
The PCS Prover

in TH�OREM�

Bruno Buchberger

Research Institute for Symbolic Computation

Johannes Kepler University, Linz, Austria

Buchberger@RISC.Uni-Linz.ac.at

Copyright: Springer, Heidelberg.

Bibliographic Note: To appear in the Proc. of European Conference on Computer-

Aided Systems Theory 2001 (EUROCAST 2001), Las Palmas, Gran Canarias,

February 19-23, 2001, Lecture Notes in Computer Science, 2001. (Copyright:

Springer, Heidelberg.)

Acknowledgement: This paper was written in the frame of the Project "Scientific

Computing" sponsored by the Austrian National Science Foundation (FWF), project

number SFB 1302. I would also like to thank M. Rosenkranz for helping me in the

preparation of this manuscript.

1 Introduction

In this paper, we present the main ideas of a new, heuristic, proving method for predicate

logic called the PCS method (Proving-Computing-Solving method). The method is particu-

larly suited for proving theorems in theories whose main notions are defined by formulae

with alternating quantifiers, i.e. formulae of the form
�����

 ... A typical example of such a

notion is the notion of limit:

limit � f , a � � � �� 	
0

N

�
n

n � N

f � n � � a � � �

The main emphasis of the PCS method is naturalness, i.e. the method imitates human proof

style and generates proofs that are easy to understand. Also, in the cases the method works,

it normally finds the proof with very little search.

In contrast to the resolution method and other well-known methods for automated

theorem proving in predicate logic, the PCS is not complete and will fail in many cases.

However, we believe that, for the acceptance of theorem proving as a tool for practical

theorem proving, it is important to come up with special proof methods that deliver natural

proofs in short time for the many nontrivial but not too difficult theorems that occur in the

usual exploration of mathematical theories. For this objective it seems that the PCS can

make a useful contribution. In fact, proving the propositions about the elementary theory of

analysis, e.g. propositions about the notion of limit, for general predicate logic theorem

provers still is a hard problem and, thus, we believe that the PCS method is a decisive step

forward.

Essentially, the PCS method, in a natural way, reduces proving to solving. In the case of

analysis, proofs are reduced to solving constraints over the real numbers. Fortunately, by

the work of Collins and others, see [Collins 1975] and [Caviness, Johnson 1998], there

exist complete algorithms for solving the most general class of constraints over real num-

bers. Thus, in the cases we manage to reduce the proof of a theorem to constraint solving

over the reals, the proof can be established. In fact, we will see that this reduction by the

PCS method is "natural" and that the solution of the constraints is an "uninteresting" step

whose details people do not want to see when they are exploring analysis because, at that

stage, they already master the theory of real numbers and would like to concentrate on the

exploration of the notions of analysis like limit, derivative, etc. Thus, it is methodologically

appropriate to call constraint solvers as "black boxes" at this stage.

2 TH�OREM�

The Theorema system is a software system that aims at automating proving in a uniform

logic and software frame for formal mathematics. It is programmed in Mathematica and,

hence, is available on all platforms on which Mathematica is available.

However, this does not entail that, when doing proofs in Theorema, any of the implicit

knowledge of Mathematica is used. All knowledge that is used in Theorema proofs can be

stated explicity. However, we also have means to state explicitly that well-defined sections

of Mathematica knowledge, i.e. algorithms for many mathematical functions, can be used in

proofs. This gives maximum freedom for the user to "believe" in the correctness of Mathe-

matica knowledge or not.

Theorema is a multi-method system, i.e. we do not attempt to generate proofs in all

areas of mathematics with just one general predicate logic proving method. In fact, we

believe that having only one proof method for all of mathematics, although theoretically

possible, is not practical. Thus, in Theorema, we provide a library of general and special

provers together with general and special solvers and general and special simplifiers.

In Theorema, we emphasize the importance of readable proofs and nice output. Thus,

we do not only generate abstract proof objects but we also provide post-processors that

transform the abstract proof objects into proof text that can easily be read by humans.

The Theorema system is based on research of the author in the area of computer

algebra, formal mathematics, and didactics since 1975 and is now a joint effort of the

Theorema Working Group directed by the author since 1996, see www.theorema.org. More

details about Theorema can be found in [Buchberger et al. 1997, 2000].

3 Mathematical Texts in TH�OREM�

Before we go into the details of the PCS method, we present an example formal text in

Theorema which will later be used for demonstrating the method. We start with the defini-

tion of the notion of limit:

Definition � "limit:", any � f , a � ,
limit � f , a � � � �� �

0

�
N

�
n

n � N

	
f � n �
 a � �
 �

The actual definition is the predicate logic formula

limit � f , a� � � �� �
0

�
N

�
n

n� N

�
f � n� � a� � �

that should be self-explanatory. The Theorema notation for formulae is close to the usual

notation in mathematical textbooks. The only exception is that we use brackets instead of

parentheses for function application, i.e. 'f[n]' is the term with function symbol 'f' and

argument term 'n'. The use of brackets instead of parentheses is taken over from Mathemat-

ica because, in fact, parentheses are ambiguous: For example, 'f(n+m)' could be understood

as both 'f[m+n]' and 'f.(m+n)'. The 'any[f,a]' declares 'f' and 'a' as free variables. All identifi-

ers (and function and predicate symbols) that are neither declared as free variables nor

bound by a quantifier are considered to be constants. Note that, in the above example

formula, 'f' is a higher-order variable: It occurs at the position of a function symbol in the

term 'f[n]'.

The keyword 'Definition' and the label "limit" have no logical meaning. The are only

used for easy reference: As soon as the above definition is entered into an input cell of

Mathematica (after having loaded the Theorema system on top of Mathematica) one can

refer to the entire definition by just 'Definition["limit"]', for example when building up

theories (see below) or when referring to the use of definitions in proofs.

Now let us formulate an easy proposition on the notion of limit in the notation of

Theorema:

Proposition � "limit of sum", any� f , a, g, b� ,�
limit � f , a � � limit � g, b � � 	 limit
 f � g, a � b � �

We will show later how a proof of this proposition can be generated automatically by the

PCS prover of Theorema. Before we attempt to do this we must, of course, provide some

knowledge on the notions +, -, <, etc. occurring in the definition of the notion of limit.

First, we need the definition of + on sequences:

Definition
 " � :", any
 f , g, x� ,�
f � g �
 x � � f � x � � g � x � �

Also, we need a version of the "triangle inequality":

Lemma � " � � � ", any � x, y, a, b, � , � � ,� � �
x � y � � �

a � b � � � � � � � � ! " # x $ a % & ' (# y $ b % &) * +

Finally, we will need some knowledge on the maximum function:

Lemma , "max", any , m, M1, M2 + ,
m - max. M1, M2 / 0 1 m - M1 2 m - M2 3 /

In this paper, we do not discuss the interesting question of how one knows which knowl-

edge is appropriate for proving a given theorem. In fact, playing with a system like Theo-

rema gives a lot of insight into the mechanism of how to "explore theories" instead of just

"proving isolated theorems", see some ideas on this question in [Buchberger 2000].

Now we can combine the individual formulae above in one knowledge base by the

Theorema construct 'Theory'.

Theory � "limit",

Definition � "limit :" �
Definition � " � :" �
Lemma � " � � � " �
Lemma � "max" �

�

In fact, the 'Theory' construct can be applied recursively, i.e. one can build up hierarchi-

cally structured theories in Theorema and refer to them by a single label.

4 The PCS Proving Method

4.1 An Overview on the PCS Method

The PCS proof method was established by the author in 2000 and aims at generating

"natural" proofs. In fact, the PCS method basically is a formalization of a heuristic method

the author has been teaching for many years in his "Thinking, Speaking, Writing" course as

a practical proof technique for humans.

Roughly, the PCS method proceeds by iteratively going through the following three phases:

� the P-phase ("Proving" phase)

� the C-phase ("Computing" phase)

� the S-phase ("Solving" phase)

In the P-phase, a couple of predicate logic rules are applied in the "natural deduction" style

in order to decompose the proof problem into a couple of more elementary proofs. In the C-

phase, definitions (and other equalities and equivalences) and implications are used in a

"rewrite" (symbolic computation) style in order to reduce proof goals and to expand

knowledge bases. By the P-phase and the C-phase, one arrives at proof situations in which

the goals have the form of existentially quantified formulae, i.e. one has to "find" terms that

satisfy the conditions specified in the goals. In this moment, the proof can often be com-

pleted by calling algorithmic solvers for certain special theories, for example, the theory of

real numbers. Hence, the PCS method brings together theorem proving with algebraic

algorithms.

A first implementation of the PCS method, within Theorema, was sketched and tested

by the author in 1999 and was then worked out in detail in the PhD thesis [Vasaru 2000].

An implementation of the PCS method for the special case of set theory will be presented

in the PhD thesis [Windsteiger 2001].

4.2 A Proof Generated by the PCS Prover

A proof of the above proposition can be found completely automatically, by entering the

following Theorema call

Prove � Proposition � "limit of sum" � , using � Theory � "limit" � , by � PCS �

Below, we show the proof exactly as generated by the system. One can explain the essential

ingredients of the method most easily by going through the individual steps of this example

proof.

Prove:

(Proposition (limit of sum)) �
f ,a,g,b

�
limit � f , a � � limit � g, b � � limit � f 	 g, a 	 b �
 ,

under the assumptions:

(Definition (limit:)) �
f ,a

�

�

 limit � f , a � � � �� �

0

�
N

�
n

n � N

� �
f � n � � a � � � �

!
""""""" ,

(Definition (+:)) #
f ,g,x

$ $
f % g & ' x () f ' x (% g ' x (& ,

(Lemma (|+|)) #
x,y,a,b, * , +

, - ,
x . y / 0 ,

a . b / 1 2 3 4 5 6 7 8 x 9 a : ; < = 8 y 9 b : ; > ? ? ,
(Lemma (max)) @

m,M1,M2
7 m A max B M1, M2 C D m A M1 = m A M2 ? .

We assume

(1) limit B f0, a0 C = limit B g0, b0 C ,
and show

(2) limit B f0 E g0, a0 E b0 C .
Formula (1.1), by (Definition (limit:)), implies:

(3) @ FF G
0

H
N

@
n

n I N

7 8 f0 B n C 9 a0 : ; > ? .

By (3), we can take an appropriate Skolem function such that

(4) @ FF G
0

@
n

n I N0 J K L
M N

f0 O n P Q a0 R S T U .

Formula (1.2), by (Definition (limit:)), implies:

(5) � �� �
0

�
N

�
n

n � N

� �
g0 � n � 	 b0
 � �
 .

By (5), we can take an appropriate Skolem function such that

(6) � �� �
0

�
n

n � N1 � � �
� �

g0 � n � 	 b0
 � �
 .
Formula (2), using (Definition (limit:)), is implied by:

(7) � �� �
0

�
N

�
n

n � N

� � �
f0 � g0
 � n � 	 �

a0 � b0

 � �
 .
We assume

(8) � 0 � 0,

and show

(9) �
N

�
n

n � N

� � �
f0 � g0 � � n � � �

a0 � b0 � � � � 0 � .
We have to find N2� such that

(10)
n

!
n " N2� # $!

f0 % g0 & ' n () !
a0 % b0 & * + , 0 & .

Formula (10), using (Definition (+:)), is implied by:

(11)
n

!
n " N2� # $!

f0 ' n (% g0 ' n (&) !
a0 % b0 & * + , 0 & .

Formula (11), using (Lemma (|+|)), is implied by:

(12) -.
, /. 0 1 2 3

0

4
n

5
n 6 N27 8 9 f0 : n ; < a0 = > ? @ 9 g0 : n ; < b0 = > A B .

We have to find C 07 , D 17 and N27 such that

(13)
5 C 07 E D 17 F A 0 B G H

n I n J N2K L M f0 N n O P a0 Q R S 0K T M g0 N n O P b0 Q R U 1K V .
Formula (13), using (6), is implied by:

I S 0K W U 1K X Y 0 V
G H

n I n J N2K L U 1K Z 0 T n J N1 N U 1K O T M f0 N n O P a0 Q R S 0K V ,
which, using (4), is implied by:

I S 0K W U 1K X Y 0 V
G H

n I n J N2K L S 0K Z 0 T U 1K Z 0 T n J N0 N S 0K O T n J N1 N U 1K O V ,
which, using (Lemma (max)), is implied by:

(14) I S 0K W U 1K X Y 0 V
G H

n I n J N2K L S 0K Z 0 T U 1K Z 0 T n J max N N0 N S 0K O , N1 N U 1K O O V .
Formula (14) is implied by

(15) I S 0K W U 1K X Y 0 V
G S 0K Z 0

G U 1K Z 0
G H

n I n J N2K L n J max N N0 N S 0K O , N1 N U 1K O O V .
Partially solving it, formula (15) is implied by

(16) I S 0K W U 1K X Y 0 V T S 0K Z 0 T U 1K Z 0 T I N2K X max N N0 N S 0K O , N1 N U 1K O O V .
Now,

� �
0� � � 1� � � 0 � � �

0� 	 0 � � 1� 	 0

can be solved for
�

0� and � 1� by a call to Collins cad-method yielding the solution

0
 �
0�
 � 0,

� 1� � � 0
 � 1 � � 0� .

Let us take

N2� � max� N0 � � 0� � , N1 � � 0 � � 1 � � 0� � � .
Formula (16) is solved. Hence, we are done.

4.3 The Essential Ideas of the PCS Method

Taking the above PCS-generated proof as an example, we now describe the essential steps

of the PCS method in more detail:

The proof starts by echoing the proposition to be proved. In our example, this is the

proposition with label (Proposition (limit of sum)). Then we echo the formulae in the initial

knowledge base. In our example, these are the formulae with labels (Definition (limit:)),

(Definition (+:)), (Lemma (|+|)), and (Lemma (max)).

P-phase: Now we start with a phase in which the "natural deduction" rules of predicate

logic, except the ones for equalities, equivalences, and implications, are applied to the

proof goal and the knowledge. By doing this, the given proof situation is reduced to one or

more other, simpler, proof situations. In the above example, the P-phase produces formulae

(1) and (2) by applying the "arbitrary but fixed" rule and the deduction rule of predicate

logic.

C-phase: Now we try to use "rewrite knowledge" (equivalences, equalities, and implica-

tions in the knowledge base) in the "rewrite" style, i.e. we replace, in the goal formula and

in formulae of the knowledge base, appropriate instances of the left-hand sides of the

rewrite knowledge by the corresponding instances of the right-hand sides. Note that, by

doing so, goals are reduced to other goals that imply the given goals whereas formulae in

the knowledge base are expanded to other formuale in the knowledge base that are implied

by the given knowledge. In our example, formualae (3) and (5) are generated from (1) by C-

phase steps using (Definition (limit:)) as rewrite knowledge.

P-phase with Skolemization: Now we may be back in a P-phase, i.e. a phase in which

natural deduction steps can be applied. In this phase, we apply, in addition to the usual

natural deduction rules of predicate logic, Skolemization, i.e. for formulae of the form�
x � y F � x, y � in the knowledge base we introduce new function constants ("Skolem"

function constants) and assert � x F � x, f � x � � . This step is crucial for having the possibility

in the later S-phase to construct solving terms for existentially quantified formulae in an

explicit way. In our example, formulae (4) and (6) are derived from formulae (3) and (5),

respectively, by Skolemization.

C-phase: Now we may again be in a C-phase in which rewrite knowledge is applicable

in rewrite style. In our example, (7) is now obtained from (2) by using again

(Definition (limit:)) as a rewrite rule.

P-phase: Now again a P-phase brings us to the additional assumption (8) and the new

goal (9).

S-phase: Now the goal is an existentially quantified formula and we must start

"solving", i.e. finding an appropriate term that satisfies the condition stated in the goal

formula. We start solving by, first, introducing a "find constant", i.e. a new constant whose

value will be determined later as the proof proceeds. We use constants with asterisks for

this purpose. Introducing these constants is important in order to be able to decompose

goals further, i.e. to work inside the existentially quantified formula in a couple of alternat-

ing P- and C-phases. In our example, we introduce now N2� and obtain the new goal (10).

P- and C-phases: In our example, by using (Definition (+:)) as a rewrite rule, goal (10)

can be reduced to goal (11).

C-phase with existential rewriting: Now we are at an important proof situation.

Namely, the conclusion of goal (11)

�
n

�
n 	 N2�
 �

�
f0 � n
 � g0 � n
 � � �

a0 � b0 � � � � 0 � .

is very close to being an instance of the conclusion in (Lemma (|+|))

�
x,y,a,b,� , �

�
�

�
x � y � � �

a � b � � � � � � � �
� x � a � � � � � y � b � � � � �

so that a reduction of the goal by rewriting would be possible. However, ' � 0' is a constant

and, thus, we cannot find a substitution for '
�
' and '� ' such that, by this substitution, '

�
+ � '

would be transformed into '� 0'. For handling this situation, we propose "existential rewrit-

ing": We reduce goal (11), by using (Lemma (|+|)), to goal (12):

��
, �� � � � � 0

�
n

	
n
 N2� �
 f0 � n � � a0 � � � �
 g0 � n � � b0 � � � � .

It is easy to prove that this generalized form of rewriting is correct. By existential rewriting,

we are able to handle the above proof situation in a natural way on the expense of introduc-

ing existential quantifiers in the goal.

S-phase: Now we are again in an S-phase, which we handle by introducing extra find

constants. In our case '� 0� ' and '� 1� ' are introduced as new find constants yielding the new goal

(13).

C-phase: Goal (13) can now be reduced by a couple of rewrite steps, using the Skolem-

ized formulae (6) and (4) and also (Lemma (max)), to formula (14).

P-phase: Now P-steps are possible that bring the formulae '
�

0� � 0' and '� 1� � 0', which

do not contain variable 'n', outside the scope of the � n quantifier.

S-phase: The resulting formula (15) has now the property that it is the conjunction of

two independent solve problems, the first one asking to find ' � 0� ' and ' 1� ' in dependence on

' ! 0' and the second one asking to find N2" in dependence on '# 0$ ' and '% 1$ '. The second problem

can be solved by simple predicate logic rules and yields

N2$ & max' N0 ' # 0$ (, N1 ' % 1$ ((

as a possible solution. The first problem is a problem that is a constraint solving problem

over the real numbers and, hence, can be solved by a call to any complete real number

constraint solver. We use Collins' algorithm for this purpose, which is available in the

extended Mathematica library. We obtain a general answer back, namely

0) # 0$) * 0,

% 1$ + * 0 , # 0$.

This means that any � 0
�
 satisfying 0 � � 0� � � 0 is a possible solution and that then � 1

�
 must be

chosen as � 0 � � 0� . This concludes the proof.

Note that the proof generated by the PCS prover, in addition to showing that the proposi-

tion is a consequence of the formulae in the knowledge base, yields interesting information

on the convergence of the sum sequence f+g: The solving terms for � 0
�
, � 1

�
, and N2

�
 that are

constructed during the proof of the proposition tell us that, given � 0 > 0, one can find an

index N2
�
 such that, from N2

�
 on, the elements of the sequence f+g stay closer than � 0 to a+b

by the following procedure:

Choose an arbitrary � 0� such that 0 � � 0� � � 0.

Then compute 	 1� :
 � 0 � � 0� .

Finally compute N2� :
 max� N0 � � 0� � , N1 � 	 1� � � .

Here N0 is a procedure by which, given an arbitrary �
 0, one can find an index from

which on f stays closer to a than � , and, similarly, N1 gives an index bound for g. Thus the

solving terms constructed in the proof can be viewed as a procedure for the index bound of

f � g with index bounds for f and g as "black-box" subprocedures. In other words, the PCS

prover is not only a prover but also a procedure synthesizer. In case one has algorithmic

procedures N0 and N1 for finding the index bounds for f and g, the procedure synthesizer

synthesizes an algorithm for computing the index bound for f � g. Thus, the PCS prover

does not only generate proofs but also provides interesting constructive information on the

notions involved in the proposition.

5 Conclusion

The PCS prover combines, in a natural way, proving by a restricted set of inference rules,

simplifying, and solving. In fact, also other general and special automated provers combine

restricted proving, simplifying and solving. For example, proving geometrical theorems by

the Gröbner bases method, essentially is also a reduction, by certain proving and simplify-

ing steps, of deciding the truth of formulae to deciding the solvability of certain related sets

of algebraic equations. Also, the famous resolution method for general predicate logic

proving, is essentially a reduction of proving, by simplifiying, to solving certain sets of

standard predicate logic formulae, namely clauses.

In a future version of Theorema, the flexible interplay between proving, solving, and

simplifying will be our main design feature so that Theorema will appear as a library of

built-in provers, solvers, and simplifyers from which the user can build provers, solvers,

and simplifiers for the particular given application in an easy, flexible and general way.

References

[Buchberger 2000] B. Buchberger. Theory Exploration with Theorema. In: Proc. of the 2nd Interna-

tional Workshop on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2000),

Dept. of Computer Science, Univ. of West Timisoara, Romania, Oct. 4-6, 2000, pp. 1-16.

[Buchberger et al. 1997] B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, D. Vasaru. An Overview

on the Theorema project. In: Proc. of the International Symposium on Symbolic and Algebraic

Computation (ISSAC 97), Maui, Hawaii, July 21-23, 1997, W.Kuechlin (ed.), ACM Press 1997, pp.

384-391.

[Buchberger et al. 2000] B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru,

W. Windsteiger. The Theorema Project: A Progress Report. In: Proc. of the 8th Symposium on the

Integration of Symbolic Computation and Mechanized Reasoning (Calculemus 2000), St. Andrews,

Scotland, August 6-7, M. Kerber and M. Kohlhase (eds.), available from: Fachbereich Informatik,

Universität des Saarlandes, pp. 100-115.

[Collins 1975] G. E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic

Decomposition. In: Second GI Conference on Automata Theory and Formal Languages, LNCS 33,

pages 134-183, Springer Verlag, Berlin, 1975. Reprinted in [Caviness, Johnson 1998], pp. 85-121.

[Caviness, Johnson 1998] B. F. Caviness, J. R. Johnson (eds.). Quantifier Elimination and Cylindri-

cal Algebraic Decomposition, Texts and Monographs in Symbolic Computation of the Research

Institute for Symbolic Computation (B. Buchberger, G.E. Collins, eds.), Springer, Wien-New York,

431 pages.

[Vasaru 2000] D. Vasaru-Dupre. Automated Theorem Proving by Integrating Proving, Solving and

Computing, PhD Thesis, April 2000, Research Institute for Symbolic Compuationat (RISC),

Johannes Kepler University Linz, A-4232 Castle of Hagenberg, Austria.

[Windsteiger 2001] W. Windsteiger. A Set Theory Prover in Theorema: Implementation and

Practical Applications, PhD Thesis, May 2001, Research Institute for Symbolic Compuationat

(RISC), Johannes Kepler University Linz, A-4232 Castle of Hagenberg, Austria.

