
Logic Programming
Backtracking and Cut

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

kutsia@risc.jku.at

1 / 48

Contents

Generating Multiple Solutions

The "Cut"
Confirming the Choice of a Rule
The "Cut-fail" Combination
Terminating a "Generate-and-Test"
Problems with the Cut

2 / 48



Finitely Many Alternatives

Simplest way: Several facts match against the question.

Example
father(mary, george).
father(john, george).
father(sue, harry).
father(george, edward).

?- father(X, Y).
X=mary, Y=george ;
X=john, Y=george ;
X=sue, Y=harry ;
X=george, Y=edward

The answers are generated in the order in which the facts are given.

3 / 48

Repeating the Same Answer

Old answers do not influence newer ones: same answer can be
returned several times.

Example
father(mary, george).
father(john, george).
father(sue, harry).
father(george, edward).

?- father(_,X).
X = george ;
X = george ;
X = harry ;
X = edward

george returned twice because George is the father of both Mary
and John.

4 / 48



Embedding Does Not Matter

Backtracking happens in the same way if the alternatives are
embedded more deeply.

Example
father(mary, george).
father(john, george).
father(sue, harry).
father(george, edward).

child(X,Y) :- father(Y,X)

?- child(X,Y).
X = george, Y = mary ;
X = george, Y = john ;
X = harry, Y = sue ;
X = edward, Y = george

5 / 48

Mixing facts and Rules

If facts and rules are mixed, the alternatives follow again in the order
in which things are presented.

Example
person(adam). ?- person(X).
person(X) :- mother(X, Y). X = adam ;
person(eve). X = cain ;
mother(cain, eve). X = abel ;
mother(abel, eve). X = jabal ;
mother(jabal, adah). X = tubalcain ;
mother(tubalcain, zillah). X = eve

6 / 48



Multiple Goals with Multiple Solutions

More interesting case: two goals, each with several solutions.

Example
pair(X, Y) :- ?- pair(X, Y).

boy(X), X = john, Y = griselda ;
girl(Y). X = john, Y = ermintrude ;

X = john, Y = brunhilde ;
boy(johm). X = marmaduke, Y = griselda ;
boy(marmaduke). X = marmaduke, Y = ermintrude ;
boy(bertram). X = marmaduke, Y = brunhilde ;
boy(charles). X = bertram, Y = griselda ;

...
girl(griselda).
girl(ermitrude).
girl(brunhilda).

12 solutions.

7 / 48

Infinite Number of Possibilities

Sometimes we want to generate an infinite number of possibilities.

It might not be known in advance how many of them needed.

Example
is_integer(0).
is_integer(X) :-

is_integer(Y),
X is Y+1.

?- is_integer(X).
X = 0 ;
X = 1 ;
X = 2 ;
...

How does it work?

8 / 48



Member and Multiple Solutions

Most rules give rise to alternative solutions if they are used for goals
that contain many uninstantiated variables.

Example
member(X, [X|_]).
member(X, [_|Y]) :-

member(X, Y).

?- member(A, X).
X = [A|_] ;
X = [_,A|_] ;
X = [_,_,A|_] ;
X = [_,_,_,A|_] ;
...

There is a way to tell PROLOG to discard choices: The "cut".

9 / 48

The "Cut"

Cut (written "!") tells the system which previous choices need
not to be considered again when it backtracks.
Advantages:

I The program will run faster. No time wasting on attempts to
re-satisfy certain goals.

I The program will occupy less memory. Less backtracking
points to be remembered.

10 / 48



Example of Cut

Reference library:

I Determine which facilities are available.
I If one has an overdue book can only use the basic

facilities.
I Otherwise can use the general facilities.

11 / 48

Reference Library

Example

facility(Person, Facility) :-
book_overdue(Person, Book),
!,
basic_facility(Facility).

facility(Person, Facility) :-
general_facility(Facility).

basic_facility(reference).
basic_facility(enquiries).

additional_facility(borrowing).
additional_facility(inter_library_loan).

general_facility(X) :- basic_facility(X).
general_facility(X) :- additional_facility(X).

12 / 48



Reference Library

Example

book_overdue(’C. Watzer’, book10089).
book_overdue(’A. Jones’, book29907).
...
client(’C. Watzer’).
client(’A. Jones’).
...
?- client(X), facility(X,Y).

How does it proceed?

13 / 48

Reference Library

The effect of cut:

I If a client has an overdue book, then only allow her/him the
basic facilities.

I Don’t bother going through all the clients overdue books.
I Don’t remember any other rule about facilities.

14 / 48



The Effect of Cut

In general, when a cut is encountered as a goal

I The system becomes committed to all choices made since
the parent goal was invoked.

I All other alternatives are discarded.
I An attempt to re-satisfy any goal between the parent goal

and the cut goal will fail.

15 / 48

Common Uses of Cut

Three main cases:

1. To tell the system that it found the right rule for a particular
goal. Confirming the choice of a rule.

2. To tell the system to fail a particular goal without trying for
alternative solutions. Cut-fail combination.

3. To tell the system to terminate the generation of alternative
solutions by backtracking. Terminate a "generate-and-test".

16 / 48



Confirming the Choice of a Rule

Typical situation:

I We wish to associate several clauses with the same
predicate.

I One clause is appropriate if the arguments are of one form,
another is appropriate if the arguments have another form.

I Often (but not always) these alternatives can be made
disjoint by providing just the argument patterns (e.g.,
empty list in one clause, and a nonempty list in another.)

I If we cannot specify an exhaustive set of patterns, we may
give rules for some specific argument types and gave a
"catchall" rule at the end for everything else.

17 / 48

Confirming the Choice of a Rule

Example of the case when an exhaustive set of patterns can
not be specified:

Example
sum_to(1, 1).
sum_to(N, Res):-

N1 is N-1,
sum_to(N1, Res1),
Res is Res1+N.

?- sum_to(5, X).
X=15 ;

It loops.

18 / 48



Confirming the Choice of a Rule

What happened?

I sum_to(1,1) and sum_to(N,Res) are not disjoint
alternatives.

I sum_to(1,1) matches both sum_to(1,1) and
sum_to(N,Res).

I But if a goal matches sum_to(1,1), there is no reason
why it should try the second alternative, sum_to(N,Res).

I Cut the second alternative.

19 / 48

Confirming the Choice of a Rule

Example

sum_to(1, 1) :-
!.

sum_to(N, Res) :-
N1 is N-1,
sum_to(N1, Res1),
Res is Res1+N.

?- sum_to(5, X).
X = 15 ;
false

20 / 48



More Usual Situation

I In the previous example we could specify a pattern for the
boundary case sum_to(1,1).

I Usually, it is hard to specify pattern if we want to provide
extra conditions that decide on the appropriate rule.

I The previous example still loops on goals
sum_to(N,Res) where N =< 1.

I We can put this condition in the boundary case telling
PROLOG to stop for such goals.

I But then the pattern can not be specified.

21 / 48

Cut with Extra Conditions

Example

sum_to(N, 1) :-
N =< 1,
!.

sum_to(N, Res) :-
N1 is N-1,
sum_to(N1, Res1),
Res is Res1+N.

22 / 48



Cut and Not

General principle:
I When cut is used to confirm the choice of a rule, it can be

replaced with not.
I not(X) succeeds when X, seen as a PROLOG goal, fails.
I Replacing cut with not is often considered a good

programming style.
I However, it can make the program less efficient.
I Trade-off between readability and efficiency.

23 / 48

Cut and Not

Example (With Cut) Example (With Not)

sum_to(1, 1) :- !. sum_to(1, 1).
sum_to(N, Res) :- sum_to(N, Res) :-

N1 is N-1, not(N = 1),
sum_to(N1, Res1), N1 is N-1,
Res is Res1+N. sum_to(N1, Res1),

Res is Res1+N.

24 / 48



Cut and Not

Example (With Cut) Example (With Not)

sum_to(1, 1) :- sum_to(1, 1) :-
N =< 1, !. N =< 1,
sum_to(N, Res) :- sum_to(N, Res) :-
N1 is N-1, not(N =< 1), % N > 1

sum_to(N1, Res1), N1 is N-1,
Res is Res1+N. sum_to(N1, Res1),

Res is Res1+N.

25 / 48

Double Work

not might force PROLOG to try the same goal twice:

A :- B, C.
A :- not(B), D.

B may be tried twice after backtracking.

26 / 48



The "Cut-fail" Combination

fail.

I Built-in predicate.
I No arguments.
I Always fails as a goal and causes backtracking.

27 / 48

The "Cut-fail" Combination

fail after cut:
I The normal backtracking behavior will be altered by the

effect of cut.
I Quite useful combination in practice.

28 / 48



The Average Taxpayer

Write a program to determine an average taxpayer.

Two cases:
I Foreigners are not average taxpayers.
I If a person is not a foreigner, apply the general criterion

(whatever it is) to find out whether he or she is an average
taxpayer.

29 / 48

The Average Taxpayer

Example
average_taxpayer(X) :-

foreigner(X),
!, fail.

average_taxpayer(X) :-
satisfies_general_criterion(X).

What would happen had we omitted the cut?

30 / 48



The Average Taxpayer

Wrong version, without cut:

Example (Wrong)
average_taxpayer(X) :-

foreigner(X),
fail.

average_taxpayer(X) :-
satisfies_general_criterion(X).

If there is a foreigner widslewip who satisfies the general
criterion, the program will incorrectly answer yes on the goal

?- average_taxpayer(widslewip).

31 / 48

The Average Taxpayer

We can use cut-fail combination to define
satisfies_general_criterion.

Two cases:
I A person whose spouse earns more than a certain amount

(e.g. Euro 3000) does not satisfy the criterion of being an
average taxpayer.

I If this is not the case, then a person satisfies the criterion if
his income is within a certain interval (e.g. more that Euro
2000 and less than Euro 3000).

32 / 48



The Average Taxpayer

Clauses for satisfies_general_criterion.

Example
satisfies_general_criterion(X) :-

spouse(X, Y),
gross_income(Y, Inc),
Inc > 3000,
!, fail.

satisfies_general_criterion(X) :-
gross_income(X,Inc),
Inc < 3000,
Inc > 2000.

33 / 48

The Average Taxpayer

We can use cut-fail combination to define gross_income.

Two cases:
I A person who gets a pension less than certain amount

(e.g. Euro 500), is considered to have no gross income.
I Otherwise, person’s gross income is determined as the

sum of his/her gross salary and investment income.

34 / 48



The Average Taxpayer

Clauses for gross_income.

Example
gross_income(X, Y) :-

receives_pension(X, P),
P < 500,
!, fail.

gross_income(X, Y) :-
gross_salary(X, Z),
investment_income(X, W),
Y is Z+W.

35 / 48

not with Cut and Fail

not can be defined in terms of cut and fail.

Example
not(P) :-

call(P),
!, fail.

not(P).

Notation: \+ is used more often for not.

36 / 48



Replacing Cut with not

I Cut can be replaced with not in cut-fail combination.
I Unlike the first use of cut, this replacement does not affect

efficiency.
I However, more reorganization of the program is required.

Example
average_taxpayer(X) :-

not(foreigner(X)),
not(spouse(X,Y), gross_income(Y,Inc), Inc>3000),
...

37 / 48

Terminating a "Generate-and-Test"

"Generate-and-Test":

I One of the simplest AI search techniques.
I Generate: Generate all possible solutions to a problem.
I Test: Test each to see whether they are a solution.
I A possible solution is generated and then tested.
I If the test succeeds a solution is found.
I otherwise, backtrack to next possible solution.

38 / 48



Tic-Tac-Toe

Tic-Tac-Toe game: Get three in a raw, column, or diagonal:

X O
O O
X X X

X X O
O X
O X

O O
X O
X X O

Representation:

1 2 3
4 5 6
7 8 9

39 / 48

Tic-Tac-Toe

We will show a part of the program to play Tic-Tac-Toe.

Used predicates:
I var: built-in predicate. var(T) succeeds if T is a free

variable.
I arg: built-in predicate. arg(N,T,A) succeeds if A is Nth

argument of the term T.
I aline: defined predicate. Generator of possible lines. For

instance, aline([1,5,9]) is the following line:
X

X
X

40 / 48



Part of the Program for Tic-Tac-Toe

The opponent (playing with crosses) is threatening to claim a
line:

threatening([X,Y,Z], B, X) :-
empty(X, B), cross(Y, B), cross(Z, B).

X
X

X X

41 / 48

Part of the Program

Example
forced_move(Board, Sq) :-

aline(Squares),
threatening(Squares, Board, Sq),
!.

aline([1,2,3]).
aline([4,5,6]).
aline([7,8,9]).
aline([1,4,7]).
aline([2,5,8]).
aline([3,6,9]).
aline([1,5,9]).
aline([3,5,7]).

42 / 48



Part of the Program

Example (Cont.)
threatening([X,Y,Z], B, X) :-

empty(X, B),
cross(Y, B),
cross(Z, B).

threatening([X,Y,Z], B, Y) :-
cross(X, B),
empty(Y, B),
cross(Z, B).

threatening([X,Y,Z], B, Z) :-
cross(X, B),
cross(Y, B),
empty(Z, B).

43 / 48

forced_move

forced_move implements "generate-and-test":

I Moves Generated by alines: All possible ways that cross
can win.

I Moves Tested by threatening: If cross can win in the
next move.

I If no forced moves are found, then the predicate fails and
some other predicate would decide what move to make.

44 / 48



Cut

Suppose embedded in a larger program:

I If forced_move successfully finds a move then Sq
becomes instantiated to the move.

I If, later, a failure occurs (after this instantiation)
forced_move would retry.

I Cut can prevent PROLOG to search further (which would be
futile) and not waste time.

I When we look for forced moves it is only the first solution
that is important.

45 / 48

Problems with the Cut

Cut changes behavior of programs:

I Introducing cuts may give a correct behavior when goals
are of one form.

I There is no guarantee that anything sensible will happen if
goals of another form start appearing.

46 / 48



Problems with the Cut

Example
number_of_parents(adam, 0) :- !.
number_of_parents(eve, 0) :- !.
number_of_parents(_, 2).

?- number_of_parents(eve, X).
X = 0 ;
false

?- number_of_parents(john, X).
X = 2 ;
false

?- number_of_parents(eve, 2).
true

47 / 48

Problems with the Cut

Example
number_of_parents(adam, N) :- !, N=0.
number_of_parents(eve, N) :- !, N=0.
number_of_parents(_, 2).

?- number_of_parents(eve, 2).
false

However, it will still not work properly if we give goals such as
?- number_of_parents(X, Y).

48 / 48


	Generating Multiple Solutions
	The "Cut"
	Confirming the Choice of a Rule
	The "Cut-fail" Combination
	Terminating a "Generate-and-Test"
	Problems with the Cut


