Logic-based Program Verification First-Order Theories. Theory of Equality

Mădălina Eraşcu and Tudor Jebelean
Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria \{merascu, tjebelea\}@risc.jku.at

November 20, 2013

Example 1 Prove that F is T_{E} valid where

$$
F \quad: \Longleftrightarrow a=b \wedge b=c \quad \Longrightarrow \quad g[f[a], b]=g[f[c], a]
$$

Solution.

$$
\begin{array}{ll}
a=b \wedge b=c \Longrightarrow a=c & \text { (transitivity) } \\
a=b \Longrightarrow f[a]=f[b] & \text { (function congruence) } \\
b=c \Longrightarrow f[b]=f[c] & \text { (function congruence) } \\
a=c \Longrightarrow f[a]=f[c] & \text { (function congruence) } \\
f[a]=f[c] \wedge b=a \Longrightarrow g[f[a], b]=g[f[c], a] & \text { (function congruence) }
\end{array}
$$

Example 2 Determine if the following formula is satisfiable or not

$$
F_{1} \quad: \Longleftrightarrow \quad f[a, b]=a \wedge f[f[a, b], b] \neq a
$$

Solution. We construct the initial partition by letting each member of the subterm set $S_{F_{1}}$ be its own class:

$$
S_{F_{1}}=\{\{a\},\{b\},\{f[a, b]\},\{f[f[a, b], b]\}\}
$$

From the first conjunct of F_{1} we have

$$
S_{F_{1}}=\{\{a, f[a, b]\},\{b\},\{f[f[a, b], b]\}\}
$$

Further we have

$$
a \sim f[a, b] \wedge b \sim b \quad \Longrightarrow \quad f[f[a, b], b] \sim f[a, b] \quad \text { (function congruence) }
$$

Hence

$$
S_{F_{1}}=\{\{a, f[a, b], f[f[a, b], b]\},\{b\}\} \quad\left(\text { congruence closure of } S_{F_{1}}\right)
$$

From here we have that F_{1} is unsatisfiable, since by $S_{F_{1}}$ we have $f[f[a, b], b] \sim a$ and F_{1} asserts that $f[f[a, b], b] \neq a$.

Example 3 Determine if the following formula is satisfiable or not

$$
F_{2} \quad: \Longleftrightarrow \quad f[x]=f[y] \wedge x \neq y
$$

Solution. We construct the initial partition by letting each member of the subterm set $S_{F_{2}}$ be its own class:

$$
S_{F_{2}}=\{\{x\},\{y\},\{f[x]\},\{f[y]\}\}
$$

From the first conjunct of F_{2} we have

$$
S_{F_{2}}=\{\{x\}, \quad\{y\}, \quad\{f[x], f[y]\}\}
$$

From here we have that F_{2} is satisfiable, since by $S_{F_{2}}$ we have $x \nsim y$ and F_{1} asserts that $x \neq y$.

