Logic Programming
 Prolog as a Language

Temur Kutsia

Research Institute for Symbolic Computation Johannes Kepler University Linz, Austria
kutsia@risc.jku.at

Prolog as a Language

- Syntax
- Operators
- Equality
- Arithmetic
- Satisfying goals

Syntax

Terms:

- constant
- variable
- structure

Constants

- Naming (specific objects, specific relationships)
- likes mary john book wine owns jewels can_steal
- a
- void
- =
- 'george-smith'
- -->
- george_smith
- ieh2304
- Integers (size is implementation dependent)

Non-Constants

The following symbols are not constants:

- 2340 ieh - begins with a number.
- george-smith - contains a dash.
- Void - begins with a capital.
- _alpha - begins with an underscore.

Variables

Begin with a capital or with an underscore:

- Answer
- Input
- _3_blind_mice

Anonymous variable: a single underscore

- likes (john,_).
- Need not be assigned to the same variable likes (_, _) .

Structures

Collection of objects (components), grouped together in one object.

Help organize.
Make code more readable.

Structures

Example: an index card for a library

- Author's Name
- Title
- Date
- Publisher
- Name could be split also first, last, etc.

Examples

- owns(john, book).
- One Level:
owns(john, wuthering_heights).
owns(mary, moby_dick).
- Deeper:
owns(john, book(wuthering_heights,bronte)). owns(john, book(wuthering_heights, author(emily,bronte))).

Questions

- Does John own a book by the Bronte sisters? owns(john, book(X, author(Y,bronte))).
- For the yes/no question
owns(john, book (_, author(_,bronte))). (note that two _'s could match different objects)

Equality

An infix operator =

- $\mathrm{X}=\mathrm{Y}$
a match is attempted between expression X and expression Y.
- Prolog does what it can to match X and Y .

Example: Instantiating

X is uninstantiated.
Y is an object.
$X=Y: \quad X$ and Y will be matched.
Thus X will be instantiated by the object Y .
?- $\mathrm{X}=$ rides (man,bicycle).
X = rides(man,bicycle).

Example: Symbols

?- policeman = policeman.
true.
?- paper = pencil.
false.
?- $1066=1066$.
true.
?- $1206=1583$.
false.

Arguments Instantiated

Equating structures - matching arguments.

$$
\begin{aligned}
& ?-\text { rides(man,bicycle) = rides(man, X). } \\
& X=\text { bicycle. }
\end{aligned}
$$

Arguments Instantiated

$$
\begin{aligned}
?- & a(b, C, d(e, F, g(h, i, J)))= \\
& a(B, C, d(E, f, g(H, i, j))) \cdot \\
B= & b \\
C= & c \\
E= & e \\
F= & f \\
H= & h \\
J= & j
\end{aligned}
$$

Equality

$$
\begin{aligned}
& ?-X=X . \\
& \text { true } . \\
& ?-Y=X . \\
& Y=X .
\end{aligned}
$$

Equality

$$
\begin{aligned}
& ?-X=Y, X=1200 . \\
& X=1200, Y=1200 .
\end{aligned}
$$

Arithmetic Comparisons

$=$
$\backslash=$
$<$
$>$
$=<$
$>=$

Arithmetic

```
?- 123 > 14.
true.
?- 14 > 123.
false.
?- 123 > X.
ERROR: Arguments are not sufficiently
instantiated
```


Example

Prince was a prince during year Year if Prince reigned between years Begin and End, and Year is between Begin and End.

```
prince(Prince, Year) :-
reigns(Prince, Begin, End),
Year >= Begin,
Year =< End.
reigns(rhodri, 844, 878).
reigns(anarawd, 878, 916).
reigns(hywel_dda, 916, 950).
reigns(lago_ad_idwal, 950, 979).
reigns(hywel_ab_ieuaf, 979, 985).
reigns(cadwallon, 985, 986).
reigns(maredudd, 986, 999).
```


Runs

Was Cadwallon a prince in 986 ?

?- prince(cadwallon, 986).
true.
Was Rhodri a prince in $1995 ?$

```
prince(rhodri, 1995).
false.
```


Who Was a Prince When

Who was the prince in 900 ?
?- prince(Prince, 900).
Prince = anarawd ; false.

Who was the prince in $979 ?$
?- prince (Prince, 979).
Prince = lago_ad_idwal ;
Prince = hywel_ab_ieuaf ;
false.

Invalid Question

When was Cadwallon a prince?

?- prince(cadwallon, Year).
ERROR: Arguments are not sufficiently
instantiated

Calculating

Calculating the population density of a country: Population over the area. (NB. the built-in predicate is.)

```
density(Country, Density) :-
pop(Country, Pop),
area(Country, Area),
Density is Pop/Area.
pop(usa, 305).
pop(india, 1132).
pop(china, 1321).
pop(brazil, 187).
area(usa, 3).
area(india, 1).
area(china, 4).
area(brazil, 3).
```


Questions

What is the population density of USA?
?- density(usa, $X)$.
$\mathrm{X}=101.667$;
false.

Questions

What country has which density?

```
?- density(X, Y).
X = usa
Y = 101.667 ;
X = india
Y = 1132 ;
X = china
Y = 330.25 ;
X = brazil
Y = 62.3333 ;
false.
```


Arithmetic Operations

```
X + Y
X - Y
X * Y
X / Y
X mod Y
```


How Prolog Answers Questions

Program:

```
female(mary).
parent(C, M, F) :-
mother(C, M),
father(C, F).
mother(john, ann).
mother(mary, ann).
father(mary, fred).
father(john, fred).
```


Question:

?-female(mary), parent(mary, M,F), parent(john, M,F).
How does it work?

Matching

An uninstantiated variable will match any object.
That object will be what the variable stands for.
An integer or atom will only match itself.
A structure will match another structure if

- they have the same functor and the same number of arguments and
- all the corresponding arguments match.

How Is this Matched?

$$
\begin{aligned}
& ?-\operatorname{sum}(X+Y)=\operatorname{sum}(2+3) . \\
& X=2 \\
& Y=3
\end{aligned}
$$

