
Logic Programming
Using Data Structures

Part 1

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria

kutsia@risc.jku.at

1 / 27

Contents

Structures and Trees

Lists

Recursive Search

Mapping

2 / 27

Representing Structures as Trees

Structures can be represented as trees:

I Each functor — a node.
I Each component — a branch.

Example

parents(charles, elizabeth, philip).

parents

charles elizabeth philip

3 / 27

Representing Structures as Trees

Branch may point to another structure: nested structures.

Example

a+b*c.

+

a *

b c

book(moby_dick, author(herman, melville)).

book

moby_dick author

herman melville

4 / 27

Parsing

Represent a syntax of an English sentence as a structure.

Simplified view:
I Sentence: noun, verb phrase.
I Verb phrase: verb, noun.

5 / 27

Parsing

Structure:

sentence(noun(X), verb_phrase(verb(Y), noun(Z))).

Tree representation:

sentence

noun

X

verb_phrase

verb

Y

noun

Z

6 / 27

Parsing

Example

John likes Mary.

sentence(noun(John), verb_phrase(verb(likes), noun(Mary))).

sentence

noun

John

verb_phrase

verb

likes

noun

Mary

7 / 27

Lists

Very common data structure in nonnumeric programming.

Ordered sequence of elements that can have any length.

I Ordered: the order of elements in the sequence matters.
I Elements: any terms — constants, variables, structures —

including other lists.

Can represent practically any kind of structure used in symbolic
computation.

The only data structures in LISP — lists and constants. In

PROLOG — just one particular data structure.

8 / 27

Lists

A list in PROLOG is either
I the empty list [], or
I a structure .(h, t) where h is any term and t is a list.

h is called the head and t is called the tail of the list .(h, t).

Example
I [].

I .(a, []).
I .(a, .(b, [])).

I .(a, .(a, .(1, []))).
I .(.(f (a,X), []), .(X, [])).
I .([], []).

NB. .(a, b) is a PROLOG term, but not a list!

9 / 27

Lists as Trees

Lists can be represented as a special kind of tree.

Example

.(a, [])
.

a []

.(.(X, []), .(a, .(X, [])))

.

.

X []

.

a .

X []

10 / 27

List Notation

Syntactic sugar:
I Elements separated by comma.
I Whole list enclosed in square brackets.

Example

.(a, []) [a]

.(.(X, []), .(a, .(X, []))) [[X], a,X]

.([], []) [[]]

11 / 27

List Manipulation

Splitting a list L into head and tail:

I Head of L — the first element of L.
I Tail of L — the list that consists of all elements of L except

the first.

Special notation for splitting lists into head and tail:

I [X|Y], where X is head and Y is the tail.

NB. [a|b] is a PROLOG term that corresponds to .(a, b).

It is not a list!

12 / 27

Head and Tail

Example

List Head Tail

[a, b, c, d] a [b, c, d]

[a] a []

[] (none) (none)

[[the, cat], sat] [the, cat] [sat]

[X + Y, x + y] X + Y [x + y]

13 / 27

Unifying Lists

[X,Y,Z] = [john, likes, fish] X = john, Y = likes,
Z = fish

[cat] = [X|Y] X = cat, Y = []

[X,Y|Z] = [mary, likes,wine] X = mary, Y = likes,
Z = [wine]

[[the,Y],Z] = [[X, hare], [is, here]] X = the, Y = hare,
Z = [is, here]

[[the,Y]|Z] = [[X, hare], [is, here]] X = the, Y = hare,
Z = [[is, here]]

[golden|T] = [golden, norfolk] T = [norfolk]

[vale, horse] = [horse,X] (none)

[white|Q] = [P|horse] P = white, Q = horse

14 / 27

Strings are Lists

PROLOG strings — character string enclosed in double quotes.

Examples: “This is a string”, “abc”, “123”, etc.

Represented as lists of integers that represent the characters
(ASCII codes).

For instance, the string “system” is represented as
[115, 121, 115, 116, 101, 109].

15 / 27

Membership in a List

member(X,Y) is true when X is a member of the list Y.

One of two conditions:
1. X is a member of the list if X is the same as the head of the

list
member(X,[X|_]).

2. X is a member of the list if X is a member of the tail of the
list

member(X,[_|Y]) :- member(X,Y).

16 / 27

Recursion

The first condition is the boundary condition.

(A hidden boundary condition is when the list is the empty list,
which fails.)

The second condition is the recursive case.

In each recursion the list that is being checked is getting smaller
until the predicate is satisfied or the empty list is reached.

17 / 27

Member Success

Step-by-step, using trace.

?- member(a, [a,b,c]).
Call: (8) member(a,[a,b,c]) ?
Exit: (8) member(a,[a,b,c]) ?
true

?- member(b, [a,b,c]).
Call: (8) member(b,[a,b,c]) ?
Call: (9) member(b,[b,c]) ?
Exit: (9) member(b,[b,c]) ?
Exit: (8) member(b,[a,b,c]) ?
true

18 / 27

Member Failure

Step-by-step, using trace.

?- member(d,[a,b,c]).
Call: (8) member(d,[a,b,c]) ?
Call: (9) member(d,[b,c]) ?
Call: (10) member(d,[c]) ?
Call: (11) member(d,[]) ?
Fail: (11) member(d,[]) ?
Fail: (10) member(d,[c]) ?
Fail: (9) member(b,[b,c]) ?
Fail: (8) member(b,[a,b,c]) ?
false

19 / 27

Member. Questions

What happens if you ask PROLOG the following questions:

?- member(X, [a,b,c]).
?- member(a, X).
?- member(X, Y).
?- member(X, _).
?- member(_, Y).
?- member(_, _).

20 / 27

Recursion. Termination Problems

Avoid circular definitions. The following program will loop on
any goal involving parent or child:

parent(X, Y) :- child(Y, X).
child(X, Y) :- parent(Y, X).

Use left recursion carefully. The following program will loop on
?- person(X):

person(X) :- person(Y), mother(X, Y).
person(adam).

21 / 27

Recursion. Termination Problems

Rule order matters.

General heuristics: Put facts before rules whenever possible.

Sometimes putting rules in a certain order works fine for goals
of one form but not if goals of another form are generated:

islist([_|B]) :- islist(B).
islist([]).

works for goals like islist([1,2,3]), islist([]),
islist(f(1,2)) but loops for islist(X).

What will happen if you change the order of islist clauses?

22 / 27

Weaker Version of islist

Weak version of islist.

weak_islist([]).
weak_islist([_|_]).

Can it loop?

Does it always give the correct answer?

23 / 27

Mapping?

Map a given structure to another structure given a set of rules:

1. Traverse the old structure component by component
2. Construct the new structure with transformed components.

24 / 27

Mapping a Sentence to Another

Example
you are a computer maps to a reply i am not a computer.
do you speak french maps to a reply no i speak german.

Procedure:
1. Accept a sentence.
2. Change you to i.
3. Change are to am not.
4. Change french to german.
5. Change do to no.
6. Leave the other words unchanged.

25 / 27

Mapping a Sentence. PROLOG Program

Example

change(you, i).
change(are, [am,not]).
change(french, german).
change(do, no).
change(X, X).

alter([], []).
alter([H|T], [X|Y]) :-
change(H, X),
alter(T, Y).

26 / 27

Boundary Conditions

Termination:
alter([],[]).

Catch all (If none of the other conditions were satisfied, then
just return the same):

change(X,X).

27 / 27

	Structures and Trees
	Lists
	Recursive Search
	Mapping

