Logic-based Program Verification First-Order Theories. Theory of Equality

Mădălina Erașcu and Tudor Jebelean Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria {merascu,tjebelea}@risc.jku.at

November 20, 2013

Example 1 Prove that F is T_E valid where

$$F \quad : \Longleftrightarrow \quad a = b \ \land \ b = c \ \implies \ g[f[a], b] = g[f[c], a]$$

Solution.

$a = b \land b = c \implies a = c$	(transitivity)
$a = b \implies f[a] = f[b]$	(function congruence)
$b = c \implies f[b] = f[c]$	(function congruence)
$a = c \implies f[a] = f[c]$	(function congruence)
$f[a] = f[c] \land b = a \implies g[f[a], b] = g[f[c], a]$	(function congruence)

Example 2 Determine if the following formula is satisfiable or not

 $F_1 : \iff f[a,b] = a \land f[f[a,b],b] \neq a$

Solution. We construct the initial partition by letting each member of the subterm set S_{F_1} be its own class:

$$S_{F_1} = \{\{a\}, \{b\}, \{f[a,b]\}, \{f[f[a,b],b]\}\}$$

From the first conjunct of F_1 we have

$$S_{F_1} = \{\{a, f[a, b]\}, \{b\}, \{f[f[a, b], b]\}\}$$

Further we have

 $a \sim f[a,b] \ \land \ b \sim b \ \implies \ f[f[a,b],b] \sim f[a,b] \ (\mbox{function congruence})$ Hence

 $S_{F_1} = \{\{a, f[a,b], f[f[a,b],b]\}, \{b\}\}$ (congruence closure of S_{F_1})

From here we have that F_1 is unsatisfiable, since by S_{F_1} we have $f[f[a, b], b] \sim a$ and F_1 asserts that $f[f[a, b], b] \neq a$. **Example 3** Determine if the following formula is satisfiable or not

$$F_2 : \iff f[x] = f[y] \land x \neq y$$

Solution. We construct the initial partition by letting each member of the subterm set S_{F_2} be its own class:

$$S_{F_2} = \{\{x\}, \{y\}, \{f[x]\}, \{f[y]\}\}$$

From the first conjunct of F_2 we have

$$S_{F_2} = \{\{x\}, \{y\}, \{f[x], f[y]\}\}$$

From here we have that F_2 is satisfiable, since by S_{F_2} we have $x \not\sim y$ and F_1 asserts that $x \neq y$.