Logic Programming

Using Grammar Rules

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria
kutsialrisc.jku.at

Contents

Grammar of a Language

Definition (Grammar of a Language)

A set of rules for specifying what sequences of words are
acceptable as sentences of the language.

Grammar specifies:
» How the words must group together to form phrases.
» What orderings of those phrases are allowed.

Parsing Problem

Given: A grammar for a language and a sequence of
words.

Problem: |s the sequence an acceptable sentence of the
language?

Simple Grammar Rules for English

Structure Rules:

sentence —-—> noun_phrase, verb_phrase.
noun_phrase —--> determiner, noun.
verb_phrase —-—> verb, noun_phrase.

verb_phrase —-—> verb.

Simple Grammar Rules for English (Ctd.)

Reading Grammar Rules

X —--> Y: "X can take the form Y".

X, Y: "X followed by Y".
Example
sentence ——-> noun_phrase, verb_phrase:

sentence can take a form: noun_phrase followed by
verb_phrase.

Valid Terms:

determiner --> [the].

noun ——> [man].

noun --> [apple].

verb —-—-> [eats].

verb —--> [sings].
Alternatives

Two rules for verb_phrase:

1. verb_phrase —-> verb, noun_phrase.

2. verb_phrase —--> verb.

Two possible forms:

1. verb_phrase can contain a noun_phrase: "the man

eats the apple", or
2. it need not: "the man sings"

Valid Terms

Specify phrases made up in terms of actual words (not in terms
of smaller phrases):

» determiner —-—> [the]:
A determiner can take the form: the word the.

Parsing

sentence ——-> noun_phrase, verb_phrase

sentence

T

noun_phrase verb_phrase
| |

The man eats thé apple

Parsing

noun_phrase —--> determiner, noun

noun_phrase

T

determiner noun
| |
! |

the man

How To

Problem: How to test whether a sequence is an acceptable
sentence?

Solution: Apply the first rule to ask:

Does the sequence decompose into two phrases:

acceptable noun_phrase and
acceptable verb_phrase?

How To

Problem: How to test whether the first phrase is an
acceptable noun_phrase?

Solution: Apply the second rule to ask:

Does it decompose into a
determiner followed by a noun?

And so on.

Parse Tree

sentence
noun_phrase verb_phrase

determiner noun verb noun_phrase
1 ! 1
the man eats determiner noun
|

Parsing Problem

Given: A grammar and a sentence.
Construct: A parse tree for the sentence.

Prolog Parse

Problem: Parse a sequence of words.

Output: True, if this sequence is a valid sentence.
False, otherwise.

Example (Representation)
Words as PROLOG atoms and sequences of words as lists:

[the,man, eats, the, apple]

Sentence

Introducing predicates:

sentence (X)

noun_phrase (X)
verb_phrase (X)

X is a sequence of words

forming a grammatical sentence.

X'is a noun phrase.
Xis a verb phrase.

Program

sentence (X) :-—
append (Y, 7z, X),
noun_phrase (Y),
verb_phrase (Z) .

verb_phrase (X) :-
append (Y, Z, X),
verb (Y),

noun_phrase (X) :-
append (Y, 7z, X),
determiner (Y),
noun (Z) .

determiner ([the]) .

noun ([apple]) .

noun_phrase (2) . noun ([man]) .

verb_phrase (X) :- verb ([eats]) .

verb (X) . verb ([sings]) .

Inefficient

A lot of extra work.

Unnecessary Searching.
Generate and Test:

» Generate a sequence.
» Test to see if it matches.

Simplest Formulation of the search but inefficient

v

v

v

v

Inefficiency

The program accepts the sentence "the man eats the apple":

?—-sentence ([the,man,eats, the, apple]) .
yes
The goal

?—append (Y, Z, [the,man, eats, the, apple])
on backtracking can generate all possible pairs:

1, Z=[the,man,eats,the,apple]

the], Z=[man,eats,the,apple]

the,man,eats], Z=[the, apple]
the,man,eats, the], Z=[apple]
the,man, eats, the,apple], Z=[]

[
[
[the,man], Z=[eats,the,apple]
[
[
[

'—<'—<'-”<'-<'-<'-<

20

1

Redefinition Improved Program

noun_phrase (X,Y) : thereis anoun phrase
at the beginning

tence (S0, S) :- noun_phrase (S0, S) :—
f th nce X sen !

0 ':jtehseC{U?ﬂC]:et. left noun_phrase (S0, S1), determiner (S0, S1),
an e par atisle verb_phrase(S1, S). noun (S1l, S).

after the noun phrase
is Y. verb_phrase (S0, S) :- determiner ([the|S], S).

verb (S0, S).
The goal noun([man|S], S).
?-noun_phrase ([the,man, saw, the, cat], verb_phrase (S0, S) :- noun ([apple|S], S).
[saw, the,cat]) . verb (S0, S1),
noun_phrase (S1, S) verb ([eats]|S], S).
should succeed. verb([sings|S], S).
noun_phrase (X, Y) :— determiner (X, Z) ,noun(Z,Y) .
21/1
Goal Pros and Cons
sentence (S0,S) : Thereis a sentence
at the beginning of s0 .
and g g Advantage: More efficient.
what remains from the sentence in S0 Disadvantage: More cumbersome.
is S. Improvement idea: Keep the easy grammar rule notation for
. the user,
We want whole s0 to be a sentence, i.e., s should be empty. Automatically translate into the PROLOG code for
?-sentence ([the,man, eats, the,applel, I[1). computation.

Do you remember difference lists?

23/1

Defining Grammars

PROLOG provides an automatic translation facility for grammars.

Principles of translation:

» Every name of a kind of phrase must be translated into a
binary predicate.

» First argument of the predicate—the sequence provided.
» Second argument—the sequence left behind.

» Grammar rules mentioning phrases coming one after
another must be translated so that
» the phrase left behind by one phrase forms the input of the
next, and
» the amount of words consumed by whole phrase is the
same as the total consumed by subphrases.

25/1

Defining Grammars

The rule sentence -—> noun_phrase, verb_phrase
translates to:

sentence (S0, S) :-
noun_phrase (S0, S1),
verb_phrase (S1, S).

The rule determiner --> [the] translates to

determiner ([the|S],S).

26

1

Defining Grammars

Now, the user can input the grammar rules only:

sentence ——> noun_phrase, verb_phrase.
verb_phrase --> verb.

verb_phrase --> wverb, noun_phrase.
noun_phrase --> determiner, noun.
determiner ——> [the]

noun ——> [man]

noun -—> [apple].

verb -—> [eats]

verb -—> [sings]

27/1

Defining Grammars

It will be automatically translated into:

sentence (S0, S) :-
noun_phrase (50, S1),
verb_phrase(S1, S).

noun_phrase (S0, S) :-
determiner (S0, S1),
noun (S1, S).

verb_phrase (S0, S)
verb (S0, S).

determiner ([the|S], S).

noun ([man|S], S).
verb_phrase (S0, S) :- noun ([apple|S], S).
verb (50, S1),
noun_phrase (S1, S) verb ([eats|S], S).

verb ([sings|S], S).

28

1

Goals

?—-sentence ([the,man,eats, the, apple], []) .
yes

?-sentence ([the,man, eats, the, apple], X).
X=1[]

SWI-Prolog provides an alternative (for the first goal only):

?-phrase (sentence, [the,man,eats, the, apple]) .

Phrase Predicate

Definition of phrase is easy

phrase (Predicate, Argument) :-
Goal=..[Predicate, Argument, []],
call (Goal) .

=.. (read “equiv") — built-in predicate

30

yes

29
?- p(a,b,c)=..X.
X = [p, a, b, cl

?- X=..p(a,b,).
ERROR: =../2: Type error: ‘list’ expected,
found ‘p(a, b,c)’

?- X=..[p,a,b,c].

X=p(a,b,c).

- X=..[].

ERROR: =../2: Domailn error: ‘not_empty_list’
expected, found ‘[]’

?- X=..[1,a].

ERROR: =../2: Type error: ‘atom’ expected,

found ‘17

31

Is Not it Enough?

No, we want more.
Distinguish singular and plural sentences.

Ungrammatical:

» The boys eats the apple
» The boy eat the apple

32

Straightforward Way

Add more grammar rules:

sentence —-——>
sentence -——>
noun_phrase -——>
noun_phrase -——>
singular_sentence ——>
singular_noun_phrase -->

singular_sentence.
plural_sentence.

singular_noun_phrase.

plural_noun_phrase.

singular_noun_phrase,

singular_verb_phrase.

singular_determiner,

singular_noun.

33

Straightforward Way

singular_verb_phrase --> singular_verb,
noun_phrase.

singular_verb_phrase --> singular_verb.
singular_determiner ——> [the].
singular_noun —-—> [man].
singular_noun --> [apple].
singular_verb --> [eats].
singular_verb --> [sings].

And similar for plural phrases.

34

1

Disadvantages

» Not elegant.

» Obscures the fact that singular and plural sentences have

a lot of structure in common.

35

1

Better solution

» Associate an extra argument to phrase types according to
whether it is singular or plural:

sentence (singular)
sentence (plural)

36

1

Grammar Rules with Extra Arguments

Grammar Rules with Extra Arguments. Cont.

determiner (_) -—> [the].
noun (singular) --> [man].
noun (singular) --> [apple].
noun (plural) ——> [men].
noun (plural) -—> [apples].
verb (singular) --> [eats].
verb (singular) --> [sings].
verb (plural) -—> [eat].
verb (plural) --> [sing].

38

sentence —-—> sentence (X) .
sentence (X) ——> noun_phrase (X),

verb_phrase (X) .
noun_phrase (X) --> determiner (X),

noun (X) .
verb_phrase (X) --> verb (X),

noun_phrase (Y) .
verb_phrase (X) --> wverb(X).

37/1
Parse Tree

The man eats the apple
should generate

sentence (
noun_phrase (
determiner (the),
noun (man)),
verb_phrase (
verb (eats),
noun_phrase (
determiner (the),
noun (apple)),

39

1

Building Parse Trees

» We might want grammar rules to make a parse tree as well.
» Rules need one more argument.

» The argument should say how the parse tree for the whole
phrase can be constructed from the parse trees of its
sub-phrases.

Example:

sentence (X, sentence (NP,VP)) —-——>
noun_phrase (X,NP), verb_phrase (X,VP).

40

1

Translation

sentence (X, sentence (NP,VP)) —-—>
noun_phrase (X, NP),
verb_phrase (X,VP) .

translates to
sentence (X, sentence (NP,VP), S0, S)

noun_phrase (X, NP, SO, S1),
verb_phrase (X, VP, S1, S).

41

Grammar Rules for Parse Trees

Number agreement arguments are left out for simplicity.

sentence (sentence (NP,VP)) ——>
noun_phrase (NP),
verb_phrase (VP) .

verb_phrase (verb_phrase (V)) ——>
verb (V) .

verb_phrase (verb_phrase (VP,NP)) ——>
verb (VP),
noun_phrase (NP) .

noun_phrase (noun_phrase (DT,N)) ——>
determiner (DT),
noun (N) .

42

Grammar Rules for Parse Trees. Cont.

determiner (determiner (the)) —--> [the].
noun (noun (man)) --> [man].

noun (noun (apple)) —-—> [apple].

verb (verb (eats)) —-—> [eats].

verb (verb (sings)) —--> [sings].

43

1

Translation into Prolog Clauses

» Translation of grammar rules with extra arguments—a
simple extension of translation of rules without arguments.

» Create a predicate with two more arguments than are
mentioned in the grammar rules.

» By convention, the extra arguments are as the last
arguments of the predicate.

sentence (X) —-—-> noun_phrase (X), verb_phrase (X).

translates to

sentence (X, S0, S) :-
noun_phrase (X, S0, S1),
verb_phrase (X, S1, S).

44

1

Adding Extra Tests

» So far everything in the grammar rules were used in
processing the input sequence.

» Every goal in the translated Prolog clauses has been
involved with consuming some amount of input.

» Sometimes we may want to specify Prolog clauses that are
not of this type.

» Grammar rule formalism allows this.

» Convention: Any goals enclosed in curly brackets {} are left
unchanged by the translator.

45

Overhead in Introducing New Word

» To add a new word banana, add at least one extra rule:
noun (singular, noun (banana)) --> [banana].

» Translated into Prolog:
noun (singular, noun (banana), [bananalS],S).

» Too much information to specify for one noun.

46

1

Mixing Grammar with Prolog

Put common information about all words in one place, and
information about particular words in somewhere else:

noun (S, noun(N)) —--> [N], {is_noun(N, S)}.
is_noun (banana, singular).

is_noun (banana, plural).

is_noun(man, singular).

47

Mixing Grammar with Prolog

noun (S, noun(N)) ——-> [N], {is_noun(N, S)}.

» {is_noun (N, S) } is a test (condition).

» N must be in the is_noun collection with some plurality s.

» Curly brackets indicate that it expresses a relation that has
nothing to do with the input sequence.

» Translation does not affect expressions in the curly
brackets:
noun (S, noun(N), [N|Seq], Seq) :-

is_noun (N, S).

48

1

Mixing Grammar with Prolog

» Another inconvenience:

is_noun (banana, singular) .
is_noun (banana,plural).

» Two clauses for each noun.

» Can be avoided in most of the cases
by adding s for plural at the end of singular.

49

Mixing Grammar with Prolog

Amended rule:

noun (plural, noun(N)) —-—>
[N],
{ atom_chars (N, Pl_name),
append (Sing_name, [s], Pl_name),
atom_chars (Root_N, Sing_name),
is_noun (Root_N, singular))

50

Further Extension

» So far the rules defined things in terms how the input
sequence is consumed.

» We might like to define things that insert items into the
input sequence (for the other rules to find).

» Example: Analyze
“Eat your supper"
as if there were an extra word “you" inserted:
“You eat your supper"
which would conform to our existing ides about the
structure of sentences.

51

Rule for the Extension

sentence —--> imperative, noun_phrase, verb_phrase.
imperative, [you] —-——> [1.
imperative -—--> [1.

The first rule of imperative translate to:
imperative (L, [youl|L]).

That means, the returned sequence is longer than the one
originally provided.

52

Meaning of the Extension

> If
the left hand side of a grammar rule consists of a part of
the input sequence separated from a list of words by
comma

» Then
in the parsing, the words are inserted into the input
sequence after the goals on the right-hand side have had
their chances to consume words from it.

53

