Logic-based Program Verification
 Decidability of Propositional and First-Order Logic. First-Order Theories. Theory of Equality

Mădălina Erașcu Tudor Jebelean
Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria
\{merascu, tjebelea\}@risc.jku.at

November 20, 2013

Outline

Preliminaries

Decidability of PL and FOL

First-Order Theories
Theory of Equality ($T_{\text {EUF }}$). Congruence Closure Algorithm for $T_{\text {QFEUF }}$

Outline

Preliminaries

Decidability of PL and FOL

First-Order Theories
 Theory of Equality ($T_{E U F}$). Congruence Closure Algorithm for $T_{\text {QFEUF }}$

The Decision Problem of Formulas

The decision problem for a given formula ϕ is to determine whether ϕ is valid/satisfiable.

```
A procedure for the decision problem is sound if when it returns
"Valid" / "Satisfiable", the input formula is indeed valid/satisfiable.
A procedure for the decision problem is complete if
    1. it always terminates, and
    2. it returns "Valid" / "Satisfiable" when the input formula is indeed
        valid/satisfiable.
A procedure is called a decision procedure for the theory T (e.g.
propositional logic, first-order logic, other theories to be discussed later)
if it is sound and complete with respect to every formula of T.
A theory is decidable iff there is a decision procedure for it.
```


The Decision Problem of Formulas

The decision problem for a given formula ϕ is to determine whether ϕ is valid/satisfiable.
A procedure for the decision problem is sound if when it returns "Valid" / "Satisfiable", the input formula is indeed valid/satisfiable.

1. it always terminates, and
2. it returns "Valid" / "Satisfiable" when the input formula is indeed valid/satisfiable.

A procedure is called a decision procedure for the theory T (e.g. propositional logic, first-order logic, other theories to be discussed later) if it is sound and complete with respect to every formula of T A theory is decidable iff there is a decision procedure for it.

The Decision Problem of Formulas

The decision problem for a given formula ϕ is to determine whether ϕ is valid/satisfiable.
A procedure for the decision problem is sound if when it returns "Valid" / "Satisfiable", the input formula is indeed valid/satisfiable.
A procedure for the decision problem is complete if

1. it always terminates, and
2. it returns "Valid" / "Satisfiable" when the input formula is indeed valid/satisfiable.

A procedure is called a decision procedure for the theory T (e.g. propositional logic, first-order logic, other theories to be discussed later) if it is sound and complete with respect to every formula of T A theory is decidable iff there is a decision procedure for it.

The Decision Problem of Formulas

The decision problem for a given formula ϕ is to determine whether ϕ is valid/satisfiable.
A procedure for the decision problem is sound if when it returns "Valid" / "Satisfiable", the input formula is indeed valid/satisfiable.
A procedure for the decision problem is complete if

1. it always terminates, and
2. it returns "Valid" / "Satisfiable" when the input formula is indeed valid/satisfiable.

A procedure is called a decision procedure for the theory T (e.g. propositional logic, first-order logic, other theories to be discussed later) if it is sound and complete with respect to every formula of T.

The Decision Problem of Formulas

The decision problem for a given formula ϕ is to determine whether ϕ is valid/satisfiable.
A procedure for the decision problem is sound if when it returns "Valid" / "Satisfiable", the input formula is indeed valid/satisfiable.
A procedure for the decision problem is complete if

1. it always terminates, and
2. it returns "Valid" / "Satisfiable" when the input formula is indeed valid/satisfiable.

A procedure is called a decision procedure for the theory T (e.g. propositional logic, first-order logic, other theories to be discussed later) if it is sound and complete with respect to every formula of T.
A theory is decidable iff there is a decision procedure for it.

Outline

Preliminaries

Decidability of PL and FOL

First-Order Theories
 Theory of Equality ($T_{\text {EUF }}$). Congruence Closure Algorithm for $T_{\text {QFEUF }}$

Decidability of PL and FOL

Questions

- Is propositional logic (PL) decidable? If so, give example of decision procedures
- Yes! (truth table, resolution, DPLL)
- Is first-order logic (FOL) decidable? If so, give example of decision procedures.
- FOL is undecidable (Church \& Turing): there does not exist a decision procedure/algorithm for deciding if a FOL formula F is valid/satisfiable.
- FOL is semi-decidable: there is a procedure that halts and says "yes" if F is indeed valid/satisfiable.

Decidability of PL and FOL

Questions

- Is propositional logic (PL) decidable? If so, give example of decision procedures
- Yes! (truth table, resolution, DPLL)
- Is first-order logic (FOL) decidable? If so, give example of decision procedures.
- FOL is undecidable (Church \& Turing): there does not exist a decision procedure/algorithm for deciding if a FOL formula F is valid/satisfiable.
- FOL is semi-decidable: there is a procedure that halts and says "yes" if F is indeed valid/satisfiable.

Decidability of PL and FOL

Questions

- Is propositional logic (PL) decidable? If so, give example of decision procedures
- Yes! (truth table, resolution, DPLL)
- Is first-order logic (FOL) decidable? If so, give example of decision procedures.
- FOI is undecidable (Church \& Turing): there does not exist a decision procedure/algorithm for deciding if a FOL formula F is valid/satisfiable.
- FOI is semi-decidable: there is a procedure that halts and says "yes" if F is indeed valid/satisfiable.

Decidability of PL and FOL

Questions

- Is propositional logic (PL) decidable? If so, give example of decision procedures
- Yes! (truth table, resolution, DPLL)
- Is first-order logic (FOL) decidable? If so, give example of decision procedures.
- FOL is undecidable (Church \& Turing): there does not exist a decision procedure/algorithm for deciding if a FOL formula F is valid/satisfiable.
- FOL is semi-decidable: there is a procedure that halts and says "yes" if F is indeed valid/satisfiable.

Decidability of PL and FOL

Questions

- Is propositional logic (PL) decidable? If so, give example of decision procedures
- Yes! (truth table, resolution, DPLL)
- Is first-order logic (FOL) decidable? If so, give example of decision procedures.
- FOL is undecidable (Church \& Turing): there does not exist a decision procedure/algorithm for deciding if a FOL formula F is valid/satisfiable.
- FOL is semi-decidable: there is a procedure that halts and says "yes" if F is indeed valid/satisfiable.

Decidability of PL and FOL

Questions

- Is propositional logic (PL) decidable? If so, give example of decision procedures
- Yes! (truth table, resolution, DPLL)
- Is first-order logic (FOL) decidable? If so, give example of decision procedures.
- FOL is undecidable (Church \& Turing): there does not exist a decision procedure/algorithm for deciding if a FOL formula F is valid/satisfiable.
- FOL is semi-decidable: there is a procedure that halts and says "yes" if F is indeed valid/satisfiable.

Outline

Preliminaries

Decidability of PL and FOL

First-Order Theories
Theory of Equality ($T_{E U F}$). Congruence Closure Algorithm for $T_{\text {QFEUF }}$

First-Order Theories

Motivation:

- Reasoning in applications domains, e.g. software, hardware, necessitates various notions (numbers, lists, arrays, memory, etc.) which can be formalized using FOL.
- While FOL is undecidable, validity in particular theories or fragments of theories interesting for verification is sometimes decidable and even efficiently decidable.

First-Order Theories

Motivation:

- Reasoning in applications domains, e.g. software, hardware, necessitates various notions (numbers, lists, arrays, memory, etc.) which can be formalized using FOL.
- While FOL is undecidable, validity in particular theories or fragments of theories interesting for verification is sometimes decidable and even efficiently decidable.

First-Order Theories

Motivation:

- Reasoning in applications domains, e.g. software, hardware, necessitates various notions (numbers, lists, arrays, memory, etc.) which can be formalized using FOL.
- While FOL is undecidable, validity in particular theories or fragments of theories interesting for verification is sometimes decidable and even efficiently decidable.

First-Order Theories

A first-order theory T is defined by:

1. signature Σ : set of constant, function, predicate symbols
2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables.
A \sum-formula F is valid in T (T-valid), if every interpretation / that satisfies the axioms of T,

$$
\begin{equation*}
I=A \text { for every } A \in \mathcal{A}, \tag{1}
\end{equation*}
$$

also satisfies $F: I \models F$. We also write $T \models F$ (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.
An interpretation satisfying (1) is a T-interpretation.
A Σ-formula F is satisfiable in T (T-satisfiable), if there is a
T-interpretation / that satisfies F.
A theory T is complete if for every closed \sum-formula $F, T=F$ or $T \models \neg F$.
A theory is consistent if there is at least one T-interpretation.
A fragment of a theory is a syntactically-restricted subset of formulas of the theory.

First-Order Theories

A first-order theory T is defined by:

1. signature Σ : set of constant, function, predicate symbols
2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear
A formula F is closed if it does not contain any free variables.
A \sum-formula F is valid in T (T-valid), if every interpretation / that satisfies the axioms of T,

$$
\begin{equation*}
I \models A \text { for every } A \in \mathcal{A}, \tag{1}
\end{equation*}
$$

also satisfies $F: I \models F$. We also write $T \models F$ (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.
An interpretation satisfying (1) is a T-interpretation.
A Σ-formula F is satisfiable in T (T-satisfiable), if there is a
T-interpretation / that satisfies F
A theory T is complete if for every closed Σ-formula $F, T=F$ or
$T \vDash \neg F$.
A theory is consistent if there is at least one T-interpretation.
A fragment of a theory is a syntactically-restricted subset of formulas of
the theory.

First-Order Theories

A first-order theory T is defined by:

1. signature Σ : set of constant, function, predicate symbols
2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables.
A \sum-formula F is valid in $T(T$-valid $)$, if every interpretation $/$ that
satisfies the axioms of T,

$$
I \models A \text { for every } A \in \mathcal{A},
$$

also satisfies $F: I \models F$. We also write $T \models F$ (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.
An interpretation satisfying (1) is a T-interpretation.
A Σ-formula F is satisfiable in T (T-satisfiable), if there is a
T-interpretation / that satisfies F
A theory T is complete if for every closed \sum-formula $F, T \models F$ or
$T \vDash \neg F$.
A theory is consistent if there is at least one T-interpretation.
A fragment of a theory is a syntactically-restricted subset of formulas of
the theory.

First-Order Theories

A first-order theory T is defined by:

1. signature Σ : set of constant, function, predicate symbols
2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables.
A \sum-formula F is valid in T (T-valid), if every interpretation / that
satisfies the axioms of T,

$$
l \neq A \text { for every } A \in \mathcal{A} \text {, }
$$

also satisfies $F: I \models F$. We also write $T \models F$ (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.
An interpretation satisfying (1) is a T-interpretation.
A \sum-formula F is satisfiable in T (T-satisfiable), if there is a
T-interpretation / that satisfies F
A theory T is complete if for every closed \sum-formula $F, T=F$ or $T=\neg F$.
A theory is consistent if there is at least one T-interpretation.
A fragment of a theory is a syntactically-restricted subset of formulas of
the theory.

First-Order Theories

A first-order theory T is defined by:

1. signature Σ : set of constant, function, predicate symbols
2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables. A Σ-formula F is valid in T (T-valid), if every interpretation / that satisfies the axioms of T,

$$
\begin{equation*}
I \models A \text { for every } A \in \mathcal{A} \tag{1}
\end{equation*}
$$

also satisfies $F: I \models F$. We also write $T \models F$ (F is T-valid).
 A fragment of a theory is a syntactically-restricted subset of formulas of the theory.

First-Order Theories

A first-order theory T is defined by:

1. signature Σ : set of constant, function, predicate symbols
2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables. A Σ-formula F is valid in T (T-valid), if every interpretation I that satisfies the axioms of T,

$$
\begin{equation*}
I \models A \text { for every } A \in \mathcal{A}, \tag{1}
\end{equation*}
$$

also satisfies $F: I \models F$. We also write $T \models F$ (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.

First-Order Theories

A first-order theory T is defined by:

1. signature Σ : set of constant, function, predicate symbols
2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables. A Σ-formula F is valid in T (T-valid), if every interpretation I that satisfies the axioms of T,

$$
\begin{equation*}
I \models A \text { for every } A \in \mathcal{A}, \tag{1}
\end{equation*}
$$

also satisfies $F: I \models F$. We also write $T \models F$ (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.
An interpretation satisfying (1) is a T-interpretation.

A fragment of a theory is a syntactically-restricted subset of formulas of
the theory.

First-Order Theories

A first-order theory T is defined by:

1. signature Σ : set of constant, function, predicate symbols
2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables. A Σ-formula F is valid in T (T-valid), if every interpretation I that satisfies the axioms of T,

$$
\begin{equation*}
I \models A \text { for every } A \in \mathcal{A}, \tag{1}
\end{equation*}
$$

also satisfies $F: I \models F$. We also write $T \models F$ (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.
An interpretation satisfying (1) is a T-interpretation.
A Σ-formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation / that satisfies F.

A theory is consistent if there is at least one T-interpretation. A fragment of a theory is a syntactically-restricted subset of formulas of

First-Order Theories

A first-order theory T is defined by:

1. signature Σ : set of constant, function, predicate symbols
2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables. A Σ-formula F is valid in T (T-valid), if every interpretation / that satisfies the axioms of T,

$$
\begin{equation*}
I \models A \text { for every } A \in \mathcal{A}, \tag{1}
\end{equation*}
$$

also satisfies $F: I \models F$. We also write $T \models F$ (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.
An interpretation satisfying (1) is a T-interpretation.
A Σ-formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation / that satisfies F.
A theory T is complete if for every closed Σ-formula $F, T \models F$ or $T \models \neg F$.
A theory is consistent if there is at least one T-interpretation.
A fragment of a theory is a syntactically-restricted subset of formulas of

First-Order Theories

A first-order theory T is defined by:

1. signature Σ : set of constant, function, predicate symbols
2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables. A Σ-formula F is valid in T (T-valid), if every interpretation / that satisfies the axioms of T,

$$
\begin{equation*}
I \models A \text { for every } A \in \mathcal{A}, \tag{1}
\end{equation*}
$$

also satisfies $F: I \models F$. We also write $T \models F$ (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.
An interpretation satisfying (1) is a T-interpretation.
A Σ-formula F is satisfiable in T (T-satisfiable), if there is a
T-interpretation / that satisfies F.
A theory T is complete if for every closed \sum-formula $F, T \models F$ or $T \models \neg F$.
A theory is consistent if there is at least one T-interpretation.

First-Order Theories

A first-order theory T is defined by:

1. signature Σ : set of constant, function, predicate symbols
2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables. A Σ-formula F is valid in T (T-valid), if every interpretation / that satisfies the axioms of T,

$$
\begin{equation*}
I \models A \text { for every } A \in \mathcal{A}, \tag{1}
\end{equation*}
$$

also satisfies $F: I \models F$. We also write $T \models F$ (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.
An interpretation satisfying (1) is a T-interpretation.
A Σ-formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation / that satisfies F.
A theory T is complete if for every closed \sum-formula $F, T \models F$ or $T \models \neg F$.
A theory is consistent if there is at least one T-interpretation.
A fragment of a theory is a syntactically-restricted subset of formulas of the theory.

First-Order Theories

A first-order theory T is defined by:

1. signature Σ : set of constant, function, predicate symbols
2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables. A Σ-formula F is valid in T (T-valid), if every interpretation / that satisfies the axioms of T,

$$
\begin{equation*}
I \models A \text { for every } A \in \mathcal{A}, \tag{1}
\end{equation*}
$$

also satisfies $F: I \models F$. We also write $T \models F$ (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.
An interpretation satisfying (1) is a T-interpretation.
A Σ-formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation / that satisfies F.
A theory T is complete if for every closed \sum-formula $F, T \models F$ or $T \models \neg F$.
A theory is consistent if there is at least one T-interpretation.
A fragment of a theory is a syntactically-restricted subset of formulas of the theory.

$T_{E U F}$

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).
Signature: $\Sigma_{E}=\{=, a, b, c, \ldots, f, g, h, \ldots, P, Q, R, \ldots\}$
a, b, c, \ldots - constants, f, g, h, \ldots - function symbols, P, Q, R, ... - predicate
symbols
The predicate $=$ is interpreted via the following axioms:

$T_{\text {EUF }}$

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).
Signature: $\Sigma_{E}=\{=, a, b, c, \ldots, f, g, h, \ldots, P, Q, R, \ldots\}$
a, b, c, \ldots - constants, f, g, h, \ldots - function symbols, $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \ldots$ - predicate symbols
The predicate $=$ is interpreted via the following axioms:

$T_{E U F}$

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).
Signature: $\Sigma_{E}=\{=, a, b, c, \ldots, f, g, h, \ldots, P, Q, R, \ldots\}$
a, b, c, \ldots - constants, f, g, h, \ldots - function symbols, $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \ldots$ - predicate symbols
The predicate $=$ is interpreted via the following axioms:

[^0]
$T_{E U F}$

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).
Signature: $\Sigma_{E}=\{=, a, b, c, \ldots, f, g, h, \ldots, P, Q, R, \ldots\}$
a, b, c, \ldots - constants, f, g, h, \ldots - function symbols, $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \ldots$ - predicate symbols
The predicate $=$ is interpreted via the following axioms:

1. $\underset{x}{\underset{x}{x} x=x \quad \text { (reflexivity) }}$

2. $\forall x=y \wedge y=z \quad \Longrightarrow \quad x=z \quad$ (transitivity)
3. $y_{y}\left({ }_{n}^{n} x_{i}=y_{i}\right) \Longrightarrow f(\bar{x})=f(\bar{y}) \quad$ (function congruence),
where n is a positive integer and f is an n-ary function symbol
4. $\forall\left(\bigwedge^{n} x_{i}=v_{i}\right) \Longrightarrow P(\bar{x})=P(\bar{y}) \quad$ (function congruence),
where n is a positive integer and P is an n-ary predicate symbol

We have

$T_{E U F}$

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).
Signature: $\Sigma_{E}=\{=, a, b, c, \ldots, f, g, h, \ldots, P, Q, R, \ldots\}$
a, b, c, \ldots - constants, f, g, h, \ldots - function symbols, $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \ldots$ - predicate symbols
The predicate $=$ is interpreted via the following axioms:

1. $\underset{x}{\forall} x=x \quad$ (reflexivity)
2. $\underset{x, y}{\forall} x=y \quad \Longrightarrow \quad y=x \quad$ (symmetry)
(transitivity)
3. $\underset{\bar{x}, \bar{y}}{\forall}\left(\bigwedge_{i=1}^{n} x_{i}=y_{i}\right) \Longrightarrow f(\bar{x})=f(\bar{y}) \quad$ (function congruence),
where n is a positive integer and f is an n-ary function symbol
4.

$$
\Longrightarrow \quad P(\bar{x})=P(\bar{y})
$$

$T_{E U F}$

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).
Signature: $\Sigma_{E}=\{=, a, b, c, \ldots, f, g, h, \ldots, P, Q, R, \ldots\}$
a, b, c, \ldots - constants, f, g, h, \ldots - function symbols, $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \ldots$ - predicate symbols
The predicate $=$ is interpreted via the following axioms:

1. $\forall x=x \quad$ (reflexivity)
2. $\underset{x, y}{\forall} x=y \quad \Longrightarrow \quad y=x \quad$ (symmetry)
3. $\underset{x, y, z}{\forall} x=y \wedge y=z \quad \Longrightarrow \quad x=z \quad$ (transitivity)
4. $\underset{\bar{x}, \bar{y}}{\forall}\left(\bigwedge_{i=1}^{n} x_{i}=y_{i}\right) \Longrightarrow f(\bar{x})=f(\bar{y}) \quad$ (function congruence),
where n is a positive integer and f is an n-ary function symbol
5. $\forall\left(\wedge x_{i}=y_{i}\right) \Longrightarrow P(\bar{x})=P(\bar{y}) \quad$ (function congruence)
where n is a positive integer and P is an n-ary predicate symbol
We have

$T_{E U F}$

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).
Signature: $\Sigma_{E}=\{=, a, b, c, \ldots, f, g, h, \ldots, P, Q, R, \ldots\}$
a, b, c, \ldots - constants, f, g, h, \ldots - function symbols, $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \ldots$ - predicate symbols
The predicate $=$ is interpreted via the following axioms:

1. $\underset{x}{\forall} x=x \quad$ (reflexivity)
2. $\underset{x, y}{\forall} x=y \quad \Longrightarrow \quad y=x \quad$ (symmetry)
3. $\underset{x, y, z}{\forall} x=y \wedge y=z \quad \Longrightarrow \quad x=z \quad$ (transitivity)
4. $\underset{\bar{x}, \bar{y}}{\forall}\left(\bigwedge_{i=1}^{n} x_{i}=y_{i}\right) \Longrightarrow f(\bar{x})=f(\bar{y}) \quad$ (function congruence), where n is a positive integer and f is an n-ary function symbol
\square
where n is a positive integer and P is an n-ary predicate symbol

We have

$T_{E U F}$

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).
Signature: $\Sigma_{E}=\{=, a, b, c, \ldots, f, g, h, \ldots, P, Q, R, \ldots\}$
a, b, c, \ldots - constants, f, g, h, \ldots - function symbols, $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \ldots$ - predicate symbols
The predicate $=$ is interpreted via the following axioms:

1. $\underset{x}{\forall} x=x \quad$ (reflexivity)
2. $\underset{x, y}{\forall} x=y \quad \Longrightarrow \quad y=x \quad$ (symmetry)
3. $\underset{x, y, z}{\forall} x=y \wedge y=z \quad \Longrightarrow \quad x=z \quad$ (transitivity)
4. $\underset{\bar{x}, \bar{y}}{\forall}\left(\bigwedge_{i=1}^{n} x_{i}=y_{i}\right) \Longrightarrow f(\bar{x})=f(\bar{y}) \quad$ (function congruence), where n is a positive integer and f is an n-ary function symbol
5. $\underset{\bar{x}, \bar{y}}{\forall}\left(\bigwedge_{i=1}^{n} x_{i}=y_{i}\right) \Longrightarrow P(\bar{x})=P(\bar{y}) \quad$ (function congruence), where n is a positive integer and P is an n-ary predicate symbol
[^1]
$T_{E U F}$

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).
Signature: $\Sigma_{E}=\{=, a, b, c, \ldots, f, g, h, \ldots, P, Q, R, \ldots\}$
a, b, c, \ldots - constants, f, g, h, \ldots - function symbols, $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \ldots$ - predicate symbols
The predicate $=$ is interpreted via the following axioms:

1. $\underset{x}{\forall} x=x \quad$ (reflexivity)
2. $\underset{x, y}{\forall} x=y \quad \Longrightarrow \quad y=x \quad$ (symmetry)
3. $\underset{x, y, z}{\forall} x=y \wedge y=z \quad \Longrightarrow \quad x=z \quad$ (transitivity)
4. $\underset{\bar{x}, \bar{y}}{\forall}\left(\bigwedge_{i=1}^{n} x_{i}=y_{i}\right) \Longrightarrow f(\bar{x})=f(\bar{y}) \quad$ (function congruence), where n is a positive integer and f is an n-ary function symbol
5. $\underset{\bar{x}, \bar{y}}{\forall}\left(\bigwedge_{i=1}^{n} x_{i}=y_{i}\right) \Longrightarrow P(\bar{x})=P(\bar{y}) \quad$ (function congruence), where n is a positive integer and P is an n-ary predicate symbol
We have
6. $=$ is an equivalence relation
7. $=$ is a congruence relation

$T_{E U F}$

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).
Signature: $\Sigma_{E}=\{=, a, b, c, \ldots, f, g, h, \ldots, P, Q, R, \ldots\}$
a, b, c, \ldots - constants, f, g, h, \ldots - function symbols, $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \ldots$ - predicate symbols
The predicate $=$ is interpreted via the following axioms:

1. $\underset{x}{\forall} x=x \quad$ (reflexivity)
2. $\underset{x, y}{\forall} x=y \quad \Longrightarrow \quad y=x \quad$ (symmetry)
3. $\underset{x, y, z}{\forall} x=y \wedge y=z \quad \Longrightarrow \quad x=z \quad$ (transitivity)
4. $\underset{\bar{x}, \bar{y}}{\forall}\left(\bigwedge_{i=1}^{n} x_{i}=y_{i}\right) \Longrightarrow f(\bar{x})=f(\bar{y}) \quad$ (function congruence), where n is a positive integer and f is an n-ary function symbol
5. $\underset{\bar{x}, \bar{y}}{\forall}\left(\bigwedge_{i=1}^{n} x_{i}=y_{i}\right) \Longrightarrow P(\bar{x})=P(\bar{y}) \quad$ (function congruence), where n is a positive integer and P is an n-ary predicate symbol
We have
6. = is an equivalence relation

$T_{E U F}$

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).
Signature: $\Sigma_{E}=\{=, a, b, c, \ldots, f, g, h, \ldots, P, Q, R, \ldots\}$
a, b, c, \ldots - constants, f, g, h, \ldots - function symbols, $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \ldots$ - predicate symbols
The predicate $=$ is interpreted via the following axioms:

1. $\underset{x}{\forall} x=x \quad$ (reflexivity)
2. $\underset{x, y}{\forall} x=y \quad \Longrightarrow \quad y=x \quad$ (symmetry)
3. $\underset{x, y, z}{\forall} x=y \wedge y=z \quad \Longrightarrow \quad x=z \quad$ (transitivity)
4. $\underset{\bar{x}, \bar{y}}{\forall}\left(\bigwedge_{i=1}^{n} x_{i}=y_{i}\right) \Longrightarrow f(\bar{x})=f(\bar{y}) \quad$ (function congruence), where n is a positive integer and f is an n-ary function symbol
5. $\underset{\bar{x}, \bar{y}}{\forall}\left(\bigwedge_{i=1}^{n} x_{i}=y_{i}\right) \Longrightarrow P(\bar{x})=P(\bar{y}) \quad$ (function congruence), where n is a positive integer and P is an n-ary predicate symbol
We have
6. = is an equivalence relation
7. $=$ is a congruence relation

$T_{E U F}$ (cont'd)

Is T_{E} decidable?
Is quantifier-free T_{E} decidable?
Without quantifiers, free variables and constants play the same role.
Example:
Prove that F is T_{E} valid where

$$
\Longleftrightarrow \quad a=b \wedge b=c \quad \Longrightarrow \quad g[f[a], b]=g[f[c], a]
$$

Goal: decision procedure for satisfiability of quantifier - free theory of equality (QFEUF)

$T_{E U F}$ (cont'd)

Is T_{E} decidable?
Is quantifier-free T_{E} decidable?
Without quantifiers, free variables and constants play the same role.
Example:
Prove that F is T_{E} valid where

$$
\Longleftrightarrow \quad a=b \wedge b=c \quad \Longrightarrow \quad g[f[a], b]=g[f[c], a]
$$

Goal: decision procedure for satisfiability of quantifier - free theory of equality (QFEUF)

$T_{E U F}$ (cont'd)

Is T_{E} decidable?
Is quantifier-free T_{E} decidable?
Without quantifiers, free variables and constants play the same role.
Example:
Prove that F is T_{E} valid where

$$
\Longleftrightarrow a=b \wedge b=c \Longrightarrow g[f[a], b]=g[f[c], a]
$$

Goal: decision procedure for satisfiability of quantifier - free theory of equality (QFEUF)

$T_{E U F}$ (cont'd)

Is T_{E} decidable?
Is quantifier-free T_{E} decidable?
Without quantifiers, free variables and constants play the same role.
Example:
Prove that F is T_{E} valid where
$F \quad: \Longleftrightarrow \quad a=b \wedge b=c \quad \Longrightarrow \quad g[f[a], b]=g[f[c], a]$
Goal: decision procedure for satisfiability of quantifier - free theory of equality (QFEUF)

$T_{E U F}$ (cont'd)

Is T_{E} decidable?
Is quantifier-free T_{E} decidable?
Without quantifiers, free variables and constants play the same role.
Example:
Prove that F is T_{E} valid where

$$
F \quad: \Longleftrightarrow a=b \wedge b=c \quad \Longrightarrow \quad g[f[a], b]=g[f[c], a]
$$

Goal: decision procedure for satisfiability of quantifier - free theory of equality (QFEUF)

Relations

Let S be a set and R a binary relation over S.
For two elements $s_{1}, s_{2} \in S$, either $s_{1} R s_{2}$ or $\neg\left(s_{1} R s_{2}\right)$.
The relation R is an equivalence relation if it is

The relation R is a congruence relation if

Relations

Let S be a set and R a binary relation over S.
For two elements $s_{1}, s_{2} \in S$, either $s_{1} R s_{2}$ or $\neg\left(s_{1} R s_{2}\right)$.
The relation R is an equivalence relation if it is

The relation R is a congruence relation if

Relations

Let S be a set and R a binary relation over S.
For two elements $s_{1}, s_{2} \in S$, either $s_{1} R s_{2}$ or $\neg\left(s_{1} R s_{2}\right)$.
The relation R is an equivalence relation if it is

1. reflexive:

2. symmetric
$s_{1} R s_{2} \Longrightarrow s_{2} R s_{1}$
3. transitive: $\quad \forall \quad s_{1} R s_{2} \wedge s_{2} R s_{3} \Longrightarrow s_{1} R s_{3}$

The relation R is a congruence relation if

Relations

Let S be a set and R a binary relation over S.
For two elements $s_{1}, s_{2} \in S$, either $s_{1} R s_{2}$ or $\neg\left(s_{1} R s_{2}\right)$.
The relation R is an equivalence relation if it is

1. reflexive: $\underset{s \in S}{\forall} s R s$
2. symmetric:

3. transitive: $\underset{s_{1}, s_{2}, s_{3} \in S}{\forall} s_{1} R s_{2} \wedge s_{2} R s_{3} \Longrightarrow s_{1} R s_{3}$

The relation R is a congruence relation if

Relations

Let S be a set and R a binary relation over S.
For two elements $s_{1}, s_{2} \in S$, either $s_{1} R s_{2}$ or $\neg\left(s_{1} R s_{2}\right)$.
The relation R is an equivalence relation if it is

1. reflexive: $\underset{s \in S}{\forall} s R s$
2. symmetric: $\underset{s_{1}, s_{2} \in S}{\forall} s_{1} R s_{2} \Longrightarrow s_{2} R s_{1}$
3. transitive: $\quad \forall s_{s_{1}} R s_{2} \wedge s_{2} R s_{3} \Longrightarrow s_{1} R s_{3}$

The relation R is a congruence relation if

Relations

Let S be a set and R a binary relation over S.
For two elements $s_{1}, s_{2} \in S$, either $s_{1} R s_{2}$ or $\neg\left(s_{1} R s_{2}\right)$.
The relation R is an equivalence relation if it is

1. reflexive: $\underset{s \in S}{\forall} s R s$
2. symmetric: $\underset{s_{1}, s_{2} \in S}{\forall} s_{1} R s_{2} \Longrightarrow s_{2} R s_{1}$
3. transitive: $\underset{s_{1}, s_{2}, s_{3} \in S}{\forall} s_{1} R s_{2} \wedge s_{2} R s_{3} \Longrightarrow s_{1} R s_{3}$

The relation R is a congruence relation if

Relations

Let S be a set and R a binary relation over S.
For two elements $s_{1}, s_{2} \in S$, either $s_{1} R s_{2}$ or $\neg\left(s_{1} R s_{2}\right)$.
The relation R is an equivalence relation if it is

1. reflexive: $\underset{s \in S}{\forall} s R s$
2. symmetric: $\underset{s_{1}, s_{2} \in S}{\forall} s_{1} R s_{2} \Longrightarrow s_{2} R s_{1}$
3. transitive: $\underset{s_{1}, s_{2}, s_{3} \in S}{\forall} s_{1} R s_{2} \wedge s_{2} R s_{3} \Longrightarrow s_{1} R s_{3}$

The relation R is a congruence relation if

1. $1-3$ hold
2. for any n-ary function f,

Relations

Let S be a set and R a binary relation over S.
For two elements $s_{1}, s_{2} \in S$, either $s_{1} R s_{2}$ or $\neg\left(s_{1} R s_{2}\right)$.
The relation R is an equivalence relation if it is

1. reflexive: $\underset{s \in S}{\forall} s R s$
2. symmetric: $\underset{s_{1}, s_{2} \in S}{\forall} s_{1} R s_{2} \Longrightarrow s_{2} R s_{1}$
3. transitive: $\underset{s_{1}, s_{2}, s_{3} \in S}{\forall} s_{1} R s_{2} \wedge s_{2} R s_{3} \Longrightarrow s_{1} R s_{3}$

The relation R is a congruence relation if

1. $1-3$ hold
2. for any n-ary function f,

Relations

Let S be a set and R a binary relation over S.
For two elements $s_{1}, s_{2} \in S$, either $s_{1} R s_{2}$ or $\neg\left(s_{1} R s_{2}\right)$.
The relation R is an equivalence relation if it is

1. reflexive: $\underset{s \in S}{\forall} s R s$
2. symmetric: $\underset{s_{1}, s_{2} \in S}{\forall} s_{1} R s_{2} \Longrightarrow s_{2} R s_{1}$
3. transitive: $\underset{s_{1}, s_{2}, s_{3} \in S}{\forall} s_{1} R s_{2} \wedge s_{2} R s_{3} \Longrightarrow s_{1} R s_{3}$

The relation R is a congruence relation if

1. $1-3$ hold
2. for any n-ary function f,

$$
\underset{\bar{s}, \bar{t}}{\forall}\left(\bigwedge_{i=1}^{n} s_{i} R t_{i}\right) \Longrightarrow f(\bar{s}) R f(\bar{t})
$$

Relations (cont'd)

Let R be a equivalence relation over the set S.
The equivalence class of $s \in S$ under R is the set

If R is a congruence relation over S, then $[s]_{R}$ is the congruence class of s. A partition P of S is a set of subsets of S that is

The quotient S / R of S by the equivalence (congruence) relation R is a partition of S : it is a set of equivalence (congruence) classes
$S / R=\left\{[S]_{R}: S \in S\right\}$

Relations (cont'd)

Let R be a equivalence relation over the set S.
The equivalence class of $s \in S$ under R is the set

$$
[s]_{R} \stackrel{\text { def }}{=}\left\{s^{\prime} \in S: s R s^{\prime}\right\}
$$

If R is a congruence relation over S, then $[s]_{R}$ is the congruence class of s. A partition P of S is a set of subsets of S that is

The quotient S / R of S by the equivalence (congruence) relation R is a partition of S : it is a set of equivalence (congruence) classes $S / R=\left\{[S]_{R}: S \in S\right\}$

Relations (cont'd)

Let R be a equivalence relation over the set S.
The equivalence class of $s \in S$ under R is the set

$$
[s]_{R} \stackrel{\text { def }}{=}\left\{s^{\prime} \in S: s R s^{\prime}\right\}
$$

If R is a congruence relation over S, then $[s]_{R}$ is the congruence class of s.

The quotient S / R of S by the equivalence (congruence) relation R is a partition of S : it is a set of equivalence (congruence) classes $S / R=\left\{[s]_{R}: S \in S\right\}$.

Relations (cont'd)

Let R be a equivalence relation over the set S.
The equivalence class of $s \in S$ under R is the set

$$
[s]_{R} \stackrel{\text { def }}{=}\left\{s^{\prime} \in S: s R s^{\prime}\right\}
$$

If R is a congruence relation over S, then $[s]_{R}$ is the congruence class of s. A partition P of S is a set of subsets of S that is

Relations (cont'd)

Let R be a equivalence relation over the set S.
The equivalence class of $s \in S$ under R is the set

$$
[s]_{R} \stackrel{\text { def }}{=}\left\{s^{\prime} \in S: s R s^{\prime}\right\}
$$

If R is a congruence relation over S, then $[s]_{R}$ is the congruence class of s. A partition P of S is a set of subsets of S that is

1. total: $\left(\bigcup_{S^{\prime} \in P} S^{\prime}\right)=S$
2. disjoint: $\underset{S_{1}, S_{2} \in P}{\forall} S_{1} \neq S_{2} \Longrightarrow S_{1} \cap S_{2}=\emptyset$

The quotient S / R of S by the equivalence (congruence) relation R is a
partition of S : it is a set of equivalence (congruence) classes
$S / R=\left\{[s]_{R}: s \in S\right\}$

Relations (cont'd)

Let R be a equivalence relation over the set S.
The equivalence class of $s \in S$ under R is the set

$$
[s]_{R} \stackrel{\text { def }}{=}\left\{s^{\prime} \in S: s R s^{\prime}\right\}
$$

If R is a congruence relation over S, then $[s]_{R}$ is the congruence class of s. A partition P of S is a set of subsets of S that is

1. total: $\left(\bigcup_{S^{\prime} \in P} S^{\prime}\right)=S$
2. disjoint: $\underset{S_{1}, S_{2} \in P}{\forall} S_{1} \neq S_{2} \Longrightarrow S_{1} \cap S_{2}=\emptyset$

The quotient S / R of S by the equivalence (congruence) relation R is a
partition of S : it is a set of equivalence (congruence) classes
$S / R=\left\{[s]_{R}: s \in S\right\}$.

Relations (cont'd)

Let R be a equivalence relation over the set S.
The equivalence class of $s \in S$ under R is the set

$$
[s]_{R} \stackrel{\text { def }}{=}\left\{s^{\prime} \in S: s R s^{\prime}\right\}
$$

If R is a congruence relation over S, then $[s]_{R}$ is the congruence class of s. A partition P of S is a set of subsets of S that is

1. total: $\left(\bigcup_{S^{\prime} \in P} S^{\prime}\right)=S$
2. disjoint: $\underset{S_{1}, S_{2} \in P}{\forall} S_{1} \neq S_{2} \Longrightarrow S_{1} \cap S_{2}=\emptyset$

The quotient S / R of S by the equivalence (congruence) relation R is a partition of S : it is a set of equivalence (congruence) classes $S / R=\left\{[s]_{R}: s \in S\right\}$.

Relations (cont'd)

Let R_{1} and R_{2} be two binary relations over set S.
R_{1} is a refinement of R_{2}, or $R_{1} \prec R_{2}$, if $\forall s_{1} R_{1} s_{2} \Longrightarrow s_{1} R_{2} s_{2}$.
In other words, R_{1} refines R_{2}.
Viewing the relations as sets of pairs, $R_{1} \prec R_{2}$ iff $R_{1} \subseteq R_{2}$
Examples

Relations (cont'd)

Let R_{1} and R_{2} be two binary relations over set S.
R_{1} is a refinement of R_{2}, or $R_{1} \prec R_{2}$, if $\underset{s_{1}, s_{2} \in S}{\forall} s_{1} R_{1} s_{2} \Longrightarrow s_{1} R_{2} s_{2}$.
In other words, R_{1} refines R_{2}.
Viewing the relations as sets of pairs, $R_{1} \prec R_{2}$ iff $R_{1} \subseteq R_{2}$.
Examples

Relations (cont'd)

Let R_{1} and R_{2} be two binary relations over set S.
R_{1} is a refinement of R_{2}, or $R_{1} \prec R_{2}$, if $\underset{s_{1}, s_{2} \in S}{\forall} s_{1} R_{1} s_{2} \Longrightarrow s_{1} R_{2} s_{2}$.
In other words, R_{1} refines R_{2}.
Viewing the relations as sets of pairs, $R_{1} \prec R_{2}$ iff $R_{1} \subseteq R_{2}$.
Examples

Relations (cont'd)

Let R_{1} and R_{2} be two binary relations over set S.
R_{1} is a refinement of R_{2}, or $R_{1} \prec R_{2}$, if $\underset{s_{1}, s_{2} \in S}{\forall} s_{1} R_{1} s_{2} \Longrightarrow s_{1} R_{2} s_{2}$.
In other words, R_{1} refines R_{2}.
Viewing the relations as sets of pairs, $R_{1} \prec R_{2}$ iff $R_{1} \subseteq R_{2}$.

Relations (cont'd)

Let R_{1} and R_{2} be two binary relations over set S.
R_{1} is a refinement of R_{2}, or $R_{1} \prec R_{2}$, if $\underset{s_{1}, s_{2} \in S}{\forall} s_{1} R_{1} s_{2} \Longrightarrow s_{1} R_{2} s_{2}$.
In other words, R_{1} refines R_{2}.
Viewing the relations as sets of pairs, $R_{1} \prec R_{2}$ iff $R_{1} \subseteq R_{2}$.
Examples

- Let S be a set.

Relation $R_{1}: s R_{1} s: s \in S$ induced by the partition $P_{1}: s: s \in S$; Relation $R_{2}: s R_{2} t: s, t \in S$ induced by the partition $P_{2}: S$. Then $R_{1} \prec R_{2}$.

Relations (cont'd)

Let R_{1} and R_{2} be two binary relations over set S.
R_{1} is a refinement of R_{2}, or $R_{1} \prec R_{2}$, if $\underset{s_{1}, s_{2} \in S}{\forall} s_{1} R_{1} s_{2} \Longrightarrow s_{1} R_{2} s_{2}$.
In other words, R_{1} refines R_{2}.
Viewing the relations as sets of pairs, $R_{1} \prec R_{2}$ iff $R_{1} \subseteq R_{2}$.

Examples

- Let $S=a, b, R_{1}: a R_{1} b, R_{2}: a R_{2} b, b R_{2} b$. Then $R_{1} \prec R_{2}$.
- Let S be a set. Relation $R_{1}: s R_{1} s: s \in S$ induced by the partition $P_{1}: s: s \in S$; Relation $R_{2}: s R_{2} t: s, t \in S$ induced by the partition $P_{2}: S$. Then $R_{1} \prec R_{2}$.

Relations (cont'd)

Let R_{1} and R_{2} be two binary relations over set S.
R_{1} is a refinement of R_{2}, or $R_{1} \prec R_{2}$, if $\underset{s_{1}, s_{2} \in S}{\forall} s_{1} R_{1} s_{2} \Longrightarrow s_{1} R_{2} s_{2}$.
In other words, R_{1} refines R_{2}.
Viewing the relations as sets of pairs, $R_{1} \prec R_{2}$ iff $R_{1} \subseteq R_{2}$.

Examples

- Let $S=a, b, R_{1}: a R_{1} b, R_{2}: a R_{2} b, b R_{2} b$. Then $R_{1} \prec R_{2}$.
- Let S be a set.

Relation $R_{1}: s R_{1} s: s \in S$ induced by the partition $P_{1}: s: s \in S$; Relation $R_{2}: s R_{2} t: s, t \in S$ induced by the partition $P_{2}: S$. Then $R_{1} \prec R_{2}$.

Relations (cont'd)

The equivalence closure R^{E} of the binary relation R over S is the equivalence relation such that

- R refines $R^{E}: R \prec R_{E}$;
- for all other equivalence relations R^{\prime} such that $R \prec R^{\prime}$, either $R^{\prime}=R^{E}$ or $R^{E} \prec R^{\prime}$
In other words, R^{E} is the "smallest" equivalence relation that "covers" R. The congruence closure R^{C} of R is the "smallest" congruence relation that "covers" R.
Examples If $S=\{a, b, c, d\}$ and $R=\{a R b, b R c, d R d\}$, then

Hence, $R^{E}=\{a R b, b R a, a R a, b R b, b R c, c R b, c R c, a R c, c R a, d R d\}$.

Relations (cont'd)

The equivalence closure R^{E} of the binary relation R over S is the equivalence relation such that

- R refines $R^{E}: R \prec R_{E}$;
- for all other equivalence relations R^{\prime} such that $R \prec R^{\prime}$, either $R^{\prime}=R^{E}$ or $R^{E} \prec R^{\prime}$
In other words, R^{E} is the "smallest" equivalence relation that "covers" R. The congruence closure R^{C} of R is the "smallest" congruence relation that "covers" R.
Examples If $S=\{a, b, c, d\}$ and $R=\{a R b, b R c, d R d\}$, then

Relations (cont'd)

The equivalence closure R^{E} of the binary relation R over S is the equivalence relation such that

- R refines $R^{E}: R \prec R_{E}$;
- for all other equivalence relations R^{\prime} such that $R \prec R^{\prime}$, either $R^{\prime}=R^{E}$ or $R^{E} \prec R^{\prime}$
In other words, R^{E} is the "smallest" equivalence relation that "covers" R. The congruence closure R^{C} of R is the "smallest" congruence relation that "covers" R Examples If $S=\{a, b, c, d\}$ and $R=\{a R b, b R c, d R d\}$, then

Relations (cont'd)

The equivalence closure R^{E} of the binary relation R over S is the equivalence relation such that

- R refines $R^{E}: R \prec R_{E}$;
- for all other equivalence relations R^{\prime} such that $R \prec R^{\prime}$, either $R^{\prime}=R^{E}$ or $R^{E} \prec R^{\prime}$
In other words, R^{E} is the "smallest" equivalence relation that "covers" R.

> The congruence closure R^{C} of R is the "smallest" congruence relation that "covers" R Examples If $S=\{a, b, c, d\}$ and $R=\{a R b, b R c, d R d\}$, then

Relations (cont'd)

The equivalence closure R^{E} of the binary relation R over S is the equivalence relation such that

- R refines $R^{E}: R \prec R_{E}$;
- for all other equivalence relations R^{\prime} such that $R \prec R^{\prime}$, either $R^{\prime}=R^{E}$ or $R^{E} \prec R^{\prime}$
In other words, R^{E} is the "smallest" equivalence relation that "covers" R. The congruence closure R^{C} of R is the "smallest" congruence relation that "covers" R.
Examples If $S=\{a, b, c, d\}$ and $R=\{a R b, b R c, d R d\}$, then

Relations (cont'd)

The equivalence closure R^{E} of the binary relation R over S is the equivalence relation such that

- R refines $R^{E}: R \prec R_{E}$;
- for all other equivalence relations R^{\prime} such that $R \prec R^{\prime}$, either $R^{\prime}=R^{E}$ or $R^{E} \prec R^{\prime}$
In other words, R^{E} is the "smallest" equivalence relation that "covers" R. The congruence closure R^{C} of R is the "smallest" congruence relation that "covers" R.
Examples If $S=\{a, b, c, d\}$ and $R=\{a R b, b R c, d R d\}$, then
- aRb,bRc,dRd $\in R^{E}$ since $R \subseteq R^{E}$
- aRa, bRb, cRc $\in R^{E}$ by reflexivity
- bRa, $c R b \in R^{E}$ by symmetry;
- $a R c \in R^{E}$ by transitivity;
- $c R a \in R^{E}$ by symmetry

Relations (cont'd)

The equivalence closure R^{E} of the binary relation R over S is the equivalence relation such that

- R refines $R^{E}: R \prec R_{E}$;
- for all other equivalence relations R^{\prime} such that $R \prec R^{\prime}$, either $R^{\prime}=R^{E}$ or $R^{E} \prec R^{\prime}$
In other words, R^{E} is the "smallest" equivalence relation that "covers" R. The congruence closure R^{C} of R is the "smallest" congruence relation that "covers" R.
Examples If $S=\{a, b, c, d\}$ and $R=\{a R b, b R c, d R d\}$, then
- aRb,bRc,dRd $\in R^{E}$ since $R \subseteq R^{E}$
- aRa, bRb, cRc $\in R^{E}$ by reflexivity
- bRa, $c R b \in R^{E}$ by symmetry;
- aRc $\in R^{E}$ by transitivity;
- $c R a \in R^{E}$ by symmetry

Hence, $R^{E}=\{a R b, b R a, a R a, b R b, b R c, c R b, c R c, a R c, c R a, d R d\}$.

Relations (cont'd)

The equivalence closure R^{E} of the binary relation R over S is the equivalence relation such that

- R refines $R^{E}: R \prec R_{E}$;
- for all other equivalence relations R^{\prime} such that $R \prec R^{\prime}$, either $R^{\prime}=R^{E}$ or $R^{E} \prec R^{\prime}$
In other words, R^{E} is the "smallest" equivalence relation that "covers" R. The congruence closure R^{C} of R is the "smallest" congruence relation that "covers" R.
Examples If $S=\{a, b, c, d\}$ and $R=\{a R b, b R c, d R d\}$, then
- aRb,bRc,dRd $\in R^{E}$ since $R \subseteq R^{E}$
- $a R a, b R b, c R c \in R^{E}$ by reflexivity
- bRa, cRb $\in R^{E}$ by symmetry;
- aRc $\in R^{E}$ by transitivity;
- $c R a \in R^{E}$ by symmetry

Hence, $R^{E}=\{a R b, b R a, a R a, b R b, b R c, c R b, c R c, a R c, c R a, d R d\}$

Relations (cont'd)

The equivalence closure R^{E} of the binary relation R over S is the equivalence relation such that

- R refines $R^{E}: R \prec R_{E}$;
- for all other equivalence relations R^{\prime} such that $R \prec R^{\prime}$, either $R^{\prime}=R^{E}$ or $R^{E} \prec R^{\prime}$
In other words, R^{E} is the "smallest" equivalence relation that "covers" R. The congruence closure R^{C} of R is the "smallest" congruence relation that "covers" R.
Examples If $S=\{a, b, c, d\}$ and $R=\{a R b, b R c, d R d\}$, then
- aRb,bRc,dRd $\in R^{E}$ since $R \subseteq R^{E}$
- $a R a, b R b, c R c \in R^{E}$ by reflexivity
- bRa, $c R b \in R^{E}$ by symmetry;
- $a R c \in R^{E}$ by transitivity;
- $c R a \in R^{E}$ by symmetry

Relations (cont'd)

The equivalence closure R^{E} of the binary relation R over S is the equivalence relation such that

- R refines $R^{E}: R \prec R_{E}$;
- for all other equivalence relations R^{\prime} such that $R \prec R^{\prime}$, either $R^{\prime}=R^{E}$ or $R^{E} \prec R^{\prime}$
In other words, R^{E} is the "smallest" equivalence relation that "covers" R. The congruence closure R^{C} of R is the "smallest" congruence relation that "covers" R.
Examples If $S=\{a, b, c, d\}$ and $R=\{a R b, b R c, d R d\}$, then
- aRb,bRc,dRd $\in R^{E}$ since $R \subseteq R^{E}$
- aRa, $b R b, c R c \in R^{E}$ by reflexivity
- $b R a, c R b \in R^{E}$ by symmetry;
- $a R c \in R^{E}$ by transitivity;

Relations (cont'd)

The equivalence closure R^{E} of the binary relation R over S is the equivalence relation such that

- R refines $R^{E}: R \prec R_{E}$;
- for all other equivalence relations R^{\prime} such that $R \prec R^{\prime}$, either $R^{\prime}=R^{E}$ or $R^{E} \prec R^{\prime}$
In other words, R^{E} is the "smallest" equivalence relation that "covers" R. The congruence closure R^{C} of R is the "smallest" congruence relation that "covers" R.
Examples If $S=\{a, b, c, d\}$ and $R=\{a R b, b R c, d R d\}$, then
- aRb,bRc,dRd $\in R^{E}$ since $R \subseteq R^{E}$
- aRa, $b R b, c R c \in R^{E}$ by reflexivity
- bRa, $c R b \in R^{E}$ by symmetry;
- $a R c \in R^{E}$ by transitivity;
- $c R a \in R^{E}$ by symmetry

Relations (cont'd)

The equivalence closure R^{E} of the binary relation R over S is the equivalence relation such that

- R refines $R^{E}: R \prec R_{E}$;
- for all other equivalence relations R^{\prime} such that $R \prec R^{\prime}$, either $R^{\prime}=R^{E}$ or $R^{E} \prec R^{\prime}$
In other words, R^{E} is the "smallest" equivalence relation that "covers" R. The congruence closure R^{C} of R is the "smallest" congruence relation that "covers" R.
Examples If $S=\{a, b, c, d\}$ and $R=\{a R b, b R c, d R d\}$, then
- aRb,bRc,dRd $\in R^{E}$ since $R \subseteq R^{E}$
- aRa, $b R b, c R c \in R^{E}$ by reflexivity
- bRa, $c R b \in R^{E}$ by symmetry;
- $a R c \in R^{E}$ by transitivity;
- $c R a \in R^{E}$ by symmetry

Hence, $R^{E}=\{a R b, b R a, a R a, b R b, b R c, c R b, c R c, a R c, c R a, d R d\}$.

Relations (cont'd)

The subterm set S_{F} of Σ-formula F is the set that contains precisely the subterms of F.

Example: Let
$\Longleftrightarrow \quad f[a, b]=a \wedge f[f[a, b], b] \neq a$.
Then

$$
S_{F}=\{a, b, f[a, b], f[f[a, b], b]\} .
$$

Relations (cont'd)

The subterm set S_{F} of \sum-formula F is the set that contains precisely the subterms of F.
Example: Let

$$
F: \Longleftrightarrow \quad f[a, b]=a \wedge f[f[a, b], b] \neq a .
$$

Then

$$
S_{F}=\{a, b, f[a, b], f[f[a, b], b]\} .
$$

Congruence Closure Algorithm for $T_{\text {QFEUF }}$

Given Σ_{E} - formula F

$$
F: \Longleftrightarrow s_{1}=t_{1} \wedge \ldots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \ldots \wedge s_{n} \neq t_{n}
$$

with subterm set $S_{F} . F$ is T_{E} - satisfiable iff there exists a congruence relation over S_{F} such that

- for each $i \in\{1, \ldots, m\}, s_{i} \sim t_{i}$;
- for each $i \in\{m+1, \ldots, n\}, s_{i} \nsim t_{i}$.

Congruence Closure Algorithm (Naive Version)

Congruence Closure Algorithm for $T_{\text {QFEUF }}$

Given Σ_{E} - formula F

$$
F: \Longleftrightarrow s_{1}=t_{1} \wedge \ldots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \ldots \wedge s_{n} \neq t_{n}
$$

with subterm set $S_{F} . F$ is T_{E} - satisfiable iff there exists a congruence relation over S_{F} such that

- for each $i \in\{1, \ldots, m\}, s_{i} \sim t_{i}$;

Congruence Closure Algorithm for $T_{\text {QFEUF }}$

Given Σ_{E} - formula F

$$
F: \Longleftrightarrow s_{1}=t_{1} \wedge \ldots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \ldots \wedge s_{n} \neq t_{n}
$$

with subterm set $S_{F} . F$ is T_{E} - satisfiable iff there exists a congruence relation over S_{F} such that

- for each $i \in\{1, \ldots, m\}, s_{i} \sim t_{i}$;
- for each $i \in\{m+1, \ldots, n\}, s_{i} \nsim t_{i}$.

Congruence Closure Algorithm for $T_{\text {QFEUF }}$

Given Σ_{E} - formula F

$$
F: \Longleftrightarrow s_{1}=t_{1} \wedge \ldots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \ldots \wedge s_{n} \neq t_{n}
$$

with subterm set $S_{F} . F$ is T_{E} - satisfiable iff there exists a congruence relation over S_{F} such that

- for each $i \in\{1, \ldots, m\}, s_{i} \sim t_{i}$;
- for each $i \in\{m+1, \ldots, n\}, s_{i} \nsim t_{i}$.

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure \sim of

$$
\left\{s_{1}=t_{1}, \ldots, s_{m}=t_{m}\right\}
$$

over the subterm set S_{F}. Then

$$
\sim s_{1}=t_{1} \wedge \ldots \wedge s_{m}=t_{m}
$$

2. If $s_{i} \sim t_{i}$ for any $i \in\{m+1, \ldots, n\}$, return unsatisfiable.
3. Otherwise, $\sim \models F$, so return satisfiable.

Congruence Closure Algorithm for $T_{\text {QFEUF }}$

Given Σ_{E} - formula F

$$
F: \Longleftrightarrow s_{1}=t_{1} \wedge \ldots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \ldots \wedge s_{n} \neq t_{n}
$$

with subterm set $S_{F} . F$ is T_{E} - satisfiable iff there exists a congruence relation over S_{F} such that

- for each $i \in\{1, \ldots, m\}, s_{i} \sim t_{i}$;
- for each $i \in\{m+1, \ldots, n\}, s_{i} \nsim t_{i}$.

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure \sim of

$$
\left\{s_{1}=t_{1}, \ldots, s_{m}=t_{m}\right\}
$$

over the subterm set S_{F}. Then

$$
\sim=s_{1}=t_{1} \wedge \ldots \wedge s_{m}=t_{m}
$$

2. If $s_{i} \sim t_{i}$ for any $i \in\{m+1, \ldots, n\}$, return unsatisfiable.
3. Otherwise, $\sim \models F$, so return satisfiable.

Congruence Closure Algorithm for $T_{\text {QFEUF }}$

Given Σ_{E} - formula F

$$
F: \Longleftrightarrow s_{1}=t_{1} \wedge \ldots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \ldots \wedge s_{n} \neq t_{n}
$$

with subterm set $S_{F} . F$ is T_{E} - satisfiable iff there exists a congruence relation over S_{F} such that

- for each $i \in\{1, \ldots, m\}, s_{i} \sim t_{i}$;
- for each $i \in\{m+1, \ldots, n\}, s_{i} \nsim t_{i}$.

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure \sim of

$$
\left\{s_{1}=t_{1}, \ldots, s_{m}=t_{m}\right\}
$$

over the subterm set S_{F}. Then

$$
\sim \vDash s_{1}=t_{1} \wedge \ldots \wedge s_{m}=t_{m}
$$

2. If $s_{i} \sim t_{i}$ for any $i \in\{m+1, \ldots, n\}$, return unsatisfiable.
3. Otherwise

Congruence Closure Algorithm for $T_{\text {QFEUF }}$

Given Σ_{E} - formula F

$$
F: \Longleftrightarrow s_{1}=t_{1} \wedge \ldots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \ldots \wedge s_{n} \neq t_{n}
$$

with subterm set $S_{F} . F$ is T_{E} - satisfiable iff there exists a congruence relation over S_{F} such that

- for each $i \in\{1, \ldots, m\}, s_{i} \sim t_{i}$;
- for each $i \in\{m+1, \ldots, n\}, s_{i} \nsim t_{i}$.

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure \sim of

$$
\left\{s_{1}=t_{1}, \ldots, s_{m}=t_{m}\right\}
$$

over the subterm set S_{F}. Then

$$
\sim=s_{1}=t_{1} \wedge \ldots \wedge s_{m}=t_{m}
$$

2. If $s_{i} \sim t_{i}$ for any $i \in\{m+1, \ldots, n\}$, return unsatisfiable.
3. Otherwise, $\sim \models F$, so return satisfiable.

Congruence Closure Algorithm for $T_{\text {QFEUF }}$ (cont'd)

Examples: Determine if the following formulas are satisfiable or not

1. $F_{1}: \Longleftrightarrow f[a, b]=a \wedge f[f[a, b], b] \neq a$
2. $F_{2}: \Longleftrightarrow f[x]=f[y] \wedge x \neq y$

[^0]: We have

[^1]: We have

