Logic Programming

Unification

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University, Linz, Austria
kutsia@risc. jku.at

Unification

Solving term equations:
Given: Two terms s and ¢.
Find: A substitution o such that o(s) = o(t).

Substitutions

» A T(F,V)-substitution: A function o : V — T'(F,V), whose
domain

Dom(o) :={z | o(z) # =}

is finite.

» Range of a substitution o:
Ran(o) := {o(x) | x € Dom(o)}.
» Variable range of a substitution o
VRan(o) := Var(Ran(c)).

» Notation: lower case Greek letters o, v, p, 1,
Identity substitution: €.

Substitutions

» Notation: If Dom(o) = {x1,...,x,}, then o can be written
as the set
{5171 — O'(Jil), coey T U(xn)}
» Example:

{z—i(y),y— e}.

Substitutions

» The substitution o can be extended to a mapping
o:T(F,V) = T(F,V)
by induction:
o(f(tr,...,tn)) = f(o(t1),...,o(tn)).
» Example:

o={z—i(y),y— e}
t=f(y, f(z,9))
o(t) = fle, f(i(y),e))

» Sub : The set of substitutions.

More Notions about Substitutions

» Composition of ¥ and o

» Composition of two substitutions is again a substitution.

» Composition is associative but not commutative.

More Notions about Substitutions

Algorithm for obtaining a set representation of a composition of
two substitutions in a set form.

» Given:
0:{$1'—>t1,...,xn'—>tn}
J:{yl'_)slr'"ym'_)*gm}a

the set representation of their composition o6 is obtained
from the set

{1‘1 = U(tl)a sy Ty O‘(tn),yl = S1,- s Ym 2 Sm}
by deleting
» all y; — s;'s with y; € {z1,...,2,},

» all x; — o(t;)'s with z; = o(¢;).

More Notions about Substitutions

Example (Composition)

0=A{z— fly)yr—z}
o={z—a,y—bz—y}
o0 ={z — f(b),z— y}.

More Notions about Substitutions

» ¢ is an instance of s iff there exists a o such that

o(s) =t.

v

Notation: t = s (or s < t).

Reads: t is more specific than s, or s is more general than t.

v

» > is a quasi-order.

~

v

Strict part: >.
Example: f(e, f(i(y),€)) Z f(y, f(x,y)), because

o(f(y, f(z,y))) = fle, f(i(y), e)

for o = {x —i(y),y — e}

v

Unification

Syntactic unification:
Given: Two terms s and t.
Find: A substitution o such that o(s) = o(t).

» o: a unifier of s and ¢.

» o a solution of the equation s =" ¢.

Examples

f(x) =" f(a)
z="f(y):

. exactly one unifier {z — a}

infinitely many unifiers

{z = fW)} Az = fla),y = al,...

no unifiers

no unifiers

Examples

=’ f(y) : infinitely many unifiers

{z = fy)},{z— f(a),y— a},...

» Some solutions are better than the others: {x — f(y)} is
more general than {z — f(a),y — a}

Substitutions
Instantiation Quasi-Ordering
» A substitution o is more general than 9, written o < ¢, if
there exists 1 such that no = 9.
» 9 is called an instance of o.

» The relation < is quasi-ordering (reflexive and transitive
binary relation), called instantiation quasi-ordering.

» ~ is the equivalence relation corresponding to <, i.e., the
relation <N 2.

Example

Leto={z—y}, p={z—a,y—a}, ¥ ={y— x}.
» 0 < p, because {y — a}o = p.
» 0 <9, because {y — z}o = .
» ¥ < o, because {z — y}v¥ =o0.

> o~ 9.

Substitutions

Definition (Variable Renaming)

A substitution o = {1 — y1,22 = Y2,..., Ty > Yy} is called
variable renaming iff {x1,..., 2.} = {y1,.. ., Yn}-

(Permuting the domain variables.)

Example

» {x+— y,y— z,z— x} is a variable renaming.
» {x—a}, {x—y}, and {z — 2,y — 2,2z — x} are not.

Substitutions

Definition (ldempotent Substitution)
A substitution o is idempotent iff oo = 0.

Example

Let o ={xz— f(2),y— 2z}, ¥v={z— f(y),y— z}.
» o is idempotent.
» ¢ is not: Y =0 # 9.

Substitutions

Lemma
o ~ ¥ iff there exists a variable renaming p such that pc = 4.

Proof.

Exercise.

Example
» 0 ={x—y}.
» ¥ ={y— x}.
> o~ .

» {x =y, y—x}o=1.

Substitutions

Theorem
o is idempotent iff Dom(o) N VRan(o) = 0.

Proof.

Exercise.

Substitutions

Definition (Unification Problem, Unifier, MGU)

» Unification problem: A finite set of equations
D= {s1="t1,...,50 = tn}.
» Unifier or solution of I': A substitution ¢ such that
o(s;) =o(t;) forall 1 <i<n.
» U(T): The set of all unifiers of T'. T' is unifiable iff (") # 0.
» o is a most general unifier (mgu) of I" iff it is a least element
of U(T):
» 0 cU(T), and
» o SO for every 9 € U(T).

Unifiers

Example
o:={x—y}isan mguof z =" 4.
For any other unifier 9 of z =7 y, o < ¢ because

> J(z) = J(y) = do(z).
» J(y) = Vo(y).
» J(z) = Yo (z) for any other variable z.
o' :={x > z,y — 2z} is a unifier but not an mgu of z =" .
» o/ ={y— z}o.
» oyl ={z—yz—y}l#o.
0" ={x > y,21 > 22,20+ 21} is an mgu of z = y.
» 0 ={z1 — 22,20 — z1}0".

» ¢” is not idempotent.

Unification

Question: How to compute an mgu of an unification problem?

Rule-Based Formulation of Unification

» Unification algorithm in a rule-base way.
» Repeated transformation of a set of equations.

» The left-to-right search for disagreements: modeled by term
decomposition.

The Inference System $(

» A set of equations in solved form:
{iL'l %tl,...,xn %tn}

where each x; occurs exactly once.

» For each idempotent substitution there exists exactly one set
of equations in solved form.

» Notation:

» [o] for the solved form set for an idempotent substitution o.
» og for the idempotent substitution corresponding to a solved
form set S.

The Inference System $(

v

System: The symbol L or a pair P;S where

» P is a set of unification problems,
» S is a set of equations in solved form.

» | represents failure.

v

A unifier (or a solution) of a system P;S: A substitution that
unifies each of the equations in P and S.

1 has no unifiers.

v

The Inference System $(

Example

> System: {g(a) =" g(y),9(2) =" g(g(x))}: {z = g(y)}-
» lIts unifier: {x — g(a),y — a,z+— g(g(a))}.

The Inference System $(

Six transformation rules on systems:!

Trivial:
{s="slw P8 P8
Decomposition:
{f(s1,...y80) =" f(t1,...,tn)} W P;S <
{s1="t1,...,5, = to} UP’; S, where n > 0.
Symbol Clash:
{f(s1,-..,80) =" g(t1,...,tm)Y WP S < L, if f#g.

! stands for disjoint union.

The Inference System $(

Orient:

{t="2}wP;Se{e="t UP:S ift¢V.
Occurs Check:

{z="t}wP;S e LifxeVar(t) but z # 1.
Variable Elimination:

{r ="t} wP:S e {xm— t}(P){z—t}(S)U{z~t},
if x ¢ Var(t).

Unification with

In order to unify s and t:
1. Create an initial system {s =7 t}; 0.
2. Apply successively rules from $1.

The system 4l is essentially the Herbrand's Unification Algorithm.

Examples

Example (Failure)
Unify p(f(a), g(x)) and p(y, y).

1

Examples

Example (Success)
Unify p(a, 2, h(g(2))) and p(z, h(y), h(y))-

Answer: {z — a,z +— h(g(a)),y — g(a)}

Examples

Example (Failure)
Unify p(z,z) and p(y, f(v)).

{p(:c,ac) =’ p(ya f(y))}v 0 = Dec
{e="y,2="f(y)} 0

{y="fW)} {z =y} = 0ccch
1

=—VarEl

Properties of I: Termination

Lemma
For any finite set of equations P, every sequence of
transformations in 1

P;@©P1;51<:>P2;52<=>'”

terminates either with 1 or with 0; S, with S in solved form.

Properties of I: Termination

Proof.
Complexity measure on the set P of equations: (n1,ng, ns),
ordered lexicographically on triples of naturals, where

n1 = The number of distinct variables in P.
ng = The number of symbols in P.

ns = The number of equations in P of the form ¢t =’ z where
t is not a variable.

Properties of I: Termination

Proof [Cont.]
Each rule in 4l strictly reduces the complexity measure.

Rule ny mng2 N3
Trivial > >
Decomposition = >
Orient = = >
Variable Elimination >

Properties of I: Termination

Proof [Cont.]

» A rule can always be applied to a system with non-empty P.

» The only systems to which no rule can be applied are | and
0;S.

» Whenever an equation is added to S, the variable on the

left-hand side is eliminated from the rest of the system, i.e.
S1,59, ... are in solved form.

Corollary
If P;) &* 0; S then og is idempotent.

Properties of l: Correctness

Notation: I" for systems.

Lemma
For any transformation P; S < T', a substitution ¥ unifies P; S iff
it unifies I.

Properties of l: Correctness

Proof.
Occurs Check: If 2 € Var(t) and x # t, then

» 1z contains fewer symbols than ¢,
» ¥(x) contains fewer symbols than J(t) (for any ¥).
Therefore, ¥(z) and ¥(t) can not be unified.

Variable Elimination: From J(z) = 9¥(t), by structural induction
on w:

PY(u) = Hax — t}(u)
for any term, equation, or set of equations u. Then

I(P) =9z tH(P), I(S) =9z — t}(S).

O

Properties of l: Correctness

Theorem (Soundness)
If P;) & 0; S, then og unifies any equation in P.

Proof.

By induction on the length of derivation, using the previous lemma
and the fact that og unifies S. O

Properties of l: Correctness

Theorem (Completeness)

If ¥ unifies every equation in P, then any maximal sequence of
transformations P;() < --- ends in a system (); S such that
os S 0.

Proof.

Such a sequence must end in (J; S where ¥ unifies S (why?).

For every binding x — t in og, Jog(x) = ¥(t) = ¥(x) and for
every z ¢ Dom(og), Yog(x) = 9(z). Hence, ¥ = Jog. O

Corollary

If P has no unifiers, then any maximal sequence of transformations
from P; () must have the form P;() < --- & L.

Observations

» $[computes an idempotent mgu.

» The choice of rules in computations via 4l is “don’t care”
nondeterminism (the word “any” in Completeness Theorem).

» Any control strategy will result to an mgu for unifiable terms,
and failure for non-unifiable terms.

» Any practical algorithm that proceeds by performing
transformations of L[in any order is

» sound and complete,
» generates mgus for unifiable terms.

» Not all transformation sequences have the same length.

» Not all transformation sequences end in exactly the same mgu.

Example 3.10 in Prolog

Recall: Unification algorithm fails for p(z,z) =7 p(y, f(v)) because
of the occurrence check.

But Prolog behaves differently:

Example (Infinite Terms)

X = f(xx), Y = f(kx).

In some versions of Prolog output looks like this:
X =fEEEEEEEEEC .
Y=fEEEEEEEEECC ..

Occurrence Check

Prolog unification algorithm skips Occurrence Check.
Reason: Occurrence Check can be expensive.
Justification: Most of the time this rule is not needed.

Drawback: Sometimes might lead to unexpected answers.

Occurrence Check

Example

less(X,s(X)).
foo:-less(s(Y),Y).

7- foo.

Yes

	*

