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1 Introduction

In this paper,we presentthe main ideasof a new, heuristic,proving methodfor predicate
logic calledthe PCSmethod(Proving-Computing-Solvingnethod).The methodis particu
larly suitedfor proving theoremsn theorieswhosemain notionsare definedby formulae
with alternatingquantifiers,i.e. formulaeof the form Y3V ... A typical example of such a

notion is the notion of limit:

limit[f, al e V 3 \rv: [f[n]—a <€

e0 n=N

The main emphasis of the PCS method is naturalness, i.e. the method imitates human proof
style and generates proofs that are easy to understand. Also, in the cases the method works,
it normally finds the proof with very little search.



In contrastto the resolution method and other well-known methodsfor automated
theoremproving in predicatelogic, the PCSis not completeand will fail in many cases.
However,we believe that, for the acceptancef theoremproving as a tool for practical
theoremproving, it is importantto comeup with specialproof methodgshatdeliver natural
proofsin shorttime for the many nontrivial but not too difficult theoremghatoccurin the
usual explorationof mathematicakheories.For this objectiveit seemsthat the PCS can
makea usefulcontribution.In fact, proving the propositionsaboutthe elementartheory of
analysis,e.g. propositionsaboutthe notion of limit, for generalpredicatelogic theorem
proversstill is a hardproblemand,thus,we believethatthe PCSmethodis a decisivestep
forward.

Essentially the PCSmethod,in a naturalway, reducegrovingto solving.In the caseof
analysis,proofs are reducedto solving constraintsover the real numbers.Fortunately by
the work of Collins and others,see[Collins 1975] and [Caviness,Johnson1998], there
exist completealgorithmsfor solving the mostgeneralclassof constraintsover real num
bers.Thus,in the casesve manageto reducethe proof of a theoremto constraintsolving
over the reals, the proof can be establishedIn fact, we will seethat this reductionby the
PCSmethodis "natural" and that the solution of the constraintds an "uninteresting'step
whosedetails peopledo not wantto seewhenthey are exploring analysisbecauseat that
stage they alreadymasterthe theory of real numbersandwould like to concentraten the
explorationof the notionsof analysidike limit, derivative,etc. Thus,it is methodologically
appropriateo call constrainsolversas'"black boxes"atthis stage.

2 THAOREMY

The Theorema systemis a softwaresystemthat aims at automatingproving in a uniform
logic and softwareframe for formal mathematicslt is programmedn Mathematicaand,
hencejs availableon all platformson which Mathematicas available.

However,this doesnot entail that, whendoing proofsin Theorema, any of the implicit
knowledgeof Mathematicas used.All knowledgethatis usedin Theorema proofscanbe
statedexplicity. However,we alsohavemeansto stateexplicitly thatwell-definedsections
of Mathematic&knowledgej.e. algorithmsfor manymathematicafunctions,canbe usedin
proofs. This givesmaximumfreedomfor the userto "believe"in the correctnessf Mathe
maticaknowledgeor not.

Theorema is a multi-methodsystem,i.e. we do not attemptto generateproofsin all



areasof mathematicswith just one generalpredicatelogic proving method.In fact, we
believe that having only one proof methodfor all of mathematicsalthoughtheoretically
possible,is not practical. Thus,in Theorema, we provide a library of generaland special
proverstogethemwith generalandspecialsolversandgeneralindspecialsimplifiers.

In Theorema, we emphasizehe importanceof readableproofs and nice output. Thus,
we do not only generateabstractproof objectsbut we also provide post-processorthat
transformthe abstracproof objectsinto prooftextthatcaneasilybereadby humans.

The Theorema systemis basedon researchof the authorin the areaof computer
algebra,formal mathematicsand didactics since 1975 and is now a joint effort of the
Theorema Working Groupdirectedby the authorsince1996,seewww.theorema.org. More
detailsaboutTheorema canbefoundin [Buchbergeretal. 1997,2000].

3 Mathematical Texts in THAOREMY

Before we go into the details of the PCS method,we presentan exampleformal text in
Theorema which will later be usedfor demonstratinghe method.We startwith the defini-
tion of the notionof limit:

Definition|"limit:", any[f, al,
limit[f, aj < v 3 V [f[n] -al <¢|

e0 n=N
Theactualdefinitionis the predicatdogic formula

limit[f, al< V % V |f[n]-a <e
€ n

e0 n=N

that shouldbe self-explanatoryThe Theorema notationfor formulaeis closeto the usual
notationin mathematicatextbooks.The only exceptionis that we usebracketsinsteadof
parenthesedor function application,i.e. 'f[n]' is the term with function symbol 'f' and
argumenterm’n’. The useof bracketsansteadof parentheseis takenoverfrom Mathemat
ica becausein fact, parentheseareambiguousfor example,f(h+m)' could be understood
asboth'fim+n]' and'f.(m+n)'. The 'any[f,a]' declaresf' and'a' asfree variablesAll identifi-
ers (and function and predicatesymbols)that are neither declaredas free variablesnor
bound by a quantifier are consideredto be constants.Note that, in the above example
formula,'f' is a higher-ordewariable:It occursat the positionof a function symbolin the

term 'finl'



The keyword 'Definition’ and the label "limit* haveno logical meaning.The are only
usedfor easyreference:As soonas the abovedefinition is enteredinto an input cell of
Mathematica(after having loadedthe Theorema systemon top of Mathematica)one can
refer to the entire definition by just 'Definition["limit"]', for examplewhen building up
theories(seebelow) or whenreferringto the useof definitionsin proofs.

Now let us formulate an easy propositionon the notion of limit in the notation of
Theorema:

Proposition["limit of suni, anyff, a, g, b],
(limit[f, a] A limit[g, b)) = limit[f + g, a+b]]

We will show later how a proof of this proposition can be generated automaticaly by the
PCS prover of Theorema. Before we attempt to do this we must, of course, provide some
knowledge on the notions +, -, <, etc. occurring in the definition of the notion of limit.
First, we need the definition of + on sequences:;

Definition["+:", any[f, g, x],
(f +9)[x] =f[x] +glx]]

Also, we need aversion of the "triangle inequality”:

Lemma["|+|", any[X, Y, & b, 6, €],
(Ix+y)—(@+bl<(@+¢) < (x-a<dAly-bl<e]

Finally, we will need some knowledge on the maximum function:

Lemma["max", any[m, M1, M2],
m=ma{M1, M2] = (Mm=M1Am=M2)]

In this paper,we do not discussthe interestingquestionof how one knows which knowl-
edgeis appropriatefor proving a given theorem.In fact, playing with a systemlike Theo-
rema givesa lot of insightinto the mechanisnof how to "exploretheories"insteadof just
"proving isolatedtheorems"seesomeideason this questionin [Buchberge2000].

Now we can combinethe individual formulae abovein one knowledgebaseby the
Theorema constructTheory'.



Theory["limit",
Definition["limit:"]
Definition["+:"]
Lemma["|+|"] ]
Lemma["max’]

In fact, the "Theory' constructcan be appliedrecursively,i.e. one can build up hierarchi
cally structuredheoriesn Theorema andreferto themby asinglelabel.

4 The PCS Proving Method

4.1 An Overview on the PCS Method

The PCS proof methodwas establishedby the authorin 2000 and aims at generating
"natural” proofs.In fact, the PCSmethodbasicallyis a formalizationof a heuristicmethod
the authorhasbeenteachingfor manyyearsin his "Thinking, SpeakingWriting" courseas
apracticalprooftechniqudor humans.

Roughly,the PCSmethodproceeddby iteratively goingthroughthe following threephases:
e theP-phase ("Proving"” phase)
o the C-phase ("Computing"phase)
e the Sphase ("Solving" phase)

In the P-phasea coupleof predicatdogic rulesareappliedin the "naturaldeduction”style
in orderto decomposé¢he proof probleminto a coupleof moreelementaryproofs.In the C-

phase,definitions (and other equalitiesand equivalencesihnd implications are usedin a
"rewrite" (symbolic computation)style in order to reduce proof goals and to expand
knowledgebasesBy the P-phaseandthe C-phasepnearrivesat proof situationsin which

the goalshavethe form of existentiallyquantifiedformulae,i.e. onehasto “find" termsthat
satisfy the conditionsspecifiedin the goals.In this moment,the proof can often be com

pletedby calling algorithmicsolversfor certainspecialtheories for example the theory of

real numbers.Hence,the PCS method brings togethertheoremproving with algebraic
agorithms.



A first implementation of the PCS method, within Theorema, was sketched and tested
by the author in 1999 and was then worked out in detail in the PhD thesis [Vasaru 2000].
An implementation of the PCS method for the specia case of set theory will be presented
in the PhD thesis[Windsteiger 2001].

4.2 A Proof Generated by the PCS Prover

A proof of the above proposition can be found completely automatically, by entering the
following Theorema call

Prove[Proposition["limit of sum"], using - Theory["limit"], by - PCS]

Below, we show the proof exactly as generated by the system. One can explain the essential
ingredients of the method most easily by going through the individual steps of this example
proof.

Prove:
(Proposition (limit of sum)) . v b(limit[f, a] Allimit[g, b] = limit[f + g, a+ b)),
ag,

under the assumptions:

(Définition (limit:)) fV limit[f,a] & V ﬂ Y (f[n]-a<é)|,
a € n
e>0  n=N

(Definition (+3)) f\gx((f +9)[X] = f[x] + g[xD),

(Lemma (|+) v x+y)—(@+ bl <d+e«(x—a <dAly-bl<e)),

(Lemma (max)) m,M\{,MZ (m= max[M1, M2] = m= M1A m= M2).
We assume

(1) limit[fo, ag] A limit[go, bol,
and show

(2)  limit[fo + 9o, ao + bo]-
Formula (1.1), by (Definition (limit:)), implies:

(3 v 3V (foln - aol <€)

e>0 n=N

By (3), we can take an appropriate Skolem function such that
(4) \ff \r{ (Ifo[n] - ao| < é).

>0 n=Np| €]



Formula (1.2), by (Definition (limit:)), implies:
(5) ¥V 4V (goln] — bol < €).

>0  n=N

By (5), we can take an appropriate Skolem function such that
(6) v ¥ (golnl - bol < €).

>0 n=N[€]

Formula (2), using (Definition (limit:)), isimplied by:
(MY 3V ((fo+ goln] - (80 + bo)l < €).

e0  n=N
We assume

8) &>0,
and show
9 3 \r{ (I(fo + go)[n] — (@ + bo)| < €).

n=N

We haveto find N3 such that

(10) ‘r{ (n=N35 = |(fo + go)[N] - (ao + bo)| < ).
Formula (10), using (Definition (+:)), isimplied by:

(11) v(n=Nz = |(foln] + go[n]) ~ (@0 + bo)| < o).
Formula (11), using (Lemma (|+), isimplied by:

(12) 3 V(n=N;=[foln] -l < Algoln] - bol < €).

S+e=e
We havetofind &g, € and N3 such that

(13) @o+ei=a) /\Y (=N = lfoln] - aol <5 Algoln] - bol < €.
Formula (13), using (6), isimplied by:
(6 +¢€i = Eo)/\‘r{(n2 N3 = €1 > 0A N = Ny[e1] A [fo[n] — @l < 5p),
which, using (4), isimplied by:
Gy +€ = go)/\\nf(nz Nj = 65 >0A€ >0AN= No[65] An= Ny[€5]),
which, using (Lemma (max)), isimplied by:
(14) (65 +€i = &) /\ \r{ (n=N3% = 65> 0A€ > 0AN=max[No[dg], Na[ef]D).
Formula (14) isimplied by
(15 Gs+ei=e) [\>0/\éi> o/\x (= N3 = n = max[No[6%], N[e;1]).
Partialy solvingit, formula (15) isimplied by
(16) (6 +€i =€) Adg>0A€ >0A (N3 =max[No[op], Nulei]D).
Now,



B3+ =a)Ao5>0A€ >0
can be solved for 63 and €; by acall to Collins cad-method yielding the solution
0< 6 < &,
€ « g+ —1x%0p.
Let ustake
N3 « maxNo[65], Ni[eo + —1+65]].
Formula(16) is solved.Hence we aredone.

4.3 The Essential Ideas of the PCS Method

Taking the abovePCS-generatedroof as an example we now describethe essentiakteps
of thePCSmethodin moredetail:

The proof startsby echoingthe propositionto be proved.In our example,this is the
propositionwith label (Proposition(limit of sum)) Thenwe echothe formulaein the initial
knowledgebase.In our example,theseare the formulae with labels (Definition (limit:)),
(Definition (+:)), (Lemmay(|+])), and(Lemma(max))

P-phase: Now we startwith a phasein which the "naturaldeduction"rulesof predicate
logic, exceptthe onesfor equalities,equivalencesand implications, are appliedto the
proof goalandthe knowledge By doing this, the given proof situationis reducedo oneor
more other,simpler,proof situations.In the aboveexample the P-phasgroducedormulae
(1) and (2) by applying the "arbitrary but fixed" rule and the deductionrule of predicate
logic.

C-phase: Now we try to use"rewrite knowledge"(equivalencesgqualities andimplica
tionsin the knowledgebase)in the "rewrite" style, i.e. we replace,n the goal formulaand
in formulae of the knowledgebase,appropriateinstancesof the left-hand sidesof the
rewrite knowledgeby the correspondingnstancesof the right-handsides.Note that, by
doing so, goalsare reducedto othergoalsthatimply the given goalswhereasformulaein
the knowledgebaseare expandedo otherformualein the knowledgebasethatareimplied
by thegivenknowledgeIn our example formualag(3) and(5) aregeneratedrom (1) by C-
phasestepsusing(Definition (limit:)) asrewrite knowledge.



P-phase with Skolemization: Now we may be back in a P-phase, i.e. a phase in which
natural deduction steps can be applied. In this phase, we apply, in addition to the usual
natural deduction rules of predicate logic, Skolemization, i.e. for formulae of the form
¥x 3y F[x, y] in the knowledge base we introduce new function constants("Skolem"
function constantsiandasseriv, F[x, f[x]]. This stepis crucial for havingthe possibility
in the later S-phaseto constructsolving termsfor existentially quantified formulaein an
explicit way. In our example formulae(4) and (6) are derivedfrom formulae(3) and (5),
respectivelyby Skolemization.

C-phase: Now we may againbe in a C-phasdan which rewrite knowledgeis applicable
in rewrite style. In our example, (7) is now obtained from (2) by using again
(Definition (limit:)) asarewrite rule.

P-phase: Now againa P-phaseédringsus to the additionalassumption8) andthe new
goal(9).

Sphase: Now the goal is an existentially quantified formula and we must start
"solving”, i.e. finding an appropriateterm that satisfiesthe condition statedin the goal
formula. We startsolving by, first, introducinga "find constant"j.e. a new constantvhose
value will be determinedater asthe proof proceedsWe use constantswith asterisksfor
this purpose.Introducing theseconstantss importantin order to be able to decompose
goalsfurther,i.e. to work inside the existentiallyquantifiedformulain a coupleof alternat
ing P-andC-phasesln our examplewe introducenow N3 andobtainthe newgoal(10).

P- and C-phases: In our example by using(Definition (+:)) asa rewrite rule, goal (10)
canbereducedo goal(11).

C-phase with existential rewriting: Now we are at an important proof situation.
Namely,the conclusiornof goal (11)

V(n= N3 = |(foln] + goln) — (20 + bo)l < €0).
is very closeto beinganinstanceof the conclusionin (Lemma(|+|))

YV (xX+y)—-(@a+bl<d+ec(x—a <dAly—bl<e)
x,y,abd,e



so that a reductionof the goal by rewriting would be possible.However,'ey' is a constant
and, thus, we cannotfind a substitutionfor '§' and'e' suchthat, by this substitution,'§+¢'
would be transformednto 'ey'. For handlingthis situation,we propose"existentialrewrit-
ing": We reducegoal(11), by using(Lemma(|+|)), to goal(12):
;1 V(n=N; = |foln] - @l < Algoln] - bol < €).

d"+;:q,
It is easyto provethatthis generalizedorm of rewriting is correct.By existentialrewriting,
we areableto handlethe aboveproof situationin a naturalway on the expensef introduc
ing existentialquantifiersin thegoal.

Sphase: Now we are againin an S-phasewhich we handleby introducingextrafind
constantsin our casesy' and'e;’ areintroducedasnewfind constantyielding the newgoal
(13).

C-phase: Goal(13) cannow bereducecdby a coupleof rewrite stepsusingthe Skolem
izedformulae(6) and(4) andalso(Lemma(max)), to formula(14).

P-phase: Now P-stepsare possiblethat bring the formulae'sy > 0' and'e; > 0', which
do not containvariable’n’, outsidethe scopeof theV,, quantifier.

Sphase: The resultingformula (15) hasnow the propertythat it is the conjunctionof
two independensolve problems,the first one askingto find 's3' and'e;’ in dependencen
‘6’ andthe secondoneaskingto find N5 in dependencen 'sg' and'e;’. The secondproblem
canbe solvedby simplepredicatdogic rulesandyields

N3 = max Noldpl, Na[€ill

as a possiblesolution. The first problemis a problemthatis a constraintsolving problem
over the real numbersand, hence,can be solvedby a call to any completereal number
constraintsolver. We use Collins' algorithm for this purpose,which is availablein the
extendedMathematicdibrary. We obtaina generalanswetack,namely

0<d < e,
€ « @ —0p.



This meanghat any 63 satisfying0 < &j < & is a possiblesolutionandthatthene; mustbe
choseraseg - 6. This concludeghe proof.

Note that the proof generatedy the PCSprover,in additionto showingthat the propost
tion is a consequencef the formulaein the knowledgebase yieldsinterestinginformation
on the convergencef the sumsequencé+g: The solvingtermsfor &3, €;, andN3 thatare
constructedduring the proof of the propositiontell us that, given & > 0, onecanfind an
index N3 suchthat,from N3 on, the elementof the sequencé+g staycloserthan g to a+b
by thefollowing procedure:

Chooseanarbitrarysg suchthatO < 6} < &.
Thencomputee; := & — 6.
Finally computeN3 := max{No[65], N1[€;]].

Here Ny is a procedureby which, given an arbitrary e > 0, one canfind an index from
which on f stayscloserto a thane, and,similarly, N; givesanindexboundfor g. Thusthe
solving termsconstructedn the proof canbe viewedasa procedurefor the indexboundof

f + g with indexboundsfor f andg as"black-box"subproceduresdn otherwords,the PCS
prover is not only a prover but also a proceduresynthesizerin caseone hasalgorithmic
procedureNy andN;j for finding the index boundsfor f andg, the proceduresynthesizer
synthesizesan algorithmfor computingthe index boundfor f + g. Thus,the PCSprover
doesnot only generateproofsbut also providesinterestingconstructiveinformationon the
notionsinvolvedin theproposition.

5 Conclusion

The PCSprovercombines,n a naturalway, proving by a restrictedsetof inferencerules,
simplifying, andsolving. In fact, alsoothergeneralandspecialautomategroverscombine
restrictedproving, simplifying and solving. For example proving geometricatheoremsy
the Grdbner baseanethod,essentiallyis alsoa reduction,by certainproving and simplify-
ing steps,of decidingthetruth of formulaeto decidingthe solvability of certainrelatedsets
of algebraicequations.Also, the famousresolution method for generalpredicatelogic
proving, is essentiallya reductionof proving, by simplifiying, to solving certain setsof
standardpredicatdogic formulae,namelyclauses.



In a future versionof Theorema, the flexible interplay betweenproving, solving, and
simplifying will be our main designfeatureso that Theorema will appearas a library of
built-in provers,solvers,and simplifyers from which the usercan build provers,solvers,
andsimplifiersfor the particulargivenapplicationin aneasy flexible andgeneraway.
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