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1 Introduction

In this paper, we present the main ideas of a new, heuristic, proving method for predicate

logic called the PCS method (Proving-Computing-Solving method). The method is particu-

larly  suited for proving theorems in theories whose main notions are defined by formulae

with alternating quantifiers, i.e. formulae of the form 
�����

 ...  A typical example of such a

notion is the notion of limit:

limit � f , a � � � �� 	
0



N

�
n

n � N



f � n � � a � � �

The main emphasis of the PCS method is naturalness, i.e. the method imitates human proof

style and generates proofs that are easy to understand. Also, in the cases the method works,

it normally finds the proof with very little search.



In  contrast to  the resolution method and other well-known methods for  automated

theorem proving in predicate logic, the PCS is not complete and will  fail  in many cases.

However, we believe that, for  the acceptance of  theorem proving as a tool for  practical

theorem proving, it is important to come up with special proof methods that deliver natural

proofs in short time for the many nontrivial but not too difficult  theorems that occur in the

usual exploration of  mathematical theories. For this objective it  seems that the PCS can

make a useful contribution. In fact, proving the propositions about the elementary theory of

analysis, e.g. propositions about the notion of  limit,  for  general predicate logic theorem

provers still is a hard problem and, thus, we believe that the PCS method is a decisive step

forward.

Essentially, the PCS method, in a natural way, reduces proving to solving. In the case of

analysis, proofs are reduced to solving constraints over the real numbers. Fortunately, by

the work of  Collins and others, see [Collins 1975] and [Caviness, Johnson 1998], there

exist complete algorithms for solving the most general class of constraints over real num-

bers. Thus, in the cases we manage to reduce the proof of a theorem to constraint solving

over the reals, the proof can be established. In fact, we will  see that this reduction by the

PCS method is "natural" and that the solution of the constraints is an "uninteresting" step

whose details people do not want to see when they are exploring analysis because, at that

stage, they already master the theory of real numbers and would like to concentrate on the

exploration of the notions of analysis like limit, derivative, etc. Thus, it is methodologically

appropriate to call constraint solvers as "black boxes" at this stage. 

2 TH�OREM�

The Theorema  system is a software system that aims at automating proving in a uniform

logic and software frame for  formal mathematics. It  is programmed in Mathematica and,

hence, is available on all platforms on which Mathematica is available. 

However, this does not entail that, when doing proofs in Theorema, any of the implicit

knowledge of Mathematica is used. All  knowledge that is used in Theorema  proofs can be

stated explicity. However, we also have means to state explicitly that well-defined sections

of Mathematica knowledge, i.e. algorithms for many mathematical functions, can be used in

proofs. This gives maximum freedom for the user to "believe" in the correctness of Mathe-

matica knowledge or not.

Theorema  is a multi-method system, i.e. we do not attempt to generate proofs in  all



areas of  mathematics with  just one general predicate logic proving method. In  fact, we

believe that having only one proof method for  all  of  mathematics, although theoretically

possible, is not practical. Thus, in Theorema,  we provide a library of general and special

provers together with general and special solvers and general and special simplifiers.

In Theorema,  we emphasize the importance of readable proofs and nice output. Thus,

we do not only generate abstract proof objects but we also provide post-processors that

transform the abstract proof objects into proof text that can easily be read by humans.

The Theorema  system is  based on research of  the author in  the area of  computer

algebra, formal mathematics, and didactics since 1975 and is  now a joint  effort  of  the

Theorema Working Group directed by the author since 1996, see www.theorema.org. More

details about Theorema can be found in [Buchberger et al. 1997, 2000].

3 Mathematical Texts in TH�OREM�

Before we go into the details of  the PCS method, we present an example formal text in

Theorema which will  later be used for demonstrating the method. We start with the defini-

tion of the notion of limit:

Definition � "limit:", any � f , a � ,
limit � f , a � � � �� �

0

�
N

�
n

n � N

	
f � n � 
 a � � 
 �

The actual definition is the predicate logic formula

limit � f , a� � � �� �
0

�
N

�
n

n� N

�
f � n� � a� � �

that should be self-explanatory. The Theorema  notation for formulae is close to the usual

notation in mathematical textbooks. The only exception is that we use brackets instead of

parentheses for  function application, i.e. 'f[n]'  is  the term with  function symbol 'f'  and

argument term 'n'. The use of brackets instead of parentheses is taken over from Mathemat-

ica because, in fact, parentheses are ambiguous: For example, 'f(n+m)' could be understood

as both 'f[m+n]' and 'f.(m+n)'. The 'any[f,a]' declares 'f' and 'a' as free variables. All  identifi-

ers (and function and predicate symbols) that are neither declared as free variables nor

bound by  a quantifier are considered to  be constants. Note that, in  the above example

formula, 'f'  is a higher-order variable: It  occurs at the position of a function symbol in the

term 'f[n]'.



The keyword 'Definition' and the label "limit"  have no logical meaning. The are only

used for  easy reference: As soon as the above definition is entered into an input cell of

Mathematica (after having loaded the Theorema  system on top of  Mathematica) one can

refer to  the entire definition by  just 'Definition["limit"]',  for  example when building up

theories (see below) or when referring to the use of definitions in proofs.

Now  let  us formulate an easy proposition on the notion of  limit  in  the notation of

Theorema:

Proposition � "limit of sum", any� f , a, g, b� ,�
limit � f , a � � limit � g, b � � 	 limit 
 f � g, a � b � �

We will show later how a proof of  this  proposition can be generated automatically by the

PCS prover  of Theorema.  Before we attempt to  do this  we must, of course, provide some

knowledge  on  the  notions  +,  -,  <,  etc.  occurring  in  the  definition  of  the  notion  of  limit.

First, we need the definition of + on sequences:

Definition 
 " � :", any 
 f , g, x� ,�
f � g � 
 x � � f � x � � g � x � �

Also, we need a version of the "triangle inequality":

Lemma � " � � � ", any � x, y, a, b, � , � � ,� � �
x � y � � �

a � b � �  � � � � � � ! " # x $ a % & ' ( # y $ b % & ) * +

Finally, we will need some knowledge on the maximum function:

Lemma , "max", any , m, M1, M2 + ,
m - max. M1, M2 / 0 1 m - M1 2 m - M2 3 /

In this paper, we do not discuss the interesting question of how one knows which knowl-

edge is appropriate for proving a given theorem. In fact, playing with a system like Theo-

rema gives a lot of insight into the mechanism of how to "explore theories" instead of just

"proving isolated theorems", see some ideas on this question in [Buchberger 2000].

Now we can combine the individual formulae above in  one knowledge base by the

Theorema construct 'Theory'.



Theory � "limit",

Definition � "limit :" �
Definition � " � :" �
Lemma � " � � � " �
Lemma � "max" �

�

In  fact, the 'Theory' construct can be applied recursively, i.e. one can build up hierarchi-

cally structured theories in Theorema and refer to them by a single label.

4 The PCS Proving Method

4.1 An Overview on the PCS Method

The PCS proof method was established by  the author in  2000 and aims at generating

"natural" proofs. In fact, the PCS method basically is a formalization of a heuristic method

the author has been teaching for many years in his "Thinking, Speaking, Writing" course as

a practical proof technique for humans.

Roughly, the PCS method proceeds by iteratively going through the following three phases:

� the P-phase ("Proving" phase)

� the C-phase ("Computing" phase)

� the S-phase ("Solving" phase)

In the P-phase, a couple of predicate logic rules are applied in the "natural deduction" style

in order to decompose the proof problem into a couple of more elementary proofs. In the C-

phase, definitions (and other equalities and equivalences) and implications are used in  a

"rewrite"  (symbolic computation) style in  order to  reduce proof  goals and to  expand

knowledge bases. By the P-phase  and the C-phase, one arrives at proof situations in which

the goals have the form of existentially quantified formulae, i.e. one has to "find" terms that

satisfy the conditions specified in the goals. In this moment, the proof can often be com-

pleted by calling algorithmic solvers for certain special theories, for example, the theory of

real numbers. Hence, the PCS method brings together theorem proving with  algebraic

algorithms.



A first  implementation of  the PCS method,  within Theorema,  was sketched and tested

by the author in 1999 and was then worked out in detail in the PhD thesis [Vasaru 2000].

An implementation of the PCS method for the special case of set theory will be presented

in the PhD thesis [Windsteiger 2001]. 

4.2 A Proof Generated by the PCS Prover

A proof  of  the  above  proposition  can  be  found completely  automatically,  by  entering  the

following Theorema call 

Prove � Proposition � "limit of sum" � , using � Theory � "limit" � , by � PCS �

Below, we show the proof exactly as generated by the system. One can explain the essential

ingredients of the method most easily by going through the individual steps of this example

proof.

Prove:

(Proposition (limit of sum)) �
f ,a,g,b

�
limit � f , a � � limit � g, b � � limit � f 	 g, a 	 b � 
 ,

under the assumptions:

(Definition (limit:)) �
f ,a

�

�







 limit � f , a � � � �� �

0

�
N

�
n

n � N

� �
f � n � � a � � � �

 

!
""""""" ,

(Definition (+:)) #
f ,g,x

$ $
f % g & ' x ( ) f ' x ( % g ' x ( & ,

(Lemma (|+|)) #
x,y,a,b, * , +

, - ,
x . y / 0 ,

a . b / 1 2 3 4 5 6 7 8 x 9 a : ; < = 8 y 9 b : ; > ? ? ,
(Lemma (max)) @

m,M1,M2
7 m A max B M1, M2 C D m A M1 = m A M2 ? .

We assume

(1) limit B f0, a0 C = limit B g0, b0 C ,
and show

(2) limit B f0 E g0, a0 E b0 C .
Formula (1.1), by (Definition (limit:)), implies:

(3) @ FF G
0

H
N

@
n

n I N

7 8 f0 B n C 9 a0 : ; > ? .

By (3), we can take an appropriate Skolem function such that

(4) @ FF G
0

@
n

n I N0 J K L
M N

f0 O n P Q a0 R S T U .



Formula (1.2), by (Definition (limit:)), implies:

(5) � �� �
0

�
N

�
n

n � N

� �
g0 � n � 	 b0 
 � � 
 .

By (5), we can take an appropriate Skolem function such that

(6) � �� �
0

�
n

n � N1 � � �
� �

g0 � n � 	 b0 
 � � 
 .
Formula (2), using (Definition (limit:)), is implied by:

(7) � �� �
0

�
N

�
n

n � N

� � �
f0 � g0 
 � n � 	 �

a0 � b0 
 
 � � 
 .
We assume

(8) � 0 � 0,

and show

(9) �
N

�
n

n � N

� � �
f0 � g0 � � n � � �

a0 � b0 � � � � 0 � .
We have to find  N2�  such that

(10)  
n

!
n " N2� # $ !

f0 % g0 & ' n ( ) !
a0 % b0 & * + , 0 & .

Formula (10), using (Definition (+:)), is implied by:

(11)  
n

!
n " N2� # $ !

f0 ' n ( % g0 ' n ( & ) !
a0 % b0 & * + , 0 & .

Formula (11), using (Lemma (|+|)), is implied by:

(12) -.
, /. 0 1 2 3

0

4
n

5
n 6 N27 8 9 f0 : n ; < a0 = > ? @ 9 g0 : n ; < b0 = > A B .

We have to find  C 07 , D 17  and N27  such that

(13)
5 C 07 E D 17 F A 0 B G H

n I n J N2K L M f0 N n O P a0 Q R S 0K T M g0 N n O P b0 Q R U 1K V .
Formula (13), using (6), is implied by:

I S 0K W U 1K X Y 0 V
G H

n I n J N2K L U 1K Z 0 T n J N1 N U 1K O T M f0 N n O P a0 Q R S 0K V ,
which, using (4), is implied by:

I S 0K W U 1K X Y 0 V
G H

n I n J N2K L S 0K Z 0 T U 1K Z 0 T n J N0 N S 0K O T n J N1 N U 1K O V ,
which, using (Lemma (max)), is implied by:

(14) I S 0K W U 1K X Y 0 V
G H

n I n J N2K L S 0K Z 0 T U 1K Z 0 T n J max N N0 N S 0K O , N1 N U 1K O O V .
Formula (14) is implied by

(15) I S 0K W U 1K X Y 0 V
G S 0K Z 0

G U 1K Z 0
G H

n I n J N2K L n J max N N0 N S 0K O , N1 N U 1K O O V .
Partially solving it, formula (15) is implied by

(16) I S 0K W U 1K X Y 0 V T S 0K Z 0 T U 1K Z 0 T I N2K X max N N0 N S 0K O , N1 N U 1K O O V .
Now,



� �
0� � � 1� � � 0 � � �

0� 	 0 � � 1� 	 0

can be solved for 
�

0�  and � 1�  by a call to Collins cad-method yielding the solution

0 
 �
0� 
 � 0,

� 1� � � 0 
 � 1 � � 0� .

Let us take

N2� � max� N0 � � 0� � , N1 � � 0 � � 1 � � 0� � � .
Formula (16) is solved. Hence, we are done.

4.3 The Essential Ideas of the PCS Method

Taking the above PCS-generated proof as an example, we now describe the essential steps

of the PCS method in more detail:

The proof starts by echoing the proposition to be proved. In our example, this is the

proposition with label (Proposition (limit  of sum)).  Then we echo the formulae in the initial

knowledge base. In  our example, these are the formulae with  labels (Definition  (limit:)),

(Definition (+:)), (Lemma (|+|)), and (Lemma (max)).

P-phase: Now we start with a phase in which the "natural deduction" rules of predicate

logic,  except the ones for  equalities, equivalences, and implications, are applied to  the

proof goal and the knowledge. By doing this, the given proof situation is reduced to one or

more other, simpler, proof situations. In the above example, the P-phase produces formulae

(1) and (2) by applying the "arbitrary but fixed" rule and the deduction rule of predicate

logic.

C-phase: Now we try to use "rewrite knowledge" (equivalences, equalities, and implica-

tions in the knowledge base) in the "rewrite" style, i.e. we replace, in the goal formula and

in  formulae of  the knowledge base, appropriate instances of  the left-hand sides of  the

rewrite knowledge by the corresponding instances of  the right-hand sides. Note that, by

doing so, goals are reduced to other goals that imply  the given goals whereas formulae in

the knowledge base are expanded to other formuale in the knowledge base that are implied

by the given knowledge. In our example, formualae (3) and (5) are generated from (1) by C-

phase steps using (Definition (limit:)) as rewrite knowledge.



P-phase  with Skolemization:  Now we may be back in a P-phase,  i.e.  a phase in which

natural  deduction  steps  can  be  applied.  In  this  phase,  we  apply,  in  addition  to  the  usual

natural  deduction  rules  of  predicate  logic,  Skolemization,  i.e.  for  formulae  of  the  form�
x � y F � x, y �  in  the knowledge base we  introduce new function constants ("Skolem"

function constants) and assert � x F � x, f � x � � . This step is crucial for having the possibility

in  the later S-phase to construct solving terms for  existentially quantified formulae in an

explicit way. In our example, formulae (4) and (6) are derived from formulae (3) and (5),

respectively, by Skolemization.

C-phase: Now we may again be in a C-phase in which rewrite knowledge is applicable

in  rewrite  style.  In  our  example, (7)  is  now  obtained from  (2)  by  using  again

(Definition (limit:)) as a rewrite  rule.

P-phase:  Now again a P-phase brings us to the additional assumption (8) and the new

goal (9).

S-phase:  Now  the  goal  is  an  existentially quantified formula  and we  must start

"solving", i.e. finding an appropriate term that satisfies the condition stated in  the goal

formula. We start solving by, first, introducing a "find constant", i.e. a new constant whose

value will  be determined later as the proof proceeds. We use constants with asterisks for

this purpose. Introducing these constants is important in  order to be able to decompose

goals further, i.e. to work inside the existentially quantified formula in a couple of alternat-

ing P- and C-phases. In our example, we introduce now N2�  and obtain the new goal (10).

P-  and C-phases:  In our example, by using (Definition (+:)) as a rewrite rule, goal (10)

can be reduced to goal (11).

C-phase  with  existential  rewriting:  Now  we  are at  an  important proof  situation.

Namely, the conclusion of goal (11)

�
n

�
n 	 N2� 
 �

�
f0 � n 
 � g0 � n 
 � � �

a0 � b0 � � � � 0 � .

is very close to being an instance of the conclusion in (Lemma (|+|))

�
x,y,a,b,� , �

�
�

�
x � y � � �

a � b � � � � � � � �
� x � a � � � � � y � b � � � � �



so that a reduction of the goal by rewriting would be possible. However, ' � 0' is a constant

and, thus, we cannot find a substitution for  '
�
'  and '� '  such that, by this substitution, '

�
+ � '

would be transformed into '� 0'. For handling this situation, we propose "existential rewrit-

ing": We reduce goal (11), by using (Lemma (|+|)), to goal (12): 

��
, �� � � � � 0

�
n

	
n 
 N2� � 
 f0 � n � � a0 � � � � 
 g0 � n � � b0 � � � � .

It is easy to prove that this generalized form of rewriting is correct. By existential rewriting,

we are able to handle the above proof situation in a natural way on the expense of introduc-

ing existential quantifiers in the goal. 

S-phase:  Now we are again in an S-phase, which we handle by introducing extra find

constants. In our case '� 0� ' and '� 1� ' are introduced as new find constants yielding the new goal

(13).

C-phase: Goal (13) can now be reduced by a couple of rewrite steps, using the Skolem-

ized formulae (6) and (4) and also (Lemma (max)), to formula (14).

P-phase:  Now P-steps are possible that bring the formulae '
�

0� � 0'  and '� 1� � 0', which

do not contain variable 'n', outside the scope of the � n quantifier. 

S-phase:  The resulting formula (15) has now the property that it  is the conjunction of

two independent solve problems, the first one asking to find ' � 0� ' and ' 1� ' in dependence on

' ! 0' and the second one asking to find N2"  in dependence on '# 0$ ' and '% 1$ '. The second problem

can be solved by simple predicate logic rules and yields 

N2$ & max' N0 ' # 0$ ( , N1 ' % 1$ ( (

as a possible solution. The first problem is a problem that is a constraint solving problem

over the real numbers and, hence, can be solved by a call to any complete real number

constraint solver. We use Collins' algorithm for  this purpose, which is  available in  the

extended Mathematica library. We obtain a general answer back, namely

0 ) # 0$ ) * 0,

% 1$ + * 0 , # 0$ .



This means that any � 0
�
 satisfying 0 � � 0� � � 0  is a possible solution and that then � 1

�
 must be

chosen as � 0 � � 0� . This concludes the proof.

Note that the proof generated by the PCS prover, in addition to showing that the proposi-

tion is a consequence of the formulae in the knowledge base, yields interesting information

on the convergence of the sum sequence f+g: The solving terms for � 0
�
, � 1

�
, and N2

�
 that are

constructed during the proof of the proposition tell us that, given � 0  > 0, one can find an

index N2
�
 such that, from N2

�
 on, the elements of the sequence f+g stay closer than � 0 to a+b

by the following procedure: 

Choose an arbitrary � 0�  such that 0 � � 0� � � 0.

Then compute 	 1� : 
 � 0 � � 0� .

Finally compute N2� : 
 max� N0 � � 0� � , N1 � 	 1� � � . 

Here N0  is a procedure by which, given an arbitrary � 
 0,  one can find  an index from

which on f  stays closer to a than � , and, similarly, N1  gives an index bound for g. Thus the

solving terms constructed in the proof can be viewed as a procedure for the index bound of

f � g with index bounds for f and g as "black-box" subprocedures. In other words, the PCS

prover is not only a prover but also a procedure synthesizer. In case one has algorithmic

procedures N0  and N1  for finding the index bounds for f and g, the procedure synthesizer

synthesizes an algorithm for computing the index bound for f � g.  Thus, the PCS prover

does not only generate proofs but also provides interesting constructive information on the

notions involved in the proposition.

5 Conclusion

The PCS prover combines, in a natural way, proving by a restricted set of inference rules,

simplifying, and solving. In fact, also other general and special automated provers combine

restricted proving, simplifying and solving. For example, proving geometrical theorems by

the Gröbner bases method, essentially is also a reduction, by certain proving and simplify-

ing steps, of deciding the truth of formulae to deciding the solvability of certain related sets

of  algebraic equations. Also,  the famous resolution method for  general predicate logic

proving, is essentially a reduction of  proving, by simplifiying,  to solving certain sets of

standard predicate logic formulae, namely clauses.



In  a future version of  Theorema,  the flexible interplay between proving, solving, and

simplifying will  be our main design feature so that Theorema  will  appear as a library of

built-in  provers, solvers, and simplifyers from which the user can build provers, solvers,

and simplifiers for the particular given application in an easy, flexible and general way. 
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