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Algebraic Simplification
B. Buchberger, Linz, and R. Loos, Karlsruhe

Abstract

Some basic technigues for the simplification of terms are surveyed. In two introductory sections the
problem of canonical algebraic simplification is formally stated and some elementary facts are derived
that explain the fundamental role of simplification in computer algebra. In the subsequent sections two
majer groups of simplification techniques are presented: special techniques for simplifying terms over
numerical domains and completion algorithms for simplification with respect to sets of equations.
Within the first group canonical simplification algerithms for polynomials, rational expressions, radical
expressions and transcendental expressions are treated (Sections 3—7). As examples for completion
algorithms the Knuth-Bendix algorithm for rewrite rules and an algorithm for completing bases of
polynomial ideais are described (Sections 8 —11).

1. The Problem of Algebraic Simplification

The problem of simplification has two aspects: obtaining equivalent but simpler
objects and computing unique representations for equivalent objects.

More precisely, let T be a class of (linguistic) objects (“expressions”) as, for
instance, (first-order) terms, (restricted classes of) logical formulae, or (restricted
classes of) programs and let ~ be an equivalence relation on T, for instance
functional equivalence, equality derivable from axioms, equality valid in certain
models of axioms, congruence modulo an ideal etc.

The problem of obtaining equivalent but simpler objects consists in finding an
effective procedure S that maps T'in T and meets the following specification: For all
objects 1in T

(SE) S() ~ ¢t and
(3S) NOESA

Here, < is the concept of simplicity one is interested in (for instance, “s < £ might
be “s is shorter than 7, *s needs less memory for representation in computer
storage than ¢, “the evaluation of s is less complex than that of #*, “numerically, s
1s more stable than ¢, or “the structure of s is more intelligible than that of £” etc.).
Of course, S(¢) < ¢ will be required for “most” ¢.

The problem of computing unique representations for equivalent objects (= the
problem of canonical simplification) consists in finding an effective procedure S (a
“canonical simplifier” or “ample function” for ~ (on T)) that maps 7 in T and
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meets the following specifications: For all objects s, tin T
(SE) S(#) ~ t and
(SO) 5~ t=85(5) = S(1),

(i.e. S singles out a unique representative in each equivalence class. 5(¢) is called a
canonical form of 1).

A well known example of a canonical simplifier is the transformation of elementary
arithmetical expressions into “polynomial” form: x? — 1is the polynomial form of
(1/2)(2x + 2)(x — 1), for instance.

The two types of problems are not totally independent: a consequent iterative
reduction of the size of expressions with respect to some measure of “simplicity”
may, sometimes, well establish a canonical simplifier or at least give an idea how to
construct a canonical simplifier. Conversely, a canonical simplifier trivially defines
a corresponding notion of simplicity : the canonical form of an object may be called
“simpler” than the object itself. On the other hand, practical procedures that
intuitively “simplify”” expressions may lead to distinct simplified forms for two
equivalent expressions and, conversely, canonical forms of simple expressions may
be quite “complex” (for instance, the canonical form of (x + 2)° is x> + 10x* +
40x* + 80x? + 80x + 32).

In this paper we shall exclusively be concerned with canonical simplification of first-
order terms (= algebraic simplification) and only briefly survey the literature on
simplification of other types of expressions and on non-canonical simplification at
the end of this section.

For characterizing a canonical simplification problem a careful analysis of the
notion of equivalence involved is vital. The phrases set in italics in the following
paragraphs represent a few examples of frequent equivalence concepts.

As linguistic objects, the elementary arithmetical expressions (x + 2)° and
x° + 10x* + 40x> + 80x* + 80x + 32 are not identical. They are equivalent,
however, in the sense that they represent the same polynomial in R[x]. x® — 1 and
x — 1 do not represent the same polynomial in R[x] nor in GF(2)[x]. They are,
however, functionally equivalent (i.e. describe the same function) over GF(2). The
rational expression (x® — 1)/{(x — 3}x? — 1)) is not functionally equivalent to
(x* + x2 + 1)/(x — 3) over Q (consider the values of the two expressions at
x:= 4 ). These expressions denote the same element in Q(x), however, and are
functionally equivalent as meromorphic functions. Similarly, the radical expressions

(x — y)/(\/; + \/;) and f - \/} are not functionally equivalent over @ in a
strong sense, but are equivalent as meromorphic functions and may be conceived as
denoting the same element in the extension field Q(x, y)[\/;c, \/;], which is
isomorphic to Q(x, y)[z;, z,] modulo the polynomial ideal generated by z; — x and
z2 — y. Here congruence modulo an ideal appears as yet another notion of
equivalence. The equality Append(Cons(A, Cons(B, Null)}, Cons(C,Null)) =
Cons(A, Cons(B, Cons(C, Null))y may be derived from the two axioms
Append(Null, x) = x, Append(Cons(x, ), z) = Cons(x, Append(y,z)) by mere
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“equational reasoning” and is valid in all models of these axioms. In this sense the
expressions on the two sides of the equality might be called equivalent. On the other
hand, the equality Append(x, Append(y,z)) = Append(Append(x, ), z) is not
derivable from the above axioms by equational calculus alone (some additional
induction principle is needed), though the equality holds in all computationally
“interesting” models (the “initial” models of the axioms). Thus, the two terms
Append(x, Append(y, z)) and Append(Append(x, ¥),z) are equivalent in a sense
that is distinct from the preceding one.

For computer algebra, the problem of constructing canonical simplifiers is basic,
because it is intimately connected with

the problem of effectively carrying out operations (“computing”) in algebraic
(factor) domains and

the problem of effectively deciding equivalence.

In fact, an effective canonical simplifier immediately yields an algorithm for
deciding equivalence and for computing in the factor structure defined by the
equivalence. Conversely, a decision procedure for equivalence guarantees the
existence of an effective (though, in general, not an efficient) canonical simplifier:

Theorem (Canonical simplification and decidability of equivalence). Let T be a
decidable set of objects and ~ an equivalence relation on T. Then: ~ is decidable iff
there exists a canonical simplifier S for ~. W

Example. In the commutative semigroup defined by the generators a,b,c,f sand
the defining relations as = ¢%s, bs = cs, s = f the rewrite rules s—» 1, of = bf,
bf — af constitute a canonical simplifier (this can be established by the methods
given in Section 11). @°bc’f?s® and a’b*cs® represent the same element of the
semigroup because their canonical forms are identical, namely a’f?, whereas cs?
and c*s represent different elements because their canonical elements bf*? and af are
distinct.

Proof of the Theorem. “<=": By (SE) and (SC): s ~ t < S(s) = S(1).

“=": Let ¢ be a computable function that maps N onto T. Define: S(s) : = g(n),
where 7 is the least natural number such that g(n) ~ s. Sis computable, because g is.
It 1s clear that (SE) and (SC) are satisfied. m

Theorem (Canonical simplification and computation). Let T be a decidable set of
objects, R a computable binary operation on T, and ~ an equivalence relation on T,
which is a congruence relation with respect to R. Assume we have a canonical
simplifier S for ~. Define:

Rep(T):= {teT|S(t) =1} (set of “canonical representatives”, ample set),
R(s,1):= (S(R(s, 1)) (for all s,teRep(T)).

Then, (Rep(T), R') is isomorphic to (T}~ R/~), Rep(T) is decidable, and R' is
computable. (Here, R/~ (C,,C):=C Rris.0 Where C, is the congruence class of t with
respect to ~). N
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This theorem shows that, having a canonical simplifier for an equivalence relation
that is a congruence with respect to a computable operation, one can algorithmi-
cally master the factor structure. Of course, for concrete examples computationally
more efficient ways of realizing R’ will be possible. The theorem is proven by
realizing that i(¢):= C, (teRep(T)) defines an isomorphism between the two
structures.

Example. The rewrite rules x> — x2 and x?y - x? constitute a canonical simplifier S
on T:= Q[ x, y] for the congruence relation modulo the ideal I generated by the two
polynomials x?y — x* and x*y — x?. (Again, this can be established by the methods
developed in Section 11.) Rep(T) = set of all polynomials fin Q[ x, y], such that no
monomial in fis a multiple of x* or x?y. Multiplication of residue classes modulo 7,
for instance, may be isomorphically modeled in Rep(T) by R'(s, 1) : = S(s - £). Thus,
Riy+1Lxy—D=8S(xy+ 1)y -1 =8Sx**-1)=x*-1. A

It is not always possible to find a canonical simplifier for an equivalence relation on
a given set of expressions. In addition to the practical desire of system users to
simplify with respect to various intuitive and “local” simplification criteria, thisis a
theoretical motivation for dealing with non-canonical simplification, see biblio-
graphic remarks below. Actually, it has been proven that some rather simple classes
of expressions have an undecidable (functional) equivalence problem and, hence,
no canonical simplifier can be found for them (see Section 5). Accordingly, various
notions weaker than, but approximating canonical simplification have been
introduced in the literature. The two most common ones are zero-equivalence
simplification and regular simplification.

Zero-equivalence simplification may be defined in a context where the given set of
expressions contains an element that plays the role of a zero-element:

A computable mapping from T to T'is called zero-equivalence (or normal) simplifier
for the equivalence relation ~ on T iff for all zin T

(SE) S(r) ~ t and
(SZ) £~ 0= S(t) = S(0).

Of course, canonical simplifiers are normal ones. On the other hand, if there exists a
computable operation M on T such that for all 5, zin T

(ME) s~ teM(s, 1)~ 0,

then the existence of a normal simplifier implies the existence of a canonical
simplifier for ~ : Assume M satisfies (ME) (for instance, M might be an operation
that represents subtraction) and S is a normal simplifier for ~. Then ~ is
decidable, because s ~ t < M(s,1) ~ 0 <« S(M(s, 1)) = S0} (use (ME), (SE) and
(SZ)). Now, the existence of a canonical simplifier is guaranteed by the above
theorem on canonical simplification and decidability of equivalence.

The notion of regular simplification is used in the context of expressions involving
transcendental functions (for instance exp, log etc.). Roughly, a regular simplifier
guarantees that all non-rational terms in the simplified expression are algebraically
independent. (For details see the chapter on computing in transcendental
extenstons in this volume).
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The conceptual framework concerning canonical simplification, decidability of
equivalence and effective computation in algebraic structures, outlined above
is based on various analyses given in Caviness [17], Moses [94], Caviness,
Pollack, Rubald [19], Musser [95], Lausch, Nébauer [77], Loos [79], and
Lauer [76].

The simplification of linguistic objects embraces the simplification of logical
Jormulae and the “optimization” of programs. Both problems are extremely
relevant for the computer-aided design and verification of software. Following
common usage, we do not treat these topics under the heading of ‘“‘computer
algebra” in this paper, although we believe that a unified treatment of these subjects
will be inevitable and promising in the future. King, Floyd [63], Polak [110],
Luckham et al. [83], Gerhart et al. [42], Boyer, Moore [8], Suzuki, Jefferson [133],
Reynolds [112], Loveland, Shostak [82] are some sources that give an impression
of the wide range of simplification techniques for logical formulae in the field of
computer-aided program verification and synthesis.

Simplification procedures for algebraic terms that do not explicitly aim at
canonicality, but emphasize actual “simplification™ of expressions with respect to
various, intuitively appealing criteria of simplicity (non-canonical simplification) are
of great practical importance in computer algebra systems. Since the user of a
computer algebra system will be interested in simplification with respect to quite
distinct simplification objectives in different contexts, most computer algebra
systems provide various simplification procedures for one and the same class of
expressions with a possibility for the user to choose the most adequate type of
simplification interactively. Some of the systems include the possibility for the user
to teach the system new simplification rules.

An overview on existing (non-canonical) simplification facilities, design objectives
and simplification criteria applied in computer algebra systems may be obtained by
consulting (the introductory sections of) the following papers: Moses [94],
Fateman [35], Fitch [40], Brown [11], Hearn [48], Fateman [37] and Pavelle et al.
{104] and the manuals of the computer algebra systems, see also the chapter on
computer algebra systems in this volume. Fateman [36] and Hearn [47] are
illustrative summaries of two of the most advanced simplifiers in existing systems.
Yun, Stoutemyer [140] is the most thorough treatment of (non-canonical)
simplification.

Substitution (Moses [94]) and pattern matching (Fateman [35]) are two basic
general purpose techniques for (non-canonical) simplification of expressions.
Substitution is used in both directions: substituting expressions for variables in
other expressions and recognizing identical subexpressions in a complex expression
by pattern matching. An example of applying these techniques is Stoutemyer’s
simplifier (Stoutemyer [132]) for expressions involving the absolute value function
and related functions. Mathematical and software engineering details of general
and special purpose (non-canonical) simplifiers are treated in a big number of
articles, some typical of them being Fateman [34], Griss [45], Jenks [60], Lafferty
[67]. Still, basic techniques are used from the pioneer works of Fenichel [38],
Korsvold [66], Tobey [135] and others.
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Some special and challenging types of non-cancnical ‘‘simplifications™ are
standardization of expressions for intellegible output (see, for instance, Martin [87],
Foderaro [41]), and simplification in the sense of “extracting interesting infor-
mations” from expressions (for instance, information about boundedness, con-
tinuity, monotonicity, convexity etc.), see Stoutemyer [131].

2. Terms and Algebras: Basic Definitions

A signature (or arity-function) is a family of non-negative integers (i.e. a function a:
Def(a) - Ny). The index set of a (i.e. Def(a)) may be called the set of function
symbols of a, in short F{a). Furthermore, F(a, n) := { fe F(a)/a(f) = n} (set of n-ary
function symbols). (We often shall omit the arguments of operators like Fif they are
clear from the context, compare C, Term etc. in the sequel).

An g-algebra1s a family A4 (with index set F{(a)) of functions (“operations™) on a set
M, such that for all fe F(a) the function 4( /) “denoted by the function symbol /™ is
a mapping from M“ into M. (A(f)is an element in M if a(f) = 0). M is called the
carrier C(A4) of A. By abuse of language, sometimes 4 will be written in contexts
where C(4) should be used.

We assume that the reader is familiar with the following notions: gererating set for
an a-algebra, homomorphic (isomorphic) mapping between two a-algebras and
congruence relation on an a-algebra.

In the class of all a-algebras, for every set X there exists a “free a-algebra A, with
generating set X° with the following property: X < C(4,), 4, is generated by X,
and for all a-algebras 4 and all mappings m: X — C(4) there exists a unique
homomorphism # from A4, to 4 which extends m (universal property of free
algebras). Up to isomorphisms, 4, is uniquely determined.

Let X be a (denumerable) set disjoint from F(a) (X is called a set of variables). The
following term algebra Term(X, a) is an example of a free a-algebra with generating
set X: The carrier of Term(X, @) is the minimal set T* such that

xeX=>xeT,
Hyoontae T, feFla,n)=fty - t,eT

(x,11,... 1, ft; - -1, denote strings of symbols here!). Furthermore, for every
function symbol fin F(a, n) the function Term(X, a)(/), 1.. the function denoted by
fin the term algebra, is defined by

Term(X, a)(f)ty,.... .y =ft; - 1, (t(,...,t,e C(Term( X, a))).

(For example, f:= -+ xy7 is a term from Term(X,a), where X:= {x,y},
Hay=1{,+,7}, a(*) = a(+) = 2, a(7) = 0. More readable notations for terms
(infix, parentheses etc.) will be used in the subsequent examples). Concrete
representations of terms in computers (for instance as threaded lists) are other
examples of free g-algebras. Terms in Term(X, a) that do not contain variables are
called ground terms over a.

A homomorphic mapping ¢ from Term into Term with the property that 6(x) = x
for almost all x € X'is called substitution. If Ais an a-algebra, an assignmentin A is a
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homomorphic mapping v from Term into 4. For te Term, v(f) is called the value of ¢
at v. Because of the universal property of Term, a substitution (an assignment) is
totally determined by fixing its values for all xe X.

Suppose that X is denumerable and is bijectively enumerated by x : N — X. Let 4 be
an a-algebra, e Term, and n be such that all variables occurring in ¢ appear in
{x1,...,X,}. The n-ary function Fun(d,n, 1) described by t on A is defined by
Fun(4,n,0)ay,...,a,) = v(t)(a,, ..., a,€ A), where vis an assignment that satisfies
u(x) =ay,...,0(x,)=a, t; and ¢, are functionally equivalent on A iff
Fun(4, n,1,) = Fun(4, n, t,) (where n is such that the variables occurring in ¢, or ¢,
appear in {xy,...,x,}).

Let E < Term x Term. (A pair (a,) in E will be conceived as the left-hand and
right-hand side of an “equation” in the subsequent context). Two important
equivalence relations on Term are associated with E, which are basic for all
algebraic theories: E= s = ¢ (s and 1 are “semantically equal in the theory E”) and
Et- s =1 (s and ¢ are “provably equal in the theory E”).

Definition of £ s = ¢. If 4 is an g-algebra, we say that the equation s = ¢is valid in
A (or that 4 is a model for s = r)iff for all assignments vin 4 v(s) = v(f). The set of
all a-algebras 4, in which all equations @ = b of E are valid is called the variety
Var(a, F) of E. Now,

E s = tiff s =¢is valid in all g-algebras of Var(a, E). B

Definitionof £t s = 1. E|- s = tiff the formula s = 7can be derived in finitely many
steps in the following calculus (“equational calculus™; a, b, c etc. € Term):

for all (a,b)€ E (“‘elements of E are axioms™),

a=b
a=b a=0b,b=c (reflexivity, symmetry, transitivity of =),
a=a b=a a=c
a=b (for all substitutions ¢; substitution rule),
o(a) = a(b)
ay=by,...,a,=0b, (for all fe F(a, n); replacement tule).
fa - -a,=fb,- b, u

The equational calculus is correct and complete for the above defined notion of
semantical equality by the following theorem.

Theorem (Birkhoft 1935).
Ees=t iff Ers=t 1

By this theorem, semantical equality can be semi-decided if Eis at least a recursively
enumerable set. For more details about the above concepts see the monographies
on universal algebra (for instance Cohn [21], Lausch, Nébauer [77]) and the
survey on equational theory (Huet, Oppen [58]) which covers also the extensions of
the terminology to many-sorted algebras, introduced in Birkhoff, Lipson [7], and
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the literature on abstract data types, see for instance Musser [96]. The proof of
Birkhoff’s theorem is given in Birkhoff [6], compare also O’Donnell [101].

In the sequel, for fixed E, =; denotes the equivalence relation defined by: s =, ¢ iff
Ers=1

3. Canonical Simplification of Polynomials and Rational Expressions

The General Concept of Polynomial

Let E'be a set of equations and 4 an g-algebra in Var(E). All terms with “constants
denoting elements in 4™, which can be proven equal by E and the definition of the
operations in A, are said to “represent the same E-polynomial over 4. More
precisely, the algebra of E-polynomials over A (with variable set X) Pol(X, g, 4, F)is
the g-algebra that has as its carrier the factor set C(Term(X, a'))/ ~, where a’ and
(the congruence) ~ is defined as follows: F(d'):= Fla)w Name(4), where
Name(4) (a set of names for elements in C(4)) is a set that is disjoint from F(a) and
X and has the same cardinality as C(4). a'(f) : = a(f) for fe Flayand a'(f): = O for
feName(4). Furthermore, for s, ze Term(X, a)

s~t iff  (EuOp(A)Ls=1,

where Op(A) is the set of axioms that completely describe the operations of 4, i.e.,

Op(d) 1= {(fiy -~ in, 1) [ fe Fa,n), A(fXcliy), ..., c(iy)) = c(i),

fiy. .., 1y, i€ Name(4), ne N}

(c 1s some bijection from Name(4) onto C(A)).
Example. E:= set of axioms for commutative rings, A := ring of integers.

OpA)y={1-1=1,1-2=2,...,5-7=35,....1+1 =2,...,

(=35 +7=2,...}.

Gx+1)-2-3x"x)=-9-x"x-x—-3 x-x+6"x+ 2is derivable from &
and Op(4) in the equational calculus, hence, the two sides of the equation denote
the same E-polynomial over 4. If A:= GF(2), then Op(4)={0-0=0,
0:-1=0,...,1+1= 0}. The equation x - x + 1 = x + 1 is not derivable from E
and Op(4) (proof!). x - x + 1 and x + 1 do not represent the same E-polynomial
over A (although Fun(4,1,x-x+ 1) = Fun(4,1,x + 1)). For E as above,
Pol({x,,...,x,}, a, R, E) is denoted by R[x;,...,x,], usually. W

Canonical Simplifiers for Polynomials

Let E:=set of axioms for commutative rings with 1 and R be an arbitrary
commutative ring with 1. It is well known (see, for instance, Lausch, Nobauer 77],
p. 24), that the set of all terms of the form a,x" + -+ +ag (a;- - - (names for)
elementsin R, a, # 0) and the term 0 form a system of canonical forms for R[x] (x”
abbreviates x-x-----x, n times). The set of terms of the form
a, x4+ - 4 g xim (a;, # 0 - (names) of elements from R, -+ “multi-
indices” eN§, i; > - -+ > i, in the lexicographic ordering, for instance) and the
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term 0 form a system of canonical forms for R[x,, ..., x,] (x'is an abbreviation for
the term x§ - -~ - xi, if i is a multi-index). It is clear, how a canonical simplifier
S:Term(X, a’) — R[x], respectively — R[x,...,x,], may be constructed by iter-
atively “applying” the axioms of E and the “operation table” Op(4) as “rewrite
rules” (supposing that the operations in R are computable). An alternative system
of canonical forms for R[x,,. . ., x,], often used in computer algebra systems, is the
“recursive” representation: (3x? + 5)y* + (x — 3)y + (x* — 2x + 1), for instance,
is a “recursive” canonical form of a polynomial (see Collins [22]).

In Lausch, Nobauer [77], pp. 27 canonical forms of polynomials over groups,
distributive lattices with 0 and 1 and boolean algebras for X := {x,, ... ,X,} are
given. Again, the respective canonical simplifiers essentially consist in iteratively
“applying” the axioms defining the respective variety.

Canonical Simplifiers for Rational Expressions

Informally, rational expressions over an integral domain R are those formed from
the constants and variables by the symbols for the ring operations and a symbol for
“division”. The equivalence of such expressions cannot be defined along the above
pattern, because the special role of the zero element in division cannot be
formulated by an equational axiom. Therefore, rational expressions are considered
as representing elements in the quotient field formed from R[x, ..., x,]. Thus, the
simplification problem consists in finding a canonical simplifier S for the
equivalence relation ~ defined on R[xy,...,x,] x (R[xy,...,x,] — {0}) by:

(f1.91) ~ (f2.92) iff Ji°92=/1 g1

In the case when R is a field, the quotient field defined above is isomorphic to the
field obtained by transcendentally extending R by x,, ..., x,. Note that r ~ # does
not imply that r and #' are functionally equivalent, compare Brown [11], p. 28. For
example (x> — 1)/(x — 1) ~ x + 1, but (x? — 1)/{(x — 1) is undefined for x = 1
whereas x + 1 yields 2. However, one can define division of functions in the way it is
done in the theory of meromorphic functions (where, in the above example, the
value of (x* — 1)/(x — 1) =(x — D(x + 1)/(x — 1) for x=1 is defined to be
x+1=2). We, then, have (f},g,)~ (f2,4,) iff (the function denoted by
f1/91) = (the function denoted by f,/g,). Rational expressions ¢ that are not
quotients of two polynomials, for instance (x — x/x2)/(x + 1), are simplified by
using rational arithmetic (see the chapter on arithmetic in algebraic domains) on the
simplified quotients that appear as subterms in ¢:

(x = x/x?)(x + 1) = (x/1 = 1/x)/((x + 1)/1) = (x> ~ /XA + 1)/1)
= (x — 1)/x.

Let us suppose that R[x,, . .., x,] is a unique factorization domain with 1, for which
there exist three computable functions G, /, [ with the following properties:

G(f,g) = a greatest common divisor (GCD) of fand g
(ie. G satisfies: G(f, g)|f, G(f,g)|g and
for all h: if k|f and h|g, then h|G(f,g)),

flg=f"(g/f) = g (division),
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I(fyisaunitand f=g=I(f)-f=1lg) g
(i.e. the function s(f):= /) - fis a canonical simplifier
for the relation = defined by: f = g iff fand g are
associated elements, i.e. /= u - g for some unit u.
A unit is an element for which there exists an inverse).

In this case the above simplification problem can be solved by the following
canonical simplifier

S((f,9)):= (¢ - (f1G(f.9)), ¢ - (4/G(f,9))), where ¢ = Ug/G(f,9)).

This solution of the simplification problem for rational expressions is essentially
based on procedures for a GCD (see the chapter on polynomial remainder
sequences). Since these procedures are relatively time consuming it is important to
carefully avoid superfluous calls of GCD in the arithmetic based on the above
canonical forms (see the chapter on arithmetic in algebraic domains, algorithms of
Henrici [49]). Also, it may be recommendable to store the numerator and
denominator of rational expressions in factored or partially factored form, if such
factors are known in special contexts (see Brown [11], Hall [46]).

4. Canonical Simplification of Radical Expressions

Roughly, radical expressions are terms built from variables x,, ..., x,, constants
(for elements in Q), the arithmetical function symbols +, —, -, / and the radical

sign q\f or, equivalently, rational powers (“radicals™) s (reQ) (s in 5" is called a
radicand). A natural (modified) notion of functional equivalence for these
expressions is as follows:

5 ~ t (s is meromorphically equivalent to 1) iff Fun’(s) = Fun'(z).

Here, Fun' essentially is defined as Fun, but Fun'(s/t) = Fun'(s)/Fun'(s) where /"
denotes division of meromorphic functions (see the preceding section) and,
furthermore, Fun'(s") (where r denotes a positive rational) is a meromorphic
function that satisfies

(R) Fun'(s)® — Fun'(s)* = 0

(where u, v are relatively prime integers with r = u/v). Let T be a set of radical terms
built from the radicals 57, ..., sj*. Suppose that for all 1 < i < & the equation (R)
for s7' is irreducible over Q(Fun'(x,), . .., Fun'(x,), Fun'(s}),..., Fun'(sj-})). Then
all possible interpretations Fun' of the expressions in T satisfying the above
conditions are ““differentially isomorphic”, i.e. the structure of the field of functions
described by expressions in T does not depend on the chosen “branches” of the
meromorphic functions defined by (R) (“regular algebraic field description”, see
Risch [116], Caviness, Fateman [18], Davenport [25]).

Thus, ~ on T may be decided by the following procedure:

1. Construct an algebraic extension field K:= Q(x,,...,x,)[¢,,...,a,] such that
all terms in T 'may be conceived as pure arithmetical terms in X, i.e. terms that are
composed from constants for elements in K and the arithmetical function symbols
+ s T s /



Algebraic Simplification 21

2. For deciding s ~ ¢ evaluate s and ¢ by applying rational simplification and an
effective arithmetic in K. s ~ ¢ iff both evaluations yield the identical result. The
construction of minimal irreducible polynomials for a,,...,q, is a means for
having an effective arithmetic available in K.

An effective evaluator for ground terms over K, hence, is a canonical simplifier for
~ on T. (Note, however, that this simplifier depends on the field K constructed in
step 1 of the procedure).

For unambiguously specifying the element of K denoted by a given radical term ¢ it
is still necessary to state the conventions one wants to use for relating subterms of the
form (s - ) with 5" and ¢. Note that the rule (s - t)" = 5" - ¢" is a convention that
attributes a special interpretation to (s - ¢)". Other conventions are possible that

imply other interpretations. For instance, ,/(x - x) may equally well be meant to
denote \/)_c X =xor \/ (—x)- \/ (— x) = — x (this corresponds to computing
in Q(x)[¥] modulo the two irreducible factors y — x and y + x of y* — x?

respectively). Conventions of the kind ./(x - x) = abs(x), though desirable in
certain contexts, would lead outside the range of interpretations, for which an
isomorphism theorem holds.

A simplification algorithm of the above type has been developed in Caviness [17],
Fateman {35], Caviness, Fateman [18] for the special case of unnested radical
expressions, i.€. radical expressions whose radicals do not contain other radicals as
subterms:

Algorithm (Canonical Simplification of Radical Expressions, Caviness, Fateman
1976).

Input:
P 7 (unnested radical expressions in the variables x,, ..., x,).

Output:

1. M,,..., M, (minimalirreducible polynomials for algebraic entities ;, ..., &,
such that ¢,, ..., #; may be conceived as pure arithmetical ground
terms with constants from K:=Q(x,,...,x)[0t1,---,0.])

2. 0850,...,8 (s; is the result of evaluating ¢; in K. s; is taken as the canonically
simplified form of ¢,).

1. Construction of X:

LL1. Alls;:=1t.

1.2, Transform all s;
by rationally simplifying all radicands and applying the rule
(pla)™" —(q/p).

1.3. R:=set of all “radicals”
in the s;, i.e. of subterms of the form ( p/q)", where p and q are relatively
prime elements in Z[x,,..., x,], ¢ is positive (i.e. the leading coefficient
of g 1s positive), r 1s a positive rational number # 1.

1.4. P:=set of all “polynomial radicands”
in the s, 1.e. polynomials p, g for which (p/g) 1s in R.
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1.5. B:=a “basis” for P,
L.e. a set of irreducible positive polynomials in Z[x,,...,x,] of degree
= 0 such that
if bis in B then b|p for a p in P and
if p is in P then p = + [ b for certain b; in B and ¢, in N.
(A basis B for P can be obtained by factorizing all p in P and collecting
all irreducible factors).
1.6. If P contains a non-positive element: Add the element — 1 to B.
m:= number of elements in B.
1.7. Transform all 5; by applying the following conventions:
(pla)y —=P'/q,
(qT50y — [T, (= [To8y = (= 1y - [T (6¢),
bbb ifr=w+uv(weNy, 0 < ufv < 1, u,vrelatively prime).
1.8. For all b in B determine the radical degree d(b):
d(b) .= lem(vy, ..., ), where u/v,,...,u/v; are the reduced rational
powers to which & appears in the s;.
1.9. Transform all s; by
expressing all b¥°(b; e B) as powers of b;'"*? and
replacing all 5;*” by new variables ;.
1.10. Determine minimal irreducible polynomials:
M;:= an irreducible factor of yi* — b; over
Qxy, - Xy, 0,0 ], where o= “piA®I”,
(If — 1isin B, say b; = — 1, then o; : = wyp,))-

2. Determine the canonical forms s;:

2.1. lterate:
Rationally simplify all 5; and
execute the arithmetical operations in X, i.¢. in
Q(xy,..., %) Y15 Ym] modulo the polynomials A;. W

Example. 1 = (2x — 2)/(x® = 1)) + (2/(x + 1))112)/(24x + 24)1,
120 5= ((( + x + /27 + @(x + D)V2)/(24x + 24)14.
13,14 R=--, P={x*+x+1,2, x +1,24x + 24},
15: B={23,x+1,x*+x+1).
1.7.0 5= ((((x* + x + DHx? + x + D320
+ (23 (x + DDAV x + 1)),
18.: d2)=12,d3) =4, dx+1)=4, dx*+x+1)=3.
L9.: s=(((x" + x + 1)* - y)/4 - y}D) + ¥y - 2 - »a).
110.: My =pi2 =2, M, =yi -3, My=)y;—(x+ D), M, =yl - (x*+x+ 1).
2L s= (P +x+ 12y ya+ 4 p10/@ -y yay3)
= ((x* + 207 + 3x2 + 2x + 1)/(48x + 48)) - 211112 334(x 4 )34
4+ x+ DY+ (1/6x 4+ 6)) - 2912334 (x + )V4 A

Note that the above construction, in general, does not lead to the minimal extension
field X of Q(x, . .., x,) in which the above simplification procedure may be carried
out.

Several computational improvements of the algorithm and a complexity analysis
based on work of Epstein [32] can be found in Caviness, Fateman [18].
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(Theoretically, the algorithm is exponential in the number of variables. However, it
is feasible for expressions of moderate size.)

An algorithm similar to the Caviness-Fateman algorithm has also been developed
in Fitch [39, 407]. The simplification of radicals is also treated in Zippel [142]. In
Shtokhamer [127] ideas for “local” simplification of unnested radical expressions
are given (i.e. simplification in the style of step 2 prior to constructing the field X for
the whole expression). For treating nested radicals effective computation in residue
class rings modulo arbitrary polynomials in Q[x,,...,x,] is an adequate frame-
work. Proposals in this direction have been made in Kieiman [64], Buchberger
[12], Shtokhamer [125, 126], see also Section 11.

5. Canonical Simplification of Transcendental Expressions: Unsolvability Results

Further extension of the expressive power of the term classes considered may lead
to term classes whose simplification problem is algorithmically unsolvable. An
example is the class R2 of terms generated from one variable x, constants for the
rationals, =, and the function symbols +, -, sin, abs, whose simplification problem
with respect to functional equivalence ~  on R is algorithmically unsolvable. (It
should be clear how the definition of R2 and ~ g can be made precise following the
pattern given in Section 2. Expressions involving function symbols for transcenden-
tal functions like exp, log, sin, erf are called transcendental expressions. The class of
rational expressions over C extended by exp and log is called the class of elementary
transcendental expressions).

Theorem (Caviness, Richardson, Matijasevic 1968, 1970). The predicate “t ~ g0 is
undecidable (for t e R2). (Hence, ~ g is undecidable and, by the theorem on canonical
simplification and equivalence, there cannot exist a zero-equivalence or canonical
simplifier for ~g on R2). W

Proof (Sketch). The proof proceeds by a number of problem reductions via
recursive translators (“m-reductions” in the sense of algorithm theory, Rogers
[119]. The following variant of the famous result of Mativasevic [89] concerning
the undecidability of Hilbert’s tenth problem serves as a basis of the proof. For a
certain n the predicate

(1} “There exist z,,...,z,€Z such that Fung(¢t}z,,...,z,) = 0"

is undecidable for te P:= Z[x,,...,x,]. (Actually n = 13 is the minimal such »n
known so far, see Manin {84].)

First problem reduction. There exists a recursive “translator” T1: P — R3 such that
for all te P:

(2) there exist z;,...,z,eZ such that Fun,(t)(z,,...,z,) =0 <«
there exist by,..., b, e R such that Fung(T1(¢))5b,,...,b,) < 0.

Here, R3 essentially is defined as R2 with the difference that we allow n variables
Xi,y...,X, and that abs does not appear in the terms of R3. Using sin and «, a
suitable T1 may be defined as follows (re P):

(3) TI(t):=(n + 1)* - [£*+sin?(ax,) - D(1,)* + - - - + sin®(nx,)- D(n, £)*] — 1.
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Here D(i,t) is a “dominating” function for &/dx; (¢%). It is clear that, given te P, a
term '€ P may be found effectively, such that ¢’ describes 6/dx,(%). Thus, for
constructing D(i, r) it suffices to have a recursive function 7: P — Psuch that, for all
te P, T(r)describes a ““dominating” function for ¢, i.e. a function that satisfies for ail
by,....b,eR, and for all 4,,...,4,eR with |4,| < I:

(4) Fung(T(¢)Xb4,...,b,) > 1 and
Fung(T(O)b, ..., b) > [Fung(t)by + 44, b, + 4,).

A suitable T may be defined by induction on the structure of the terms in P.
Knowing (4), the proof of (2) is easy.

Second problem reduction. There exists a recursive “translator” 7,: R3 — R3 such
that for all e R3:

(5) there exist by,...,b,e R such that Fung(#)(p,,...,b,) <0 <«
there exists be R such that Fung(T2(:)(h) < O.

The construction of T2 is tricky : it simulates the application of ““pairing functions”,
which normally are used in algorithm theory for the reduction of n-dimensional
problems to one-dimensional ones. Since pairing functions are not available in R3,
the sinus-function is used to partially approximate the effect of pairing functions.

Third problem reduction. There exists a recursive “translator” 73: R3 - R2 such
that for all ze R3:

(6) there exists be R such that Fung(s)(h) <0 <
< ot (T3(t) ~x0).

A suitable T3 is:
(7) T3(t) := abs(z) ~ .

Given the unsolvability of the problem stated in (1) and the problem reductions in
(2), (5), and (6), it is thus shown that ~ j is undecidable. W

The proof method for the above unsolvability result has been developed in
Richardson [113]. It has been applied to Matiyasevic’s result in Caviness [17].
Matiyasevic’s theorem is the culmination of earlier work by M. Davis, J. Robinson
and H. Putnam, for instance Davis, Putnam, Robinson [27]. A clear and detailed
presentation of Matiyasevic’s result is given in Davis [26]. Other unsolvability
results concerning transcendental terms in computer algebra may be found in
Fenichel [38], Risch [116], Moses [93].

6. (Canonical) Simplification of Transcendental Expressions:
Miscellaneous Techniques

In this section we review miscellaneous techniques for canonical simplification of
transcendental expressions that have been developed before the technique based on
the “structure theorems” (see next section) has been matured into its present state.
There are three groups of methods falling into this category: specific techniques for
relatively limited classes of transcendental expressions, point-evaluation (a proba-
bilistic method), and general reduction methods (reducing the zero-equivalence
problem for a given expression to that of simpler expressions).
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Examples for methods in the first group are a zero-equivalence simplifier for the
“rational exponential expressions” (rational numbers, i, 7, XipoosXoy +, —, /s
exp) given in Brown [9] and a canonical simplifier for the “exponential poly-
nomials” (rational numbers, x, +, —, -, exp) given in Caviness [17], see also Moses
[94]. These algorithms, essentially, consist in a systematic application of known
identities for exp (as, for instance, exp(x - y) = exp(x) + exp(y)) and applying tests
for (linear or algebraic) dependencies between subterms. The proof of the
canonicality (normality) of these algorithms is based on number theoretic
conjectures that are plausible although their proofs seem to be extremely difficult.
(For instance, Brown uses the conjecture that if {g,,... i in} 18 linearly
independent over the rational numbers, {e?,..., % z 7} is algebraically inde-
pendent over the rational numbers.)

Point-evaluation (Martin [87], Oldehoeft [102], Fitch [407]), may be used for testing
functional equivalence of (transcendental) expressions. Theoretically, the idea is
simple: If s is not functionally equivalent to ¢ (s, ¢ transcendental expressions), then
Fun(s — t) has, at most, a countable number of solutions, while the real (or
complex) numbers are uncountable. Thus, for a point z chosen at random,
Fun(s — 1)(z) = 0 implies s ~ ¢ “with probability 1”. Practically, because of
rounding errors, overflow and underflow, floating-point arithmetic is not satisfac-
tory for performing the evaluations necessary in this context. Finite field
computations (Martin [87]), interval arithmetic (Fitch [40]) and computing with
transcendental ground terms are the alternatives that have been proposed. The
latter method, though seemingly natural, cannot be applied in general because very
little is known about the algebraic dependence of transcendental ground terms (the
constant problem) (see the survey by (Lang [68])).

Asan example of a general reduction method we describe Johnson’s method [61].(A
second reduction method, based on the notion of Budan-sequences, has been
presented by Richardson [114]). Johnson’s method is applicable to any class of
transcendental expressions for which a general notion of “eigenelements” can be
defined. The method presupposes that the zero-equivalence problem can be solved
effectively for certain subclasses of the term class considered. Since this is not
generally the case in practical examples, Johnson’s method is an algorithm in a
relativized sense only.

Let R and K (K < R) be classes of transcendental expressions such that R/~ isa
ring without zero divisors and K/~ is a field, where ~ denotes functional
equivalence on R. Let ¢: R - Rand E: R —» K be computable functions such that £
determines “eigenvalues” E(e) for certain “eigenelements” e of R:

e€ R is an eigenelement (w.r.t. ¢) iff
not(e ~ 0) and ¢(e) ~ E(e) - e.
We assume:
(1) (s + 1) ~ d(s) + o(2).
) $(K) < K, ¢(1) ~ 0.

(3) If e,, e, are eigenelements then e, is invertible and e, !, e e, are
cigenelements.
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(4) “t ~ 0" is decidable for e K.
(5) “t ~ 0" is decidable for teker(¢p) := {t/p(¢) ~ 0}.

From (1)—(3) one can easily prove that

(6) ¢(0) ~0,
(7) all elements in K are eigenelements,
(8) e is an eigenelement and not (¢p(e) ~ 0) = ¢(e) is an eigenelement.

Algorithm (Test for zero-equivalence. Johnson 1971).
Input: eigenvalues e,, ..., e, of an effective operator ¢ on R.
Question: Is S:=¢; + --- +¢,~0?

1. If n=1: Answer “Not(S ~ 0)”. Return.
2. T:=by et e;+ +by-e ' ey,
where b;:= E(e; ! " e) (i:=1,...,n~ 1).
[verify T~ ¢le; ! - S); use (1), (2)].
3. If not (T ~ 0): Answer “Not(S ~ 0)”. Return.
[Use the fact that ¢(0) ~ 0.
Note that “T ~ 0" may decided effectively:
If all b; ~ 0: Answer “T ~ 0",
[Use (4); note that all b;e K]
Otherwise apply the algorithm recursively to 7.
[Note that all b;-e ! - ¢; with not (b, ~ 0) are eigenelements by (3),
(N3]
4. [Case: T ~ 0, in this case: e_ ' - Seker(¢).]
4.1. If not(e; ' - S) ~ 0: Answer “Not(S ~ 0)”. Return.
[Note that “e” ' - § ~ 0" can be decided by (5)].
4.2. Answer “S ~0”. Return. W

Examples for the application of this algorithm are given in Johnson [61]. For
instance, ¢ may be the operation of formal differentiation on a set R of
transcendental expressions. In this context, K can be chosen to be the set of rational
expressions. The computation of eigenvalues may be effected by using the following
rules: E(r)=0, E(u-v)= E@u)+ E(v), E(u/v)= Eu)— E(v), E@u")=rEu),
E(s) = §'/s, E(e*) = &' (r...rational number; u, v. .. arbitrary expressionsin R; s. ..
rational expression).

7. Canonical Simplification of Transcendental Expressions: Structure Theorems

The most advanced and systematic method of simplifying transcendental ex-
pressions ¢ is based on the so-called structure theorems. The basic idea is similar to
the procedure followed in Section 4: in a first step a (transcendental) extension field
K of Q is constructed such that r may be conceived as denoting an element in K.
Then ¢ is simplified using rational arithmetic. The structure theorems guide the
extension procedure, This procedure is described in the chapter on computing in
transcendental extensions.
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8. Complete Reduction Systems, Critical Pairs, and Completion Algorithms

In classes T of linguistic objects with an equivalence relation ~ one often can define
in a natural way a “reduction relation” —, which describes how “one can get, in one
step, from an object s to a more simple but equivalent object t . The iteration of this
reduction yields a canonical simplifier for ~, if — can be handled algorithmically,
the reflexive, symmetric and transitive closure of — is ~, and — is complete in the
sense that

the iteration of the reduction process always terminates after finitely many
steps at an irreducible object (finite termination property) and

different reductions processes starting from the same object always terminate
at the same irreducible object (unigueness).

For concrete reduction relations -+, the proof of the finite termination property
mostly needs particular techniques. The test for uniqueness can often be carried out
in an algorithmic way by using two important ideas: localization (generally
applicable) and the method of critical pairs (often applicable for reduction relations
that are “generated” from finitely many reduction patterns). Finitely generated
reduction relations that are not complete may be completed by adding reduction
patterns that arise in the analysis of the critical pairs. This method of completion is
the third basic idea, which together with localization and critical pair analysis
constitutes a powerful and widely applicable methodology for constructing
canonical simplifiers.

More formally, let T 3 0 be an arbitrary set (of linguistic objects). In the context of
this section an arbitrary binary relation - < T x T will be called a reduction
relation. The inverse relation, the transitive closure, the reflexive-transitive closure
and the reflexive-symmetric-transitive closure of — will be denoted by «, = ¥, %,
and —*, respectively. Also, —»% = identity, »"*! = —o=" If - is clear from the
context, by x we denote that x e T'is in normal form with respect to — (i.¢. there is no
ye T such that x — y). x and y have a common successor (in symbols, x | y) iff for
some z: x —»*z «* y. — is called noetherian (— has the finite termination property)
iff there 1s no infinite chain of the form x; - x, » x, > -+~

Now, let ~ be an equivalence relation on T and — be a noetherian reduction
relation on T such that «* = ~. Suppose we have a computable “selector”
function Sel: T — T such that x — Sel(x) for all x e T that are not in normal form.
Consider the computable function S recursively defined by

S(x) := if x is in normal form then x else S(Sel(x)).

Let us call an § of this kind a normal-form algorithm for —. Our objective is to
provide an algorithmic test for deciding whether § is a canonical simplifier. First,
observe that § satisfies (SE), i.e. S(x)«—* x. We even have

(SE) for all xe T: x —* §(x).

In the sequel we shall present a number of lemmas showing that the test for (SC), i.e.
the property: x—*y= S(x) = S(»), can be reduced successively to intuitively
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easier tests and finally, can be “localized”. The method of critical pairs, then, will
make the test effective. Let S be a normal-form algorithm for — (- noetherian!).

Lemma (Reduction of canonicality to the Church-Rosser property). S is a canonical
simplifier for &* iff — has the Church- Rosser property. (— has the Church-Rosser
property iff for all x, yeT: xo*y=x|y). N

Proof. “=": Easy. “«”: If x«<*y, then for some 2z we have:
S(x) «*x —* z «*y —»*8(y) (apply the Church-Rosser property). Again by the
Church-Rosser property (applied to S(x) and z), we have S(x) =z and, anal-
ogously, z = S(3). W o

Lemma (Reduction of the Church-Rosser property to confluence). — has the
Church-Rosser property iff — is confluent. (— is confluent iff for all x, y,
zeT:x+«*z-%y=x|y). R

Proof. **=":Easy. “<"": Since «* is the union of all <" we can use induction on .
n=0:easy. If xe"*!y then x —» z "y or x « z "y for some z. In each case, by
induction hypothesis: z —* u «* y for some «. In the first case, x -»*u «* y, hence,
x|y In the second case, x »*v«<*u for some v by confluence, hence,
Xx-o¥re—*u*yie x|y. R

Lemma (Reduction of confluence to local confluence. Newman 1942). — confluent
iff = locally confluent. (— is locally confluent iff for all x, z, yeT:
xezoy=xly) N

Proof: *=": Easy. “<=": By “‘noctherian” induction. Let z, e T be arbitrary but
fixed. Induction hypothesis: For all z with z;->"z: for all x, y:
(x <*z->*%y=x|y). Weshow: Forall x, y: (x =*z, »*y=x| y). Case x = z,
and case zy = y: easy. In the other case: x «* x; « zy — y; —»*y for some x,, y,.
Then, by local confluence and induction hypothesis, there exist u, v, w with the
properties shown in Fig. 1. W

/ zo\
Xy local confluence

ST

induction
hypothesis

induction
* * hypothesis
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The above lemmata can also be combined in the following way in order to yield a
test for canonicality of S that involves § only:

Lemma (Local test for canonicality). S is a canonical simplifier for —* iff for all x, z,
Vixezoy=8x)=5). H

Still, this test for canonicality is not effective, because infinitely many x, ¥, zmust be
considered, in general. In the next section we will see how this test can be made
effective in situations where — is generated from finitely many “reduction
patterns” by, operations as “substitution” and “replacement” (in a very general
sense).

Historically, the central role of the Church-Rosser property for canonical
simplification has been observed first in the development of A-calculus, see Church,
Rosser [20], Hindley [51], Hindley, Lercher, Seldin [52]. Newman’s lemma as a
general technique appeared first in Newman [100]. A complete yet concise
presentation of the conceptual framework given above including a useful generali-
zation for the case of reduction relations on quotient sets is given in Huet [557. Itis
based on various earlier contributions, for instance Aho, Sethi, Ullman [1], Rosen
[120], Lankford [70], Sethi [124], Staples [129].

It turns out that, implicitly, the idea of critical pair and completion is at the
beginning of algorithmic mathematics: Euclid’s algorithm and Gauss' algorithm
may be viewed as critical pair/completion (cpc-) algorithms (see Section 11). The
algorithm in Buchberger [12] for constructing canonical bases for polynomial
ideals (see Section 11) seems to be the first one that explicitly stated the cpc-method,
although several older algebraic algorithms (for instance, in group theory) have
much of the flavor of cpc, for instance Dehn [28], Todd-Coxeter [136], Evans [33].
Also the resolution algorithm of Robinson [117] for automated theorem proving
might be considered as a cpc-algorithm. The most general cpc-algorithm in the
context of computer algebra is the Knuth-Bendix algorithm for rewrite rules (see
Sections 9 and 10), whose forerunner, in fact, is Evans [33]. Later algorithms of the
cpc type are the collection algorithm of McDonald [91], Newman [99] in
computational group theory (see the respective chapter in this volume) and the
algorithm of Bergman [5] for associative k-algebras. In Loos [81] some of these
algorithms are analyzed under the cpe point of view and ideas for conceiving them
as special cases of the Knuth-Bendix algorithms are presented.

9. The Knuth-Bendix Critical Pair Algorithm

The Knuth-Bendix critical pair algorithm is intended to yield a solution to the
simplification problem for equivalence relations of the form = (see Section 2) on
sets of terms, where E is a set of equations in Term(X, ¢). For an exact formulation
of the algorithm some additional notions for describing the replacement of terms in
terms are needed. We explain these notions in an example (a formal definition may
be based on a formalization of the concept of “tree”, see for instance O’Donnell

[1017):

Example. The term ¢ : = gfxygxy3x (a(f) = 2, a(g) = 3) has the tree representation
shown in Fig. 2.
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Fig. 2

Onesays that fxy occurs at the place (1)in ¢, gxy3 occurs at the place (2)in ¢, y occurs
at the place (1,2} in ¢ etc., in symbols: #/(1) = Sxy, 1/(2) = gxy3, t/(1,2) = yetc. In
addition, t/4 = t where A is the empty sequence of natural numbers. The set of

occurrences (“*addresses”, “places™) Oc(z) of ¢ in the above example is {4, (1), (2),
Gy (LD, (1,2), (2,1, (2,2, (2,3)}. A

Let - denote concatenation on the set N* of occurrences. The prefix ordering < on
N* is defined by: u < viff u - w = v for some w. Furthermore, v/u .= wifu - w = 1,
and u|v (u and v are disjoint) iff neither u < v nor v < .

Finally, for terms s, 7 and occurrences u, [u + s]1is the term that derives from 7 if the
term occurring at win ¢ is replaced by the term s. For instance, in the above example

H(2) ~ ffxx2] = gfxyffxx2x.

Now, let £ be a set of equations on Term(X, a). In a natural way, a reduction
relation —;on Term may be defined such that <% = =g Roughly, s >, ¢ iff ¢
derives from s by applying one of the equations in E as “rewrite rule”, ie.in a
directed way from left to right.

Definition. s — 3 ¢ (sreduces to ¢ by E) iff there is a rule (a,b)e E, a substitution ¢ and
an occurrence u € Oc(s) such that
sfu=oa(a) and t=slu+ab)]. N

Example. Let E be the following axiom system for group theory (in infix notation):
Ml x=x @ x ' x=1,3)(xy)-z=x-(yz). Then, (x71x) 2z
1 " Z — g Z. .

In the sequel, we admit only those E, which satisfy: variable set of b < variable set
of a (for all (a,b)e E). The next definition is crucial.

Definition. The terms p and ¢ form a critical pair in Eiff there are rules (a,, b, ) and
(a2,6,) in E and an occurrence # in Oc(a,) such that

ay/u is not a variable,
a,/u and a, are unifiable,

P = oy(a)[u + 62(b;)] and ¢ = g,(b,),
where g,, o, are substitutions such that

a1{a,/u) = ¢,(a,) is a most general common instance of a,/u and a, (with the
property that no variable of ¢,(a,/u) occurs in a,)

(i.e. p and g result from applying the rules (@1, b,) and (a,,b,) to a “most
general match” of ¢, and a,). R
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In the above definition, the notions of a “most general common instance” and of
“unifiable terms” have been used. Let s, ¢;, ¢, be terms. #, is an instance of ¢, iff
11 = a(ty) for some substitution ¢. 5 is a common instance of ¢, and t, iff 5is an
instance of ¢, and 1,. ¢, and ¢, are unifiable iff t, and ¢, have a common instance. s is
a most general common instance of t, and ¢, iff 5 is a common instance of ¢, and t
and every common instance of ¢, and ¢, is an instance of 5. There is a
straightforward algorithm (“unification algorithm’, Robinson [1 17]} that decides
for given ¢, and ¢, whether ¢, and ¢, are unifiable and, in the positive case, finds a
most general common instance s of ¢, and 1, (Which is unique up to “permutations”
of the variables) and substitutions ¢, and ¢, such that s = a,(ty) = a4(t,). More
sophisticated unification algorithms have been developed, for instance in Robinson
[118], Paterson, Wegman [103], Huet [53], Martelli, Montanari [86].

Example. Consider rules (3) and (2) in the above example and the subterm x - yin
(3), .e. consider ¢y =(x "))z, by =x-(y-2), a,=x"1-x, by =1, and take
u=(1). x ' - xis a most general instance of @, /u = x ‘yand a; = x~1 - x (such
that the condition on the variables is satisfied; take ¢,(x) = x !, a.(y) = x,
o, = identity). Hence, p = o,(a)[u < ¢5(b2)] = (x™' - x) - z[(1) = 1] =1 - z and
q=o0y(b;)=x"1(x-z) form a critical pairin . W

Theorem (Reduction of local confluence to confluence of critical pairs. Knuth-
Bendix 1967). - is locally confluent iff for all critical pairs (p,q) of E: pleg M

If E is finite, one always can construct an algorithm Sel such that ¢ — edel(r) it zis
not in normal form. If - ; is noetherian, let S be the normal-form algorithm based
on Sel.

Algorithm (Critical pair algorithm for rewrite rules, Knuth-Bendix 1967).
Input: E (a set of equations).
Question: Is the normal-form algorithm Sy a canonical simplifier for =,?

C: = set of critical pairs of (E)
Sor all (p,q)eC do

(Po> 90) := (Sk(p), Se(g))

if po # qo then answer: “Sg is not canonical”.
answer: “‘Sg is canonical”, W

The correctness of the algorithm is an easy consequence of the above theorem and
the lemmas in the preceding section.

Proof of the Theorem (sketch). “=": In the notation of the above definition,
p < ay(a,) — g for critical pairs (p, g). (For simplicity, we write — instead of — E
etc.). Hence, p | ¢ by local confluence.

[ 13

«=": Let 1y, s, t, be arbitrary terms and assume f, « s — r,. We have to show
t1] 8, 1. 1y =¥ w —*1, for some w. By assumption, there are rules (a4, b;) and
(42,b;) in E, occurrences u;, u, in Oc(s), and substitutions ¢,, o, such that
sfuy = a1(ay), sfu; = 03(ay), 1y = s[u; + 0,(by)], t; = s[u, + 65(b,)]. There are
essentially the two cases shown in Fig. 3:
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Case: u]uy, Case: upv=u;for some v

Fig. 3
(The case u, - v = uy is symmetric. Drawings in the above style may be very helpful
for clarifying the subsequent arguments).

In the first case: ti/u, = s[u, « ay(by))/uy = sfu, = a5(a,), t;/u; = ¢,(a,). Define
w:.= t,[u; < 0,(b,)]. Then ¢, - w and, also, 1, - w, because

w = s[uy = o1(by)][u; « a(by)] = s[u, = 02(b:)1[u; +a,(by)] =
= 1[u; + a,(b))].

In the second case: t, = s[u; + a,(b,)], t; = s[u, + o1(a,)[v + 04(,)]]. If one can
show that there exists w, such that a,(b,) =»* wy «*a,(a,)[v + 0.,(b,)], then also
t1 | t; by the compatibility property of — g (see definition below).

There are the two subcases shown in Fig. 4.

a, 31

Xe X not in X
(for some vav )

Fig. 4

In the first subcase: 6,(a,) = a,(x)/v,, Where v, issuch that v, - v, = v. Define a new
substitution ) by ¢\ (x):= o,(x)[v; + 62(b;)], ¢,(3):=,(p) for y # x, and
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define wq:=d\(b;). Then o, (b,)— 01(451) because ¢,(x) - o) (x). Also,
ay(a)lv < o2(b;)] = a1(a)vy 6} (x)] >* o' (a;). Since a, - b, we also have
oy(a1) = 0y(b1) (g is stable, see definition below). Hence, ¢,(b;) >*w,
—*a(a)lv < 02(b,)].

In the second subcase it is not difficult to show that the situation considered is an
instance of a critical pair, i.. there is a critical pair ( p, g) of E and a substitution p
such that ol(al)[v - az(bz)] = p(p)and g,(b,) = p(g). By assumption thereis an r
such that p —*r «-*g¢. Define w; := p(r). Again by the stability of —; we have
a1(b)) »*wo «* 6,(a)[vo,(hy)]. W

For providing the details of the above proof a number of lemmas must be proven,
which are pictorially evident (however, pictures may be misleading!) but tedious.
(An exact recursive definition of the basic notions as, for instance, replacement,
occurrence etc. would be necessary.) These lemmas have been tacitly used in the
above sketch. One example of such a lemma is the “commutativity of replacement” :

wy| sy = 8[uy ][y 1] = s[uy + t,][u; ~ 4]

Two important lemmas, which have been mentioned explicitly in the above proof,
are:

Lemma.
— 5 s stable, i.e. for all terms s, t and substitutions ¢:
(s gt =0(s) »ga(t)).
— is compatible, i.e. for all terms s, t,, t, and ue Oc(s):
(1 —ety=slur ] -ps[ust]). A

Example. In the above example of group theory the critical pair ( p, g) resulting from
rules (3) and (2) has no common successor. The only reduction possible for p is

=1-z—zand g=x"""(x-z)is already in normal form. Hence, — g 1s not
locally confluent and the normal-form algorithm S; is not canonical.

Consider now the following axiom system E’ for group theory (Knuth-Bendix
[651), which results from the above system by adding some identities that are
theorems in group theory:

1 1-x=x @ x'x=1, G (x-p)z=x(y 2,
@ 17'=1, (5) x7' - (x-yy =y, 6) x 1=x,
M = H'=x @ x-x'=1, @) x & tp=

10) x- 7t =y7tox

It can be shown (Knuth-Bendix [65]) that — . is noetherian. Furthermore, by
finitely many checks it can be seen that Sg.( p) = Sg.(q) for all critical pairs of E’. In
particular, the above critical pair has now the common successor z. Hence, by the
theorem - is (locally) confluent, S is a canonical simplifier for
—*p = o*p = =y This means that the decision about the validity of identities in
group theory can be fully automatized. W
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For applying the Knuth-Bendix algorithm to a set E of equations —; must be
proven noetherian. In general this is a non-trivial task that needs specific methods
for each example. The uniform halting problem, i.e. the question whether there
exists an infinite chain t =3¢, =z, = - (¢t and E free parameters) is undecid-
able, see Huet, Lankford [57]). On the other hand, the uniform halting problem for
rewrite system E that consist entirely of ground terms is decidable, see Huet,
Lankford [57]. A number of important techniques have been developed for
proving —, noetherian, for instance Knuth, Bendix [65], Manna, Ness [85],
Lankford [69, 70], Plaisted [106, 107], Dershowitz [29, 30], Dershowitz, Manna
[31], see the survey in Huet, Oppen [ 58]. Basically, these techniques proceed from a
well-founded partial ordering > on the set of ground terms. It then is shown that
s—gt=5>1 (for ground terms s, 7). This suffices for proving —; noetherian
because it is known that —p is noetherian iff there is no ground term having an
infinite sequence of reductions.

Important modifications of the Knuth-Bendix (critical pair and completion
algorithm) have been given in Plotkin {108], Lankford, Ballantyne [73, 74, 75],
Huet [55], and Peterson, Stickel [105]. Mainly, these modifications consist in
considering confluence modulo equivalence relations generated by standard
axioms (as, for instance, commutativity), which do not naturally suggest a
distinction between left-hand and right-hand side. Unification modulo such sets of
axioms plays an essential role in this context, see the surveys of Raulefs, Siekmann,
Szabo, Unvericht [111] and Huet, Oppen [58].

10. The Knuth-Bendix Completion Algorithm

If the Knuth-Bendix critical pair algorithm for a set £ of equations shows that the
reduction of a critical pair ( p, ¢) yields S(p} # S(g) then it suggests itself to try to
augment E by the rule (58(p), S(g)) (or (S(g), S(p))) in order to achieve complete-
ness:in fact, the reflexive-symmetric-transitive closure of — ¢ is not changed by this
adjunction, whereas —  itself is properly extended. This process may be iterated
until, hopefully, “saturation” will be reached, i.e. all critical pairs have a unique
normal form. In this case the final set of equations still generates the same
equivalencerelation = as the original one, butits reductionrelation — is unique,
i.e. the associated normal form algorithm is a canonical simplifier for = (and
hence, = is decidable). Of course, before extending E one must check
whether - remains noetherian by this extension and in order to meet this
condition one must choose between the two possibilities (S(p), S(¢)) and
(S(¢), S(p)). It may also happen that the preservation of the finite termination
property cannot be proven for either possibility. In this case the completion process
cannot be continued reasonably. We present the rough structure of this procedure:

Algorithm (Completion algorithm for rewrite rules. Knuth-Bendix 1967).

Given: E, a finite set of equations such that —; is noetherian.
Find: F, a finite set of equations such that

¥, = o*pand

— 18 (locally) confluent (<= Sy is a canonical simplifier).
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F.=FE
C ;= set of critical pairs of (F)

while C # 0 do

(p,q) := an element in (C)

(Pos40) := (S¥(p), Sk(q))

if po # qo then
Analyze (po, o)
C:= Cuset of new critical pairs ((po, qo), F)
F:= Fu{(po,q0)}

C:=C—{(p,q9)}

stop with success. W

The subroutines “set of critical pairs of” and “an element in” seem to be self-
explanatory. The subroutine *‘set of new critical pairs” computes the critical pairs
deriving from the new rule (p,, ¢o) and the rules in F. The subroutine “Analyze”
determines whether — ; remains noetherian when ( o, go) or (4o, Po) is added to E.
In the first case (pg, g) is left unchanged, in the second case the roles of p, and ¢,
are interchanged. If none of the two alternatives holds, the subroutine “Analyze”
executes a stop with failure. There are three possibilities: 1. The algorithm stops
with success. In this case the final F meets the specifications stated in the heading of
the algorithm. 2. The algorithm stops with failure. In this case nothing interesting
can be said. 3. The algorithm never stops: In this case the algorithm is at least a
semidecision procedure for =. It can be shown (Huet [54]) that s =, ¢ can be
semidecided by reducing s and ¢ with respect to the steadily increasing set of
equations produced by the algorithm.

The above crude form of the algorithm can be organizationally refined in many
ways. For instance, the two sides of an equation in F can be kept in reduced form
relative to the other equations in F. Furthermore, the critical pairs can be generated
in an “‘incremental way” (Huet [54]). The sequence of critical pairs chosen by the
procedure “an element in” may have a crucial influence on the efficiency of the
algorithm. These questions are subtle.

Implementations of the Knuth-Bendix completion algorithm are reported in Knuth,
Bendix [65], Hullot [ 59], Richter, Kemmenich [115], Loos [80], Peterson, Stickel
[105]. Investigations of the complexity of the algorithm are difficult. Necessarily
they are confined to special applications of the algorithm. A survey on known
complexity results is given in Lankford [71]. An analysis of various subalgorithms
used in the Knuth-Bendix algorithm may be found in Loos [80].

An impressive variety of axiom systems have been successfully completed by the
Knuth-Bendix algorithm (Knuth, Bendix [65], Lankford, Ballantyne [73, 74, 75],
Stickel, Peterson [130], Ballantyne, Lankford [4], Huet, Hullot [56], Hullot [59],
Biicken [ 14], Richter, Kemmenich [115]), including axiom systems for groups (see
example in the last section), central groupoids, loops, (/, r} systems, commutative
rings with 1, R-modules, fragments of number theory, distributive lattices, non-
deterministic machines, “robot” theory, special finitely presented groups and
commutative semigroups. Recently, the Knuth-Bendix completion algorithm is
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extensively used for completing the defining equations of abstract data types, for
mstance in the AFFIRM system (Gerhart et al. [42], Musser [97]). By the theorem
on canonical simplification and computing in algebraic domains (see Section 1)
completed axiom systems allow to effectively compute in the “direct implemen-
tations of the abstract data types”, i.e. in the term algebra modulo the equivalence
generated by the equations (Musser [97], Lichtenberger [78], Kapur, Musser,
Stepanov [62]). Examples of complete equational specifications of abstract data
types are given in Musser [97, 98].

Recently (Courcelle [24], Musser [98], Goguen [43], Huet, Hullot [56]), a new
type of application of the completion process has been proposed: completion as a
substitute for induction, see also Lankford [72]. By this method, the validity of
equations e in the “initial model” of a set £ of equations (Goguen et al. [15, 44])
may be proven by testing whether the Knuth-Bendix completion algorithm applied
to E'u {e} stops without generating any inconsistency.

11. A Completion Algorithm for Polynomial Ideal Bases

Let E'bea (finite) set of polynomialsin K[x,, . .. ,X»], Kafield and let <, bealinear
ordering of the monomials, which is “admissible” in the sense that O <r0,=>
t:0, <7106z and 1 <70 (t, ,, 6, monomials). We study the problem of
constructing a canonical simplifier for the congruence relation = g modulo the
polynomial ideal Ideal(E) generated by the polynomials in E. It is easy (although
non-trivial) to show that the following reduction relation —; 1S such that
H*E = =p.

Definition. s — ¢ (s reduces to t modulo E) iff there is a polynomial (a, b) in E, a
monomial ¢ and a monomial ¥ occurring in s such that

u=c-a and t=sluvo-b]. A

The polynomials of Eare thought to be represented in Ein the form (a,b), where gis
the leading monomial in the polynomial with respect to <; with its leading
coefficient normed to 1 and 4 is the rest of the polynomial. Structurally, this
definition is very similar to the definition of — £ in the preceding section. The
multiplication with a monomial corresponds to the application of a substitution
and the operation of replacement in the present context is defined as follows:

s{u + 1] : = the polynomial that results from the polynomial s by replacing
the monomial « by the polynomial r.

Example.
E:={(x%y, — 3% + 2»), (0% - 2x)).
5= xt _2x2y2 + 5y3 +X—iEX4-- 11y3 _4y2 +x=:1,

because the monomial x2y? occurring in s is a multiple u - x2y of the left-hand side
of the first polynomial in E, where « is the monomial y. tresults from s by replacing
X3P byu-(-3y2+2y). W

It is not difficult to show that —, is noetherian for arbitrary E. Itis clear that there
exists a selector function Sel, and, based on Selg, a normal form algorithm S;
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for — . Again, the following notion is basic for the approach to constructive ideal
theory given here.

Definition. The polynomials p and ¢ form a critical pair of E iff there are
polynomials (a,,b,) and (a,,b,) in E such that

p=o0(b) and g =0,(by)
where ¢,, o, are monomials such that
01 * @, = 03 * 4, is the least common multiple of 4, and a,. W
Example.
E = {(x*yz, xz), (xy?z, xyz), (x3*, 2%)}.

x’y*z is a least common multiple of the left-hand sides of the first two polynomials
mE o =y, 0,=xtp=xyz2, q=x%z. 1

Again, one can show that the consideration of the critical pairs is sufficient for
deciding the (local) confluence of —:

Theorem (Critical pair algorithm for polynomial ideals. Buchberger 1965). Sg is a
canonical simplifier for — iff

JSor all critical pairs of (p, q) of E: Sg(p) = Se(g). A

Proof. Again, the proof of this theorem may be organized in such a way that,
essentially it consists in the proof of : — is locally confluent iff for all critical pairs
(p,q) of E: p|g. At present, no proof of this property is known which would
proceed by a specialization of the Knuth-Bendix proof. A special proofis necessary,
see Buchberger [12, 13], Bachmair, Buchberger [3]. The main reason for this seems
to be the fact that — is not compatible, but only “semi-compatible”:

— 18 stable, i.. for all polynomials s, r and monomials o:
(sopt=>a-5+50"1).

— g i semi-compatible, i.e. for all polynomials s, ¢, t, and monomials
% occurring in s:
(trwety=>slus ] ps[uct;]). B

Example. In the above example Sg(p) = xyz?, Si(g) = xz>. Hence, by the theorem
S 1s not canonical. W

Again the critical pair algorithm can naturally be modified to obtain the following
completion algorithm:

Algorithm (Completion algorithm for polynomial ideal bases. Buchberger 1965).

Given: E, a finite set of polynomials in K[x,,...,x,].
Find: F, a finite set of polynomials in K[x;,..., x,] such that
=p= =rand

— ¢ is (locally) confluent (<> Sy is a canonical simplifier)
(An F with this property is called Grébner basis).
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The algorithm is formally identical to the Knuth-Bendix completion algorithm, but
with different meaning associated to the subroutines. In particular the subroutine
“*Analyze” has no stop with failure. Instead *“Analyze” performs (p,, ¢,) : = leading
monomial and rest of the polynomial p, — g, (after normalizing the leading
coefficient to 1). M

The algorithm stops for arbitrary input sets E, see Buchberger [12], and Bergman
[51, p- 208. Again, a number of organizational improvements are possible for the
algorithm, the most important being the one developed in Buchberger [13], which
shows that, instead of critical pairs, “‘chains” of critical pairs may be considered.
This results in a drastic improvement in the speed of the algorithm. This approach
might also prove fruitful for other instances of cpc algorithms. Research in this
direction has now been undertaken.

In the special case of E< K[x] the above algorithm specializes to Euclid’s
algorithm. In the special case of a set of linear polynomials in K[x,,...,x,] the
algonithm specializes to Gauss’ algorithm. In the special case of having only
monomials on the right-hand sides of the polynomials in E, E are the defining
relations of a finitely generated commutative semigroup and the algorithm is a
decision procedure for the uniform word problem for commutative semigroups. It
has been shown by Cardoza, Lipton, Meyer [16], and Mayr, Meyer [90] that this
problem is complete in exponential space under log-space transformability. Hence,
also the complexity of the above algorithm necessarily will be high. Nevertheless, in
practical examples it has proven feasible. An explicit complexity bound for the case
n =2 has been derived in Buchberger [13]. Various implementations of the
algorithm have been reported, see Buchberger [12], Schrader [122], Lauer [76],
Spear [128], Trinks [137], Zacharias [1417, Schatler [121], Winkler et al. [139],
including generalizations for polynomials over rings and various applications
(effective computation in residue rings modulo polynomial ideals, computation of
elimination ideals and solution of sets of algebraic equations, effective Lasker-
Noether decomposition of polynomial ideals, effective computation of the Hilbert
function and the sycygies of polynomial ideals, interpolation formulae for
numerical cubature (Méller [92])). A generalization of the algorithm for asso-
ciative algebras with many interesting applications (for instance for Lie-algebras)
over commutative rings with 1 has independently been derived in Bergman [5].

For improving the computational feasibility of the algorithm the application of the
techniques derived for Euclid’s algorithm (Collins [23], Brown [10]; see the
chapter on polynomial remainder sequences) should be investigated. A comparison
of the notion of resultant, polynomial remainder sequence and reduction — is
necessary for this purpose. The first observations in this direction appear in Schaller
[121], Pohst, Yun [109]. Also a comparison with other approaches for deriving
“canonical bases” for polynomial ideals and constructive methods in ring theory
(Hermann [50], Szekeres [134), Kleiman [64], Seidenberg [123], Shtokhamer
[125], Trotter [138], Ayub [2]), seems to be promising.
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