
Logic Programming
Using Grammar Rules

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria

kutsia@risc.jku.at

1 / 53

Contents

The Parsing Problem

Representing the Parsing Problem in Prolog

The Grammar Rule Notation

Adding Extra Arguments

Adding Extra Tests

2 / 53



Grammar of a Language

Definition (Grammar of a Language)
A set of rules for specifying what sequences of words are
acceptable as sentences of the language.

Grammar specifies:
I How the words must group together to form phrases.
I What orderings of those phrases are allowed.

3 / 53

Parsing Problem

Given: A grammar for a language and a sequence of
words.

Problem: Is the sequence an acceptable sentence of the
language?

4 / 53



Simple Grammar Rules for English

Structure Rules:

sentence --> noun_phrase, verb_phrase.

noun_phrase --> determiner, noun.

verb_phrase --> verb, noun_phrase.

verb_phrase --> verb.

5 / 53

Simple Grammar Rules for English (Ctd.)

Valid Terms:

determiner --> [the].

noun --> [man].

noun --> [apple].

verb --> [eats].

verb --> [sings].

6 / 53



Reading Grammar Rules

X --> Y: "X can take the form Y".
X, Y: "X followed by Y".

Example
sentence --> noun_phrase, verb_phrase:

sentence can take a form: noun_phrase followed by
verb_phrase.

7 / 53

Alternatives

Two rules for verb_phrase:

1. verb_phrase --> verb, noun_phrase.

2. verb_phrase --> verb.

Two possible forms:
1. verb_phrase can contain a noun_phrase: "the man

eats the apple", or
2. it need not: "the man sings"

8 / 53



Valid Terms

Specify phrases made up in terms of actual words (not in terms
of smaller phrases):

I determiner --> [the]:
A determiner can take the form: the word the.

9 / 53

Parsing

sentence --> noun_phrase, verb_phrase

sentence

noun_phrase

The man

verb_phrase

eats the apple

10 / 53



Parsing

noun_phrase --> determiner, noun

noun_phrase

determiner

the

noun

man

11 / 53

How To

Problem: How to test whether a sequence is an acceptable
sentence?

Solution: Apply the first rule to ask:

Does the sequence decompose into two phrases:
acceptable noun_phrase and
acceptable verb_phrase?

12 / 53



How To

Problem: How to test whether the first phrase is an
acceptable noun_phrase?

Solution: Apply the second rule to ask:

Does it decompose into a
determiner followed by a noun?

And so on.

13 / 53

Parse Tree

sentence

noun_phrase

determiner

the

noun

man

verb_phrase

verb

eats

noun_phrase

determiner

the

noun

apple

14 / 53



Parsing Problem

Given: A grammar and a sentence.
Construct: A parse tree for the sentence.

15 / 53

Prolog Parse

Problem: Parse a sequence of words.
Output: True, if this sequence is a valid sentence.

False, otherwise.

Example (Representation)
Words as PROLOG atoms and sequences of words as lists:

[the,man,eats,the,apple]

16 / 53



Sentence

Introducing predicates:

sentence(X) : X is a sequence of words
forming a grammatical sentence.

noun_phrase(X) : X is a noun phrase.
verb_phrase(X) : X is a verb phrase.

17 / 53

Program

sentence(X) :- noun_phrase(X) :-
append(Y, Z, X), append(Y, Z, X),
noun_phrase(Y), determiner(Y),
verb_phrase(Z). noun(Z).

verb_phrase(X) :- determiner([the]).
append(Y, Z, X),
verb(Y), noun([apple]).
noun_phrase(Z). noun([man]).

verb_phrase(X) :- verb([eats]).
verb(X). verb([sings]).

18 / 53



Inefficient

I A lot of extra work.
I Unnecessary Searching.
I Generate and Test:

I Generate a sequence.
I Test to see if it matches.

I Simplest Formulation of the search but inefficient

19 / 53

Inefficiency

The program accepts the sentence "the man eats the apple":

?-sentence([the,man,eats,the,apple]).

yes

The goal
?-append(Y,Z,[the,man,eats,the,apple])

on backtracking can generate all possible pairs:

Y=[], Z=[the,man,eats,the,apple]
Y=[the], Z=[man,eats,the,apple]
Y=[the,man], Z=[eats,the,apple]
Y=[the,man,eats], Z=[the,apple]
Y=[the,man,eats,the], Z=[apple]
Y=[the,man,eats,the,apple], Z=[]

20 / 53



Redefinition

noun_phrase(X,Y) : there is a noun phrase
at the beginning
of the sequence X
and the part that is left
after the noun phrase
is Y.

The goal

?-noun_phrase([the,man,saw,the,cat],
[saw,the,cat]).

should succeed.

noun_phrase(X,Y):- determiner(X,Z),noun(Z,Y).

21 / 53

Improved Program

sentence(S0, S) :- noun_phrase(S0, S) :-
noun_phrase(S0, S1), determiner(S0, S1),
verb_phrase(S1, S). noun(S1, S).

verb_phrase(S0, S) :- determiner([the|S], S).
verb(S0, S).

noun([man|S], S).
verb_phrase(S0, S) :- noun([apple|S], S).

verb(S0, S1),
noun_phrase(S1, S) verb([eats|S], S).

verb([sings|S], S).

22 / 53



Goal

sentence(S0,S) : There is a sentence
at the beginning of S0
and
what remains from the sentence in S0
is S.

We want whole S0 to be a sentence, i.e., S should be empty.

?-sentence([the,man,eats,the,apple], []).

Do you remember difference lists?

23 / 53

Pros and Cons

Advantage: More efficient.
Disadvantage: More cumbersome.
Improvement idea: Keep the easy grammar rule notation for

the user,
Automatically translate into the PROLOG code for
computation.

24 / 53



Defining Grammars

PROLOG provides an automatic translation facility for grammars.

Principles of translation:
I Every name of a kind of phrase must be translated into a

binary predicate.
I First argument of the predicate—the sequence provided.
I Second argument—the sequence left behind.
I Grammar rules mentioning phrases coming one after

another must be translated so that
I the phrase left behind by one phrase forms the input of the

next, and
I the amount of words consumed by whole phrase is the

same as the total consumed by subphrases.

25 / 53

Defining Grammars

The rule sentence --> noun_phrase, verb_phrase
translates to:

sentence(S0, S) :-
noun_phrase(S0, S1),
verb_phrase(S1, S).

The rule determiner --> [the] translates to

determiner([the|S],S).

26 / 53



Defining Grammars

Now, the user can input the grammar rules only:

sentence --> noun_phrase, verb_phrase.
verb_phrase --> verb.
verb_phrase --> verb, noun_phrase.
noun_phrase --> determiner, noun.
determiner --> [the].
noun --> [man].
noun --> [apple].
verb --> [eats].
verb --> [sings].

27 / 53

Defining Grammars

It will be automatically translated into:

sentence(S0, S) :- noun_phrase(S0, S) :-
noun_phrase(S0, S1), determiner(S0, S1),
verb_phrase(S1, S). noun(S1, S).

verb_phrase(S0, S) :- determiner([the|S], S).
verb(S0, S).

noun([man|S], S).
verb_phrase(S0, S) :- noun([apple|S], S).

verb(S0, S1),
noun_phrase(S1, S) verb([eats|S], S).

verb([sings|S], S).

28 / 53



Goals

?-sentence([the,man,eats,the,apple],[]).
yes

?-sentence([the,man,eats,the,apple],X).
X=[]

SWI-Prolog provides an alternative (for the first goal only):

?-phrase(sentence,[the,man,eats,the,apple]).
yes

29 / 53

Phrase Predicate

Definition of phrase is easy

phrase(Predicate, Argument) :-
Goal=..[Predicate,Argument,[]],
call(Goal).

=.. (read “equiv") – built-in predicate

30 / 53



=..

?- p(a,b,c)=..X.
X = [p, a, b, c]

?- X=..p(a,b,c).
ERROR: =../2: Type error: ‘list’ expected,
found ‘p(a, b,c)’

?- X=..[p,a,b,c].
X=p(a,b,c).

?- X=..[].
ERROR: =../2: Domain error: ‘not_empty_list’
expected, found ‘[]’

?- X=..[1,a].
ERROR: =../2: Type error: ‘atom’ expected,
found ‘1’

31 / 53

Is Not it Enough?

No, we want more.

Distinguish singular and plural sentences.

Ungrammatical:

I The boys eats the apple
I The boy eat the apple

32 / 53



Straightforward Way

Add more grammar rules:

sentence --> singular_sentence.
sentence --> plural_sentence.
noun_phrase --> singular_noun_phrase.
noun_phrase --> plural_noun_phrase.
singular_sentence --> singular_noun_phrase,

singular_verb_phrase.
singular_noun_phrase --> singular_determiner,

singular_noun.

33 / 53

Straightforward Way

singular_verb_phrase --> singular_verb,
noun_phrase.

singular_verb_phrase --> singular_verb.
singular_determiner --> [the].
singular_noun --> [man].
singular_noun --> [apple].
singular_verb --> [eats].
singular_verb --> [sings].

And similar for plural phrases.

34 / 53



Disadvantages

I Not elegant.
I Obscures the fact that singular and plural sentences have

a lot of structure in common.

35 / 53

Better solution

I Associate an extra argument to phrase types according to
whether it is singular or plural:

sentence(singular)
sentence(plural)

36 / 53



Grammar Rules with Extra Arguments

sentence --> sentence(X).
sentence(X) --> noun_phrase(X),

verb_phrase(X).
noun_phrase(X) --> determiner(X),

noun(X).
verb_phrase(X) --> verb(X),

noun_phrase(Y).
verb_phrase(X) --> verb(X).

37 / 53

Grammar Rules with Extra Arguments. Cont.

determiner(_) --> [the].
noun(singular) --> [man].
noun(singular) --> [apple].
noun(plural) --> [men].
noun(plural) --> [apples].
verb(singular) --> [eats].
verb(singular) --> [sings].
verb(plural) --> [eat].
verb(plural) --> [sing].

38 / 53



Parse Tree

The man eats the apple

should generate

sentence(
noun_phrase(

determiner(the),
noun(man)),

verb_phrase(
verb(eats),
noun_phrase(

determiner(the),
noun(apple)),

)
)

39 / 53

Building Parse Trees

I We might want grammar rules to make a parse tree as well.
I Rules need one more argument.
I The argument should say how the parse tree for the whole

phrase can be constructed from the parse trees of its
sub-phrases.

Example:

sentence(X, sentence(NP,VP)) -->
noun_phrase(X,NP), verb_phrase(X,VP).

40 / 53



Translation

sentence(X, sentence(NP,VP)) -->
noun_phrase(X, NP),
verb_phrase(X,VP).

translates to

sentence(X, sentence(NP,VP), S0, S) :-
noun_phrase(X, NP, S0, S1),
verb_phrase(X, VP, S1, S).

41 / 53

Grammar Rules for Parse Trees

Number agreement arguments are left out for simplicity.

sentence(sentence(NP,VP)) -->
noun_phrase(NP),
verb_phrase(VP).

verb_phrase(verb_phrase(V)) -->
verb(V).

verb_phrase(verb_phrase(VP,NP)) -->
verb(VP),
noun_phrase(NP).

noun_phrase(noun_phrase(DT,N)) -->
determiner(DT),
noun(N).

42 / 53



Grammar Rules for Parse Trees. Cont.

determiner(determiner(the)) --> [the].
noun(noun(man)) --> [man].
noun(noun(apple)) --> [apple].
verb(verb(eats)) --> [eats].
verb(verb(sings)) --> [sings].

43 / 53

Translation into Prolog Clauses

I Translation of grammar rules with extra arguments—a
simple extension of translation of rules without arguments.

I Create a predicate with two more arguments than are
mentioned in the grammar rules.

I By convention, the extra arguments are as the last
arguments of the predicate.

sentence(X) --> noun_phrase(X), verb_phrase(X).

translates to

sentence(X, S0, S) :-
noun_phrase(X, S0, S1),
verb_phrase(X, S1, S).

44 / 53



Adding Extra Tests

I So far everything in the grammar rules were used in
processing the input sequence.

I Every goal in the translated Prolog clauses has been
involved with consuming some amount of input.

I Sometimes we may want to specify Prolog clauses that are
not of this type.

I Grammar rule formalism allows this.
I Convention: Any goals enclosed in curly brackets {} are left

unchanged by the translator.

45 / 53

Overhead in Introducing New Word

I To add a new word banana, add at least one extra rule:
noun(singular, noun(banana)) --> [banana].

I Translated into Prolog:
noun(singular, noun(banana), [banana|S],S).

I Too much information to specify for one noun.

46 / 53



Mixing Grammar with Prolog

Put common information about all words in one place, and
information about particular words in somewhere else:

noun(S, noun(N)) --> [N],{is_noun(N, S)}.
is_noun(banana, singular).
is_noun(banana, plural).
is_noun(man, singular).

47 / 53

Mixing Grammar with Prolog

noun(S, noun(N)) --> [N], {is_noun(N, S)}.

I {is_noun(N,S)} is a test (condition).
I N must be in the is_noun collection with some plurality S.
I Curly brackets indicate that it expresses a relation that has

nothing to do with the input sequence.
I Translation does not affect expressions in the curly

brackets:
noun(S, noun(N), [N|Seq], Seq) :-

is_noun(N, S).

48 / 53



Mixing Grammar with Prolog

I Another inconvenience:

is_noun(banana,singular).
is_noun(banana,plural).

I Two clauses for each noun.

I Can be avoided in most of the cases
by adding s for plural at the end of singular.

49 / 53

Mixing Grammar with Prolog

Amended rule:

noun(plural, noun(N)) -->
[N],
{ atom_chars(N, Pl_name),

append(Sing_name,[s], Pl_name),
atom_chars(Root_N, Sing_name),
is_noun(Root_N, singular))

}.

50 / 53



Further Extension

I So far the rules defined things in terms how the input
sequence is consumed.

I We might like to define things that insert items into the
input sequence (for the other rules to find).

I Example: Analyze
“Eat your supper"

as if there were an extra word “you" inserted:
“You eat your supper"

which would conform to our existing ides about the
structure of sentences.

51 / 53

Rule for the Extension

sentence --> imperative, noun_phrase, verb_phrase.

imperative, [you] --> [].
imperative --> [].

The first rule of imperative translate to:

imperative(L, [you|L]).

That means, the returned sequence is longer than the one
originally provided.

52 / 53



Meaning of the Extension

I If
the left hand side of a grammar rule consists of a part of
the input sequence separated from a list of words by
comma

I Then
in the parsing, the words are inserted into the input
sequence after the goals on the right-hand side have had
their chances to consume words from it.

53 / 53


	The Parsing Problem
	Representing the Parsing Problem in Prolog
	The Grammar Rule Notation
	Adding Extra Arguments
	Adding Extra Tests

