.

43 /66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

44 / 66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

Proof.
3=1)

44 /66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

Proof.
3=1)

» Assume — is SC and = < y. Show z | y.

44 / 66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.
Proof.
3=1)
» Assume — is SC and z <> y. Show z | y.

» Induction on the length of the chain x & 1.

44 / 66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

Proof.
3=1)

» Assume — is SC and = < y. Show z | y.

» Induction on the length of the chain x & 1.

» Base case: x =y. Trivial.

44 / 66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.
Proof.
3=1)
» Assume — is SC and z <> y. Show z | y.

» Induction on the length of the chain x & 1.

» Base case: x =y. Trivial.

» Assume z <> y' < y. Show z | y.

44 / 66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

Proof.
3=1)

» Assume — is SC and = < y. Show z | y.

» Induction on the length of the chain x & 1.

» Base case: x =y. Trivial.
» Assume z <> y' < y. Show z | y.

» By IH, z |/, i.e. = 2z < ¢/ for some 2.

44 / 66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

45 /66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

Proof.
(3=1) (Cont.)

45 /66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

Proof.
(3=1) (Cont.)

» Show zx | y by case distinction on ¢y’ < .

45 /66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

Proof.
(3=1) (Cont.)

» Show zx | y by case distinction on ¢y’ < .

» vy < y: x|y follows directly from = | /'
*
T—y — Y
*\\IH ,':(-
4 K

45 /66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

Proof.
(3=1) (Cont.)

» Show zx | y by case distinction on ¢y’ < .

46 / 66

Church-Rosser, confluence, and semi-confluence

Theorem 1.1
The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

Proof.
(3=1) (Cont.)

» Show zx | y by case distinction on ¢y’ < .

» y' —> y: Semi-confluence implies z | y and, hence = | y:

46 / 66

Corollaries

If > is confluent and z < y then

1. z5 y if y is in a normal form, and

2. x =y if both = and y are in a normal form.

Hence, for confluent relations, convertibility is equivalent to
joinability.

Without termination, joinability can not be decided.

47 / 66

Corollaries

If — is confluent, then every element has at most one normal form
(C==UN).

If - is normalizing and confluent, then every element has exactly
one normal form.

Hence, for confluent and normalizing reductions the notation x | is
well-defined.

48 / 66

Goal-directed equivalence test

Theorem 1.2

If - is confluent and normalizing, then

» every element x has a unique normal form x |,

> xgyiffxizyl.

Normalization requires breadth-first search for normal forms.

49 /66

Goal-directed equivalence test

Theorem 1.2
If - is confluent and normalizing, then

» every element x has a unique normal form x |,

> wgyiffxizyl.

Normalization requires breadth-first search for normal forms.

Theorem 1.3
If — is confluent and terminating, then

» every element x has a unique normal form x |,
> x<i>y iffxl=y].

Termination permits depth-first search for normal forms.

49 /66

Confluence and termination

How to show confluence and termination of an ARS?

50 /66

Showing termination

Idea: Embedding the reduction into a well-founded order.

51/66

Showing termination

Idea: Embedding the reduction into a well-founded order.

Well-founded order (B,>): No infinite descending chain
bo>b1>by > in B.

51/66

Showing termination

Examples of well-founded orders:

» (N,>): The set of natural numbers with the standard
ordering.

» (NN {0},>): The set of positive integers where a > b iff b| a
and b # a.

» ({a,b,c}*,>): The set of finite words over a fixed alphabet,
where wy > wy iff ws is a proper substring of w;.

52 /66

Showing termination

Examples of well-founded orders:
» (N,>): The set of natural numbers with the standard
ordering.
» (NN {0},>): The set of positive integers where a > b iff b| a
and b # a.
» ({a,b,c}*,>): The set of finite words over a fixed alphabet,
where wy > wy iff ws is a proper substring of w;.
Examples of non-well-founded orders:
» (Z,>): The set of integers with the standard ordering.
» (Qg,>): The set of non-negative rationals with the standard
ordering.
» ({a,b,c}*,>): The set of finite words over a fixed alphabet,
where > is the lexicographic ordering, e.g. a > ab > abb > ---.

52 /66

Showing termination

Theorem 1.4
Let (A,—) be an ARS. Then — is terminating iff there exists a
well-founded order (B,>) and a mapping ¢ : A — B such that

ay — az implies p(ay) > p(az).

53 /66

Showing confluence (for a terminating relation)

Lemma 1.1 (Newman's Lemma)
If - is terminating and locally confluent, then it is confluent.

54 /66

Showing confluence (for a terminating relation)

Lemma 1.1 (Newman's Lemma)

If - is terminating and locally confluent, then it is confluent.
Proof.
» Use well-founded induction. Let (A,—) be an ARS. Then

WEFI is the inference rule:

VeeA(Vye A(z 5 y= P(y)) = P(z))

Vae A.P(z) (WFD)

where P is some property of elements of A.

» Reads: To prove P(x) for all z € A, try to prove P(x) under
the assumption that P(y) holds for all successors y of x.

» Holds when — is terminating.

54 /66

Showing confluence (for a terminating relation)

Lemma 1.1 (Newman's Lemma)
If - is terminating and locally confluent, then it is confluent.

Proof. (Cont.)

55 /66

Showing confluence (for a terminating relation)

Lemma 1.1 (Newman's Lemma)

If - is terminating and locally confluent, then it is confluent.

Proof. (Cont.)
» Let P be

P(x)sz,z.yixizsylz.

Obviously, — is confluent if P(z) holds for all z € A.

55 /66

Showing confluence (for a terminating relation)

Lemma 1.1 (Newman's Lemma)

If - is terminating and locally confluent, then it is confluent.

Proof. (Cont.)
» Let P be

P(x)sz,z.yixizsylz.

Obviously, — is confluent if P(z) holds for all z € A.
» Show P(z) under the assumption P(t) for all - t.

55/66

Showing confluence (for a terminating relation)

Lemma 1.1 (Newman's Lemma)

If - is terminating and locally confluent, then it is confluent.

Proof. (Cont.)
» Let P be
P(z)=Vy,z. yer>z=yl 2.

Obviously, — is confluent if P(z) holds for all z € A.
» Show P(z) under the assumption P(t) for all - t.

» Fix z,y, z arbitrarily. Assume y <25 2 Prove Yl z.

55/66

Showing confluence (for a terminating relation)

Lemma 1.1 (Newman's Lemma)

If - is terminating and locally confluent, then it is confluent.

Proof. (Cont.)
» Let P be

P(az)sz,z.yixLzsylz.

Obviously, — is confluent if P(x) holds for all x € A.
» Show P(z) under the assumption P(t) for all - t.

» Fix z,y, z arbitrarily. Assume y <25 2 Prove Yl z.

» Case 1: z =y or x = z. Trivial.

55/66

Showing confluence (for a terminating relation)

Lemma 1.1 (Newman's Lemma)
If - is terminating and locally confluent, then it is confluent.

Proof. (Cont.)

56 /66

Showing confluence (for a terminating relation)

Lemma 1.1 (Newman's Lemma)

If - is terminating and locally confluent, then it is confluent.

Proof. (Cont.)

* *
» Case 2: x> y; > yand x > 21 — 2.

56 / 66

Showing confluence (for a terminating relation)

Lemma 1.1 (Newman's Lemma)

If - is terminating and locally confluent, then it is confluent.
Proof. (Cont.)

* *
» Case 2. x>y —>yand z —» 21 — 2.

r—> 2 —8 2
l LC +! :

* ¥ '
Yt ---->u |H *.
*Jv IH *E E

* Yo% v
Yy----2 >V ---=->W

56 /66

Showing confluence (termination not required)

Definition 1.6
A relation — is called strongly confluent (StC) iff

Yo,y y. Y1« T > Yo = 32 Y1 — 2 < o

Remark: The definition is symmetric: y; < x — y9 must imply both
Y1 5 2 < yo and 1 S 29 < yo for suitably chosen z; and zs.

57 /66

Showing confluence (termination not required)

Definition 1.6
A relation — is called strongly confluent (StC) iff

Yo,y y. Y1« T > Yo = 32 Y1 — 2 < o

Remark: The definition is symmetric: y; < x — y9 must imply both
Y1 5 2 < yo and 1 S 29 < yo for suitably chosen z; and zs.

Graphically:

Solid arrows represent universal and dashed arrows existential
quantification.

57 /66

C, SC, LC, StC

Y1 ------>2 Yl------>2

Yl oooouns 2

Yyr ------>2

58 /66

Showing confluence (termination not required)

Theorem 1.5
Any strongly confluent relation is semi-confluent (and, thus,
confluent).
Proof.
LT ——————> LY -rorerenens Ip-1 — In
‘ StC = = StC =
Y1 ------ Y2 Yn-1 ----- > Yn

59

66

Showing confluence (termination not required)

StC is a pretty strong property.

Trying to show strong confluence of — would not be practical.

60 /66

Showing confluence (termination not required)

StC is a pretty strong property.
Trying to show strong confluence of — would not be practical.

The trick to show confluence of — is not to prove its strong
. . * *
confluence, but to define a StC relation = such that —, = —.

60 /66

Showing confluence (termination not required)

StC is a pretty strong property.
Trying to show strong confluence of — would not be practical.

The trick to show confluence of — is not to prove its strong
. . * *
confluence, but to define a StC relation = such that —, = —.

If i>1 = i>2, then —1 is confluent iff —5 is confluent.

Hence, if =, = 2>, then S5tC(—,) = C(—;) < C(=).

60 /66

Showing confluence (termination not required)

StC is a pretty strong property.
Trying to show strong confluence of — would not be practical.

The trick to show confluence of — is not to prove its strong
. . * *
confluence, but to define a StC relation = such that —, = —.

If i>1 = i>2, then —1 is confluent iff —5 is confluent.
Hence, if =, = 2>, then S5tC(—,) = C(—;) < C(=).

To simplify the search of —;, the condition can be weakened due
to following easy lemma:

* * *
If >4 € —>9 S —q, then —1 = —9.

60 /66

Showing confluence (termination not required)

Summarizing the ideas from the previous slide:

Theorem 1.6
If >c—>sC > and >, is strongly confluent, then — is confluent.

61/66

Showing confluence (termination not required)

The theorem can be made stronger, considering the diamond
property:

Definition 1.7
A relation — has the diamond property iff

vxaylayQ‘ Y1 < T > Yy = Jz. Y1 = 2 < Y2.

62 /66

Showing confluence (termination not required)

The theorem can be made stronger, considering the diamond
property:

Definition 1.7
A relation — has the diamond property iff

vxaylayQ‘ Y1 < T > Yy = Jz. Y1 = 2 < Y2.

Graphically:

8
Q@
S

W mmmmmm -

<
oy

1

1

1

1

1

1
3

62 /66

Showing confluence (termination not required)

The diamond property implies strong confluence, therefore:

Theorem 1.7

If > € >4 S>> and —4 has the diamond property, then — is
confluent.

63 /66

Confluence by commutation

Confluence proofs can be localized by splitting a reduction up into
several smaller reductions and showing their confluence separately.

An additional property, commuting, should be satisfied.

64 /66

Confluence by commutation

Confluence proofs can be localized by splitting a reduction up into
several smaller reductions and showing their confluence separately.

An additional property, commuting, should be satisfied.

Definition 1.8

Two relations -1 and —9 commute iff

* * * *
VI, y1,y2. Y1 <17 —2y2 = 32. Y1 —2 2 <1 Yo.

*
T2 "
*[1 1E>(-
Y1 ---2._5 2

64 /66

Confluence by commutation

Lemma 1.2 (Commutative Union Lemma)

If -1 and —9 are confluent and commute, then —1 U -4 is also
confluent.

65 /66

Confluence by commutation

Lemma 1.2 (Commutative Union Lemma)

If -1 and —9 are confluent and commute, then —1 U -4 is also
confluent.

Proof.

» 51 0 555 has the diamond property:

(1) Confluence of —;
(2) Confluence of —g
(12) Commutation of —; and —9

65 /66

Confluence by commutation

Lemma 1.3 (Commutative Union Lemma)

If -1 and —9 are confluent and commute, then —1 U -4 is also
confluent.

Proof. (Cont.)

» The following inclusions hold:
* * *
—>1u—>2g—>10—>2g(—>1u—>2),

» By Theorem 1.7, -1 U —4 is confluent.

66 /66

	*
	Motivation
	Abstract Reduction Systems

