Logic Programming

Computational Model

Temur Kutsia

Research Institute for Symbolic Computation Johannes Kepler University Linz, Austria kutsia@risc.jku.at

Basic Notions

Term: Constant, variable, or compound term.
Compound Term: Functor, arguments

$$
f\left(t_{1}, \ldots, t_{n}\right)
$$

Functor: Name, arity
f / n
Goal: Atom or compound term.

Logic Programs

Clause: Universally quantified logical sentence
$A \leftarrow B_{1}, \ldots, B_{k}, k \geq 0$
A and B_{i} 's are goals.
Declarative reading: A is implied by the conjunction of the B_{i} 's.
Procedural reading: To answer the query A, answer the
conjunctive query B_{1}, \ldots, B_{k}.
Logic Program: Finite set of clauses.

Computation

Query: Existentially quantified conjunction
$\leftarrow A_{1}, \ldots, A_{n}, n>0$
A_{i} 's are goals.
Computation of a Logic Program P : finds an instance of a given query logically deducible from P.

How to Compute

- Start from initial query G.
- Computation terminates - success or failure.
- Computation does not terminate - no result.
- Output of a successful computation: the instance of G proved.
- A given query can have several successful computations with different output.

Abstract Interpreter

INPUT:
A logic program P and a query G.
OUTPUT:
$G \theta$, if this was the instance of G deduced from P, or failure if failure has occurred.

Abstract Interpreter

ALGORITHM:

Let resolvent be G

While resolvent is not empty do

1. Choose a goal A from resolvent.
2. Choose a renamed clause $A^{\prime} \leftarrow B_{1}, \ldots, B_{n}$ from P such that A and A^{\prime} unify with an mgu θ (exit if no such goal and clause exist).
3. Remove A from and add B_{1}, \ldots, B_{n} to resolvent.
4. Apply θ to resolvent and to G.

If resolvent it empty, return G, else return failure.

Choosing and Adding

Choosing and Adding:

- Left unspecified in the abstract interpreter.
- Must be resolved in a realization of the computational model.

Two Choices

Completely different nature.
Choice of a goal:

- Arbitrary.
- Does not affect computation.
- If there exists a successful computation by choosing one goal, then there is a successful computation by choosing any other goal.
Choice of a clause:
- Non-deterministic.
- Affects computation.
- Choosing one clause might lead to success, while choosing some other might lead to failure.

Adding Goal to Resolvent

Assume: Always the leftmost goal to be chosen
Then: Adding new goal to the beginning of the resolvent gives depth-first search.
Adding new goal to the end of the resolvent gives breadth-first search.

Prolog's Solution

- Choice of a goal: leftmost.
- Choice of a clause: Topmost.
- Adding new goal to the resolvent: At the beginning.

