Logic Programming

Unification

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University, Linz, Austria
kutsia@risc. jku.at

Unification

Solving term equations:
Given: Two terms s and t.
Find: A substitution o such that o(s) = o(t).

Substitutions

» A T(F,V)-substitution: A function o : V — T(F,V), whose

domain

Dom(o) :={z | o(x) # z}
is finite.

» Range of a substitution o
Ran(o) :={o(z) | = € Dom(o)}.
» Variable range of a substitution o:
VRan(o) := Var(Ran(o)).

» Notation: lower case Greek letters o,v, v, 1, . . ..
Identity substitution: e.

Substitutions

» Notation: If Dom(o) = {z1,...,2n}, then o can be written
as the set
{z1 = o(z1),...,2p — o(zn)}.
» Example:

{z —i(y),y — e}




Substitutions

» The substitution o can be extended to a mapping
o:T(F,V)—=T(F,V)
by induction:
o(f(ti,...,tn)) = f(o(tr),...,o(tn)).
» Example:

o={x—i(y),y — e}
t=f(y, f(z,y))
o(t) = fle, f(i(y),e))

» Sub : The set of substitutions.

More Notions about Substitutions

» Composition of ¥ and o
od(x) = o(¥(x)).

» Composition of two substitutions is again a substitution.

» Composition is associative but not commutative.

More Notions about Substitutions

Algorithm for obtaining a set representation of a composition of
two substitutions in a set form.

» Given:
0:{x1|—>t1,...,xnb—>tn}
o={y1 > S,y Ym — Sm}s

the set representation of their composition o8 is obtained
from the set

{z1—=0o(t1),...,zn = 0(tn), Y1 = S1,- -+, Ym > Sm}
by deleting
» all y; — s;'s with y; € {z1,...,2,},

» all z; — o(t;)'s with z; = o(t;).

More Notions about Substitutions

Example (Composition)

0={z— fy)yr— 2}
oc={x—a,y— bz y}
o0 ={x— f(b),z— y}.




More Notions about Substitutions

» ¢ is an instance of s iff there exists a o such that

o(s) =t.

v

Notation: ¢ 2 s (or s < t).

Reads: t is more specific than s, or s is more general than t.

v

» > is a quasi-order.

v

Strict part: >.
Example: f(e, f(i(y),e)) 2 f(y, f(z,y)), because

o(f(y, f(xz,y)) = fle, fiy),e)

foro={z—i(y),y — e}

v

Unification

Syntactic unification:
Given: Two terms s and t.
Find: A substitution o such that o(s) = o(t).

» o: a unifier of s and ¢.

» o a solution of the equation s =" ¢.

Examples

f(a): exactly one unifier {z — a}
x =" f(y): infinitely many unifiers
{z = fW)} Az — fla),y—a}, ...
f(z) ="g(y): no unifiers

=" f(x): no unifiers

Examples

z =" f(y) : infinitely many unifiers

{z = fW}Az = fla),y—a},. ..

» Some solutions are better than the others: {z +— f(y)} is
more general than {z — f(a),y — a}




Substitutions
Instantiation Quasi-Ordering
» A substitution o is more general than ¥, written o < 9, if
there exists 7 such that no = 9.
» ¢ is called an instance of o.

» The relation < is quasi-ordering (reflexive and transitive
binary relation), called instantiation quasi-ordering.

» ~ is the equivalence relation corresponding to <, i.e., the
relation <N 2.

Example

Let o ={z— vy}, p={z—=a,y—a}, 9 ={y—x}.
» 0 < p, because {y — a}o = p.
» 0 < U, because {y — z}o = 9.

v

¥ < o, because {z — y}¥ =o0.

> o~ 1.

Substitutions

Definition (Variable Renaming)

A substitution o = {x1 — y1, 22— Y2,...,Tn > Yp} is called
variable renaming iff {x1,..., 2} = {y1,...,Un}-

(Permuting the domain variables.)

Example

» {z+— y,y+— 2,z — x} is a variable renaming.

» {z—a}, {x—y}, and {z — 2,y — 2,z +— x} are not.

Substitutions

Definition (ldempotent Substitution)

A substitution ¢ is idempotent iff oo = 0.

Example

Let o ={z— f(2),y— 2z}, 9 ={x— f(y),y— z}.
» o is idempotent.
» Jis not: 99 =0 # 9.

Substitutions

Lemma
o ~ 1 iff there exists a variable renaming p such that pc = 9.

Proof.

Exercise.

Example
» o ={z—y}
» ¥ ={y— z}.
> o~ 1.

» {z—y,y— o =9.




Substitutions

Theorem
o is idempotent iff Dom(c) N VRan (o) = ().

Proof.

Exercise.

Substitutions

Definition (Unification Problem, Unifier, MGU)

» Unification problem: A finite set of equations
= {81 =’ tl,...,sn =7 tn}.
» Unifier or solution of I': A substitution o such that
o(s;) =o(t;) forall 1 <i <n.
» U(T): The set of all unifiers of T'. T is unifiable iff 2(T") # 0.
» o is a most general unifier (mgu) of I' iff it is a least element
of U(I):
» 0 €cU(T), and
» 0 S0 for every 9 e U(T).

Unifiers

Example

o:={x+y}isan mguof z =" y.

For any other unifier ¥ of 2 =" y, 0 < ¥ because
» J(z) =I(y) = Jo(x).
> I(y) =do(y).
» ¥(z) = Jo(z) for any other variable z.

o' :={x+ 2,y + z} is a unifier but not an mgu of z =7 y.
» o/ ={yw— z}o.
» {z—= vyl ={x—y,z—y} #o.

o ={x —y,21 > 29,29 — 21} is an mgu of z =" y.
» 0 ={21 > 22,20 — 2z1}0”.

7

» ¢" is not idempotent.

Unification

Question: How to compute an mgu of an unification problem?




Rule-Based Formulation of Unification

» Unification algorithm in a rule-base way.
» Repeated transformation of a set of equations.

» The left-to-right search for disagreements: modeled by term
decomposition.

The Inference System

» A set of equations in solved form:
{:El ~ll,...,Tp r"l'ﬁtn}

where each z; occurs exactly once.

» For each idempotent substitution there exists exactly one set
of equations in solved form.

» Notation:

» [o] for the solved form set for an idempotent substitution o.
» og for the idempotent substitution corresponding to a solved
form set S.

The Inference System 4

v

System: The symbol L or a pair P;.S where

» P is a set of unification problems,
» S is a set of equations in solved form.

v

L represents failure.

v

A unifier (or a solution) of a system P;S: A substitution that
unifies each of the equations in P and S.

v

1 has no unifiers.

The Inference System 4

Example

> System: {g(a) =" g(y), 9(z) =" g(g(@)}: {z =~ g(v)}.
» lts unifier: {z — g(a),y — a,z — g(g(a))}.




The Inference System 4l

Six transformation rules on systems:!

Trivial:
{s="s}wP;S < P;S.
Decomposition:
{f(s1,... 80) =" f(t1,...,tn)} W P S &
{s1="t1,...,8, =" ty,} UP'; S, where n > 0.
Symbol Clash:

{f(s1y. . ysp)="glt1,...,tm)} WP S L, if f#£g.

' stands for disjoint union.

The Inference System

Orient:
{t="2}w PS5
Occurs Check:
{t="t}wP;S =
Variable Elimination:
{t="t}wP;S =
if x ¢ Var(t).

{e="t}UP,S, ift¢V.
L if x € Var(t) but = # t.

{z > t}(P): { > t4(S) U = 1},

Unification with &

In order to unify s and t:
1. Create an initial system {s =" t}; 0.
2. Apply successively rules from 4l.
The system 4l is essentially the Herbrand's Unification Algorithm.

Examples

Example (Failure)

Unify p(f(a),g(z)) and p(y,y).

{r(f(a), g(w)) "oy )}

{f(a) =" y,9(x) =" y}; 0 =0
{y =" f( )79( )_ y} 0 =varkl
{9(z) =" f(a)}; {y ~ f(a)} =>symai

L




Examples

Example (Success)

Unify p(a, z, h(g(2))) and p(z, h(y), h(y)).

{p(a, €z, h(g(z))) = p(Z, h(?J)? h(y))}, 0 = Dec
{a="2z2="h(y),h(g(z)) =" h(y)}; § =>or
{z = a, T = (), h(g(2)) = h(y)}; 0 =varel

Answer: {z — a,x +— h(g(a)),y — g(a)}

Examples

Example (Failure)
Unify p(z, z) and p(y, f(y)).

{p(z,2) =" p(y, f(y)}; 0 =>Dec
{z =’ Y,z =’ y)}; 0 =vare
{y =’ (y)}v {x = y} == 0ccCh
L

Properties of 4: Termination

Lemma

For any finite set of equations P, every sequence of
transformations in 4

P;®<:>P1;51<2>P2;52<=>"'

terminates either with 1. or with (); S, with S in solved form.

Properties of 4: Termination

Proof.

Complexity measure on the set P of equations: (ni,na,ns),
ordered lexicographically on triples of naturals, where

n1 = The number of distinct variables in P.

ng = The number of symbols in P.

ns = The number of equations in P of the form ¢ =’ = where
t is not a variable.




Properties of : Termination

Proof [Cont.]

Each rule in 4 strictly reduces the complexity measure.

Rule ny N9 N3
Trivial > >
Decomposition = >
Orient = = >
Variable Elimination >

Properties of : Termination

Proof [Cont.]

» A rule can always be applied to a system with non-empty P.

» The only systems to which no rule can be applied are L and
0;S.

» Whenever an equation is added to S, the variable on the
left-hand side is eliminated from the rest of the system, i.e.
S1,59,... are in solved form.

Corollary
If P;) &% 0;S then og is idempotent.

Properties of 4: Correctness

Notation: I' for systems.

Lemma
For any transformation P;S < T', a substitution ¥ unifies P; S iff
it unifies T.

Properties of U: Correctness

Proof.
Occurs Check: If z € Var(t) and = # t, then

» x contains fewer symbols than ¢,
» J(x) contains fewer symbols than ¥(t) (for any ¥).
Therefore, ¥(x) and ¥(t) can not be unified.

Variable Elimination: From ¥(z) = 9(t), by structural induction
on w:

I(u) = Hz — t}(u)
for any term, equation, or set of equations u. Then

I(P) =z > t}(P),  9(S) =9z — t}(S).




Properties of U: Correctness

Theorem (Soundness)
If P;() < 0; S, then og unifies any equation in P.

Proof.
By induction on the length of derivation, using the previous lemma
and the fact that og unifies S. O

Properties of 4: Correctness

Theorem (Completeness)

If ¢ unifies every equation in P, then any maximal sequence of
transformations P;() < - -- ends in a system (); S such that
os <9,

Proof.

Such a sequence must end in ;.S where ¥ unifies S (why?).

For every binding x — t in g, Yog(z) = ¥(t) = ¥(x) and for
every x & Dom(og), Yog(x) = ¥(x). Hence, J = Jog. O

Corollary

If P has no unifiers, then any maximal sequence of transformations
from P; () must have the form P;() & --- & L.

Observations

v

31 computes an idempotent mgu.

» The choice of rules in computations via i is “don’t care”
nondeterminism (the word “any” in Completeness Theorem).

» Any control strategy will result to an mgu for unifiable terms,

and failure for non-unifiable terms.

» Any practical algorithm that proceeds by performing
transformations of 4{ in any order is

» sound and complete,
» generates mgus for unifiable terms.

» Not all transformation sequences have the same length.

» Not all transformation sequences end in exactly the same mgu.

Example ?? in Prolog

Recall: Unification algorithm fails for p(z, ) =" p(y, f(y)) because
of the occurrence check.

But Prolog behaves differently:

Example (Infinite Terms)
7- p(X,X)=p(Y,£(V)).

X = £f(xx), Y = f(*xx),

In some versions of Prolog output looks like this:
X = fEEEESTEESEESCIINIINN
Y=fEEEEEEEEEC.. DN




Occurrence Check Occurrence Check

Prolog unification algorithm skips O Check Example
rolog unification algorithm skips Occurrence Check.
g g p ) less(X,s(X)).
Reason: Occurrence Check can be expensive. foo:-less(s(Y),Y).
Justification: Most of the time this rule is not needed.
?- foo.

Drawback: Sometimes might lead to unexpected answers.
Yes




