
Logic-based Program Verification
Decidability of Propositional and First-Order Logic.

First-Order Theories. Theory of Equality

Mădălina Eraşcu Tudor Jebelean

Research Institute for Symbolic Computation,
Johannes Kepler University, Linz, Austria

{merascu,tjebelea}@risc.jku.at

November 20, 2013

Outline

Preliminaries

Decidability of PL and FOL

First-Order Theories
Theory of Equality (TEUF). Congruence Closure Algorithm for TQFEUF

Outline

Preliminaries

Decidability of PL and FOL

First-Order Theories
Theory of Equality (TEUF). Congruence Closure Algorithm for TQFEUF

The Decision Problem of Formulas

The decision problem for a given formula φ is to determine whether φ is
valid/satisfiable.

A procedure for the decision problem is sound if when it returns
“Valid”/“Satisfiable”, the input formula is indeed valid/satisfiable.

A procedure for the decision problem is complete if

1. it always terminates, and

2. it returns “Valid”/“Satisfiable” when the input formula is indeed
valid/satisfiable.

A procedure is called a decision procedure for the theory T (e.g.
propositional logic, first-order logic, other theories to be discussed later)
if it is sound and complete with respect to every formula of T .

A theory is decidable iff there is a decision procedure for it.

The Decision Problem of Formulas

The decision problem for a given formula φ is to determine whether φ is
valid/satisfiable.

A procedure for the decision problem is sound if when it returns
“Valid”/“Satisfiable”, the input formula is indeed valid/satisfiable.

A procedure for the decision problem is complete if

1. it always terminates, and

2. it returns “Valid”/“Satisfiable” when the input formula is indeed
valid/satisfiable.

A procedure is called a decision procedure for the theory T (e.g.
propositional logic, first-order logic, other theories to be discussed later)
if it is sound and complete with respect to every formula of T .

A theory is decidable iff there is a decision procedure for it.

The Decision Problem of Formulas

The decision problem for a given formula φ is to determine whether φ is
valid/satisfiable.

A procedure for the decision problem is sound if when it returns
“Valid”/“Satisfiable”, the input formula is indeed valid/satisfiable.

A procedure for the decision problem is complete if

1. it always terminates, and

2. it returns “Valid”/“Satisfiable” when the input formula is indeed
valid/satisfiable.

A procedure is called a decision procedure for the theory T (e.g.
propositional logic, first-order logic, other theories to be discussed later)
if it is sound and complete with respect to every formula of T .

A theory is decidable iff there is a decision procedure for it.

The Decision Problem of Formulas

The decision problem for a given formula φ is to determine whether φ is
valid/satisfiable.

A procedure for the decision problem is sound if when it returns
“Valid”/“Satisfiable”, the input formula is indeed valid/satisfiable.

A procedure for the decision problem is complete if

1. it always terminates, and

2. it returns “Valid”/“Satisfiable” when the input formula is indeed
valid/satisfiable.

A procedure is called a decision procedure for the theory T (e.g.
propositional logic, first-order logic, other theories to be discussed later)
if it is sound and complete with respect to every formula of T .

A theory is decidable iff there is a decision procedure for it.

The Decision Problem of Formulas

The decision problem for a given formula φ is to determine whether φ is
valid/satisfiable.

A procedure for the decision problem is sound if when it returns
“Valid”/“Satisfiable”, the input formula is indeed valid/satisfiable.

A procedure for the decision problem is complete if

1. it always terminates, and

2. it returns “Valid”/“Satisfiable” when the input formula is indeed
valid/satisfiable.

A procedure is called a decision procedure for the theory T (e.g.
propositional logic, first-order logic, other theories to be discussed later)
if it is sound and complete with respect to every formula of T .

A theory is decidable iff there is a decision procedure for it.

Outline

Preliminaries

Decidability of PL and FOL

First-Order Theories
Theory of Equality (TEUF). Congruence Closure Algorithm for TQFEUF

Decidability of PL and FOL

Questions

I Is propositional logic (PL) decidable? If so, give example of decision
procedures

I Yes! (truth table, resolution, DPLL)

I Is first-order logic (FOL) decidable? If so, give example of decision
procedures.

I FOL is undecidable (Church & Turing): there does not exist a
decision procedure/algorithm for deciding if a FOL formula F is
valid/satisfiable.

I FOL is semi-decidable: there is a procedure that halts and says
“yes” if F is indeed valid/satisfiable.

Decidability of PL and FOL

Questions

I Is propositional logic (PL) decidable? If so, give example of decision
procedures

I Yes! (truth table, resolution, DPLL)

I Is first-order logic (FOL) decidable? If so, give example of decision
procedures.

I FOL is undecidable (Church & Turing): there does not exist a
decision procedure/algorithm for deciding if a FOL formula F is
valid/satisfiable.

I FOL is semi-decidable: there is a procedure that halts and says
“yes” if F is indeed valid/satisfiable.

Decidability of PL and FOL

Questions

I Is propositional logic (PL) decidable? If so, give example of decision
procedures

I Yes! (truth table, resolution, DPLL)

I Is first-order logic (FOL) decidable? If so, give example of decision
procedures.

I FOL is undecidable (Church & Turing): there does not exist a
decision procedure/algorithm for deciding if a FOL formula F is
valid/satisfiable.

I FOL is semi-decidable: there is a procedure that halts and says
“yes” if F is indeed valid/satisfiable.

Decidability of PL and FOL

Questions

I Is propositional logic (PL) decidable? If so, give example of decision
procedures

I Yes! (truth table, resolution, DPLL)

I Is first-order logic (FOL) decidable? If so, give example of decision
procedures.

I FOL is undecidable (Church & Turing): there does not exist a
decision procedure/algorithm for deciding if a FOL formula F is
valid/satisfiable.

I FOL is semi-decidable: there is a procedure that halts and says
“yes” if F is indeed valid/satisfiable.

Decidability of PL and FOL

Questions

I Is propositional logic (PL) decidable? If so, give example of decision
procedures

I Yes! (truth table, resolution, DPLL)

I Is first-order logic (FOL) decidable? If so, give example of decision
procedures.

I FOL is undecidable (Church & Turing): there does not exist a
decision procedure/algorithm for deciding if a FOL formula F is
valid/satisfiable.

I FOL is semi-decidable: there is a procedure that halts and says
“yes” if F is indeed valid/satisfiable.

Decidability of PL and FOL

Questions

I Is propositional logic (PL) decidable? If so, give example of decision
procedures

I Yes! (truth table, resolution, DPLL)

I Is first-order logic (FOL) decidable? If so, give example of decision
procedures.

I FOL is undecidable (Church & Turing): there does not exist a
decision procedure/algorithm for deciding if a FOL formula F is
valid/satisfiable.

I FOL is semi-decidable: there is a procedure that halts and says
“yes” if F is indeed valid/satisfiable.

Outline

Preliminaries

Decidability of PL and FOL

First-Order Theories
Theory of Equality (TEUF). Congruence Closure Algorithm for TQFEUF

First-Order Theories

Motivation:

I Reasoning in applications domains, e.g. software, hardware,
necessitates various notions (numbers, lists, arrays, memory, etc.)
which can be formalized using FOL.

I While FOL is undecidable, validity in particular theories or fragments
of theories interesting for verification is sometimes decidable and
even efficiently decidable.

First-Order Theories

Motivation:

I Reasoning in applications domains, e.g. software, hardware,
necessitates various notions (numbers, lists, arrays, memory, etc.)
which can be formalized using FOL.

I While FOL is undecidable, validity in particular theories or fragments
of theories interesting for verification is sometimes decidable and
even efficiently decidable.

First-Order Theories

Motivation:

I Reasoning in applications domains, e.g. software, hardware,
necessitates various notions (numbers, lists, arrays, memory, etc.)
which can be formalized using FOL.

I While FOL is undecidable, validity in particular theories or fragments
of theories interesting for verification is sometimes decidable and
even efficiently decidable.

First-Order Theories
A first-order theory T is defined by:

1. signature Σ: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only

constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables.

A Σ-formula F is valid in T (T -valid), if every interpretation I that
satisfies the axioms of T ,

I |= A for every A ∈ A, (1)

also satisfies F : I |= F . We also write T |= F (F is T -valid).

The theory T consists of all (closed) formulas that are T -valid.

An interpretation satisfying (1) is a T -interpretation.

A Σ-formula F is satisfiable in T (T -satisfiable), if there is a
T -interpretation I that satisfies F .

A theory T is complete if for every closed Σ-formula F , T |= F or
T |= ¬F .

A theory is consistent if there is at least one T -interpretation.

A fragment of a theory is a syntactically-restricted subset of formulas of
the theory.

Example: The quantifier-free fragment of a theory T is the set of
formulas without quantifiers that are valid in T .

First-Order Theories
A first-order theory T is defined by:

1. signature Σ: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only

constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables.

A Σ-formula F is valid in T (T -valid), if every interpretation I that
satisfies the axioms of T ,

I |= A for every A ∈ A, (1)

also satisfies F : I |= F . We also write T |= F (F is T -valid).

The theory T consists of all (closed) formulas that are T -valid.

An interpretation satisfying (1) is a T -interpretation.

A Σ-formula F is satisfiable in T (T -satisfiable), if there is a
T -interpretation I that satisfies F .

A theory T is complete if for every closed Σ-formula F , T |= F or
T |= ¬F .

A theory is consistent if there is at least one T -interpretation.

A fragment of a theory is a syntactically-restricted subset of formulas of
the theory.

Example: The quantifier-free fragment of a theory T is the set of
formulas without quantifiers that are valid in T .

First-Order Theories
A first-order theory T is defined by:

1. signature Σ: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only

constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables.

A Σ-formula F is valid in T (T -valid), if every interpretation I that
satisfies the axioms of T ,

I |= A for every A ∈ A, (1)

also satisfies F : I |= F . We also write T |= F (F is T -valid).

The theory T consists of all (closed) formulas that are T -valid.

An interpretation satisfying (1) is a T -interpretation.

A Σ-formula F is satisfiable in T (T -satisfiable), if there is a
T -interpretation I that satisfies F .

A theory T is complete if for every closed Σ-formula F , T |= F or
T |= ¬F .

A theory is consistent if there is at least one T -interpretation.

A fragment of a theory is a syntactically-restricted subset of formulas of
the theory.

Example: The quantifier-free fragment of a theory T is the set of
formulas without quantifiers that are valid in T .

First-Order Theories
A first-order theory T is defined by:

1. signature Σ: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only

constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables.

A Σ-formula F is valid in T (T -valid), if every interpretation I that
satisfies the axioms of T ,

I |= A for every A ∈ A, (1)

also satisfies F : I |= F . We also write T |= F (F is T -valid).

The theory T consists of all (closed) formulas that are T -valid.

An interpretation satisfying (1) is a T -interpretation.

A Σ-formula F is satisfiable in T (T -satisfiable), if there is a
T -interpretation I that satisfies F .

A theory T is complete if for every closed Σ-formula F , T |= F or
T |= ¬F .

A theory is consistent if there is at least one T -interpretation.

A fragment of a theory is a syntactically-restricted subset of formulas of
the theory.

Example: The quantifier-free fragment of a theory T is the set of
formulas without quantifiers that are valid in T .

First-Order Theories
A first-order theory T is defined by:

1. signature Σ: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only

constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables.

A Σ-formula F is valid in T (T -valid), if every interpretation I that
satisfies the axioms of T ,

I |= A for every A ∈ A, (1)

also satisfies F : I |= F . We also write T |= F (F is T -valid).

The theory T consists of all (closed) formulas that are T -valid.

An interpretation satisfying (1) is a T -interpretation.

A Σ-formula F is satisfiable in T (T -satisfiable), if there is a
T -interpretation I that satisfies F .

A theory T is complete if for every closed Σ-formula F , T |= F or
T |= ¬F .

A theory is consistent if there is at least one T -interpretation.

A fragment of a theory is a syntactically-restricted subset of formulas of
the theory.

Example: The quantifier-free fragment of a theory T is the set of
formulas without quantifiers that are valid in T .

First-Order Theories
A first-order theory T is defined by:

1. signature Σ: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only

constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables.

A Σ-formula F is valid in T (T -valid), if every interpretation I that
satisfies the axioms of T ,

I |= A for every A ∈ A, (1)

also satisfies F : I |= F . We also write T |= F (F is T -valid).

The theory T consists of all (closed) formulas that are T -valid.

An interpretation satisfying (1) is a T -interpretation.

A Σ-formula F is satisfiable in T (T -satisfiable), if there is a
T -interpretation I that satisfies F .

A theory T is complete if for every closed Σ-formula F , T |= F or
T |= ¬F .

A theory is consistent if there is at least one T -interpretation.

A fragment of a theory is a syntactically-restricted subset of formulas of
the theory.

Example: The quantifier-free fragment of a theory T is the set of
formulas without quantifiers that are valid in T .

First-Order Theories
A first-order theory T is defined by:

1. signature Σ: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only

constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables.

A Σ-formula F is valid in T (T -valid), if every interpretation I that
satisfies the axioms of T ,

I |= A for every A ∈ A, (1)

also satisfies F : I |= F . We also write T |= F (F is T -valid).

The theory T consists of all (closed) formulas that are T -valid.

An interpretation satisfying (1) is a T -interpretation.

A Σ-formula F is satisfiable in T (T -satisfiable), if there is a
T -interpretation I that satisfies F .

A theory T is complete if for every closed Σ-formula F , T |= F or
T |= ¬F .

A theory is consistent if there is at least one T -interpretation.

A fragment of a theory is a syntactically-restricted subset of formulas of
the theory.

Example: The quantifier-free fragment of a theory T is the set of
formulas without quantifiers that are valid in T .

First-Order Theories
A first-order theory T is defined by:

1. signature Σ: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only

constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables.

A Σ-formula F is valid in T (T -valid), if every interpretation I that
satisfies the axioms of T ,

I |= A for every A ∈ A, (1)

also satisfies F : I |= F . We also write T |= F (F is T -valid).

The theory T consists of all (closed) formulas that are T -valid.

An interpretation satisfying (1) is a T -interpretation.

A Σ-formula F is satisfiable in T (T -satisfiable), if there is a
T -interpretation I that satisfies F .

A theory T is complete if for every closed Σ-formula F , T |= F or
T |= ¬F .

A theory is consistent if there is at least one T -interpretation.

A fragment of a theory is a syntactically-restricted subset of formulas of
the theory.

Example: The quantifier-free fragment of a theory T is the set of
formulas without quantifiers that are valid in T .

First-Order Theories
A first-order theory T is defined by:

1. signature Σ: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only

constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables.

A Σ-formula F is valid in T (T -valid), if every interpretation I that
satisfies the axioms of T ,

I |= A for every A ∈ A, (1)

also satisfies F : I |= F . We also write T |= F (F is T -valid).

The theory T consists of all (closed) formulas that are T -valid.

An interpretation satisfying (1) is a T -interpretation.

A Σ-formula F is satisfiable in T (T -satisfiable), if there is a
T -interpretation I that satisfies F .

A theory T is complete if for every closed Σ-formula F , T |= F or
T |= ¬F .

A theory is consistent if there is at least one T -interpretation.

A fragment of a theory is a syntactically-restricted subset of formulas of
the theory.

Example: The quantifier-free fragment of a theory T is the set of
formulas without quantifiers that are valid in T .

First-Order Theories
A first-order theory T is defined by:

1. signature Σ: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only

constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables.

A Σ-formula F is valid in T (T -valid), if every interpretation I that
satisfies the axioms of T ,

I |= A for every A ∈ A, (1)

also satisfies F : I |= F . We also write T |= F (F is T -valid).

The theory T consists of all (closed) formulas that are T -valid.

An interpretation satisfying (1) is a T -interpretation.

A Σ-formula F is satisfiable in T (T -satisfiable), if there is a
T -interpretation I that satisfies F .

A theory T is complete if for every closed Σ-formula F , T |= F or
T |= ¬F .

A theory is consistent if there is at least one T -interpretation.

A fragment of a theory is a syntactically-restricted subset of formulas of
the theory.

Example: The quantifier-free fragment of a theory T is the set of
formulas without quantifiers that are valid in T .

First-Order Theories
A first-order theory T is defined by:

1. signature Σ: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only

constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables.

A Σ-formula F is valid in T (T -valid), if every interpretation I that
satisfies the axioms of T ,

I |= A for every A ∈ A, (1)

also satisfies F : I |= F . We also write T |= F (F is T -valid).

The theory T consists of all (closed) formulas that are T -valid.

An interpretation satisfying (1) is a T -interpretation.

A Σ-formula F is satisfiable in T (T -satisfiable), if there is a
T -interpretation I that satisfies F .

A theory T is complete if for every closed Σ-formula F , T |= F or
T |= ¬F .

A theory is consistent if there is at least one T -interpretation.

A fragment of a theory is a syntactically-restricted subset of formulas of
the theory.

Example: The quantifier-free fragment of a theory T is the set of
formulas without quantifiers that are valid in T .

First-Order Theories
A first-order theory T is defined by:

1. signature Σ: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only

constant, function, and predicate symbols of Σ appear.
A formula F is closed if it does not contain any free variables.

A Σ-formula F is valid in T (T -valid), if every interpretation I that
satisfies the axioms of T ,

I |= A for every A ∈ A, (1)

also satisfies F : I |= F . We also write T |= F (F is T -valid).

The theory T consists of all (closed) formulas that are T -valid.

An interpretation satisfying (1) is a T -interpretation.

A Σ-formula F is satisfiable in T (T -satisfiable), if there is a
T -interpretation I that satisfies F .

A theory T is complete if for every closed Σ-formula F , T |= F or
T |= ¬F .

A theory is consistent if there is at least one T -interpretation.

A fragment of a theory is a syntactically-restricted subset of formulas of
the theory.

Example: The quantifier-free fragment of a theory T is the set of
formulas without quantifiers that are valid in T .

TEUF

This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).

Signature: ΣE = {=, a, b, c , ..., f , g , h, ...,P,Q,R, ...}
a, b, c ,... – constants, f , g , h,... – function symbols, P,Q,R,... – predicate
symbols

The predicate = is interpreted via the following axioms:
1. ∀

x
x = x (reflexivity)

2. ∀
x,y

x = y =⇒ y = x (symmetry)

3. ∀
x,y ,z

x = y ∧ y = z =⇒ x = z (transitivity)

4. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ f (x̄) = f (ȳ) (function congruence),

where n is a positive integer and f is an n-ary function symbol

5. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ P(x̄) = P(ȳ) (function congruence),

where n is a positive integer and P is an n-ary predicate symbol

We have
1. = is an equivalence relation
2. = is a congruence relation

TEUF

This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).

Signature: ΣE = {=, a, b, c , ..., f , g , h, ...,P,Q,R, ...}
a, b, c ,... – constants, f , g , h,... – function symbols, P,Q,R,... – predicate
symbols

The predicate = is interpreted via the following axioms:
1. ∀

x
x = x (reflexivity)

2. ∀
x,y

x = y =⇒ y = x (symmetry)

3. ∀
x,y ,z

x = y ∧ y = z =⇒ x = z (transitivity)

4. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ f (x̄) = f (ȳ) (function congruence),

where n is a positive integer and f is an n-ary function symbol

5. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ P(x̄) = P(ȳ) (function congruence),

where n is a positive integer and P is an n-ary predicate symbol

We have
1. = is an equivalence relation
2. = is a congruence relation

TEUF

This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).

Signature: ΣE = {=, a, b, c , ..., f , g , h, ...,P,Q,R, ...}
a, b, c ,... – constants, f , g , h,... – function symbols, P,Q,R,... – predicate
symbols

The predicate = is interpreted via the following axioms:
1. ∀

x
x = x (reflexivity)

2. ∀
x,y

x = y =⇒ y = x (symmetry)

3. ∀
x,y ,z

x = y ∧ y = z =⇒ x = z (transitivity)

4. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ f (x̄) = f (ȳ) (function congruence),

where n is a positive integer and f is an n-ary function symbol

5. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ P(x̄) = P(ȳ) (function congruence),

where n is a positive integer and P is an n-ary predicate symbol

We have
1. = is an equivalence relation
2. = is a congruence relation

TEUF

This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).

Signature: ΣE = {=, a, b, c , ..., f , g , h, ...,P,Q,R, ...}
a, b, c ,... – constants, f , g , h,... – function symbols, P,Q,R,... – predicate
symbols

The predicate = is interpreted via the following axioms:
1. ∀

x
x = x (reflexivity)

2. ∀
x,y

x = y =⇒ y = x (symmetry)

3. ∀
x,y ,z

x = y ∧ y = z =⇒ x = z (transitivity)

4. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ f (x̄) = f (ȳ) (function congruence),

where n is a positive integer and f is an n-ary function symbol

5. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ P(x̄) = P(ȳ) (function congruence),

where n is a positive integer and P is an n-ary predicate symbol

We have
1. = is an equivalence relation
2. = is a congruence relation

TEUF

This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).

Signature: ΣE = {=, a, b, c , ..., f , g , h, ...,P,Q,R, ...}
a, b, c ,... – constants, f , g , h,... – function symbols, P,Q,R,... – predicate
symbols

The predicate = is interpreted via the following axioms:
1. ∀

x
x = x (reflexivity)

2. ∀
x,y

x = y =⇒ y = x (symmetry)

3. ∀
x,y ,z

x = y ∧ y = z =⇒ x = z (transitivity)

4. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ f (x̄) = f (ȳ) (function congruence),

where n is a positive integer and f is an n-ary function symbol

5. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ P(x̄) = P(ȳ) (function congruence),

where n is a positive integer and P is an n-ary predicate symbol

We have
1. = is an equivalence relation
2. = is a congruence relation

TEUF

This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).

Signature: ΣE = {=, a, b, c , ..., f , g , h, ...,P,Q,R, ...}
a, b, c ,... – constants, f , g , h,... – function symbols, P,Q,R,... – predicate
symbols

The predicate = is interpreted via the following axioms:
1. ∀

x
x = x (reflexivity)

2. ∀
x,y

x = y =⇒ y = x (symmetry)

3. ∀
x,y ,z

x = y ∧ y = z =⇒ x = z (transitivity)

4. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ f (x̄) = f (ȳ) (function congruence),

where n is a positive integer and f is an n-ary function symbol

5. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ P(x̄) = P(ȳ) (function congruence),

where n is a positive integer and P is an n-ary predicate symbol

We have
1. = is an equivalence relation
2. = is a congruence relation

TEUF

This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).

Signature: ΣE = {=, a, b, c , ..., f , g , h, ...,P,Q,R, ...}
a, b, c ,... – constants, f , g , h,... – function symbols, P,Q,R,... – predicate
symbols

The predicate = is interpreted via the following axioms:
1. ∀

x
x = x (reflexivity)

2. ∀
x,y

x = y =⇒ y = x (symmetry)

3. ∀
x,y ,z

x = y ∧ y = z =⇒ x = z (transitivity)

4. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ f (x̄) = f (ȳ) (function congruence),

where n is a positive integer and f is an n-ary function symbol

5. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ P(x̄) = P(ȳ) (function congruence),

where n is a positive integer and P is an n-ary predicate symbol

We have
1. = is an equivalence relation
2. = is a congruence relation

TEUF

This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).

Signature: ΣE = {=, a, b, c , ..., f , g , h, ...,P,Q,R, ...}
a, b, c ,... – constants, f , g , h,... – function symbols, P,Q,R,... – predicate
symbols

The predicate = is interpreted via the following axioms:
1. ∀

x
x = x (reflexivity)

2. ∀
x,y

x = y =⇒ y = x (symmetry)

3. ∀
x,y ,z

x = y ∧ y = z =⇒ x = z (transitivity)

4. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ f (x̄) = f (ȳ) (function congruence),

where n is a positive integer and f is an n-ary function symbol

5. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ P(x̄) = P(ȳ) (function congruence),

where n is a positive integer and P is an n-ary predicate symbol

We have
1. = is an equivalence relation
2. = is a congruence relation

TEUF

This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).

Signature: ΣE = {=, a, b, c , ..., f , g , h, ...,P,Q,R, ...}
a, b, c ,... – constants, f , g , h,... – function symbols, P,Q,R,... – predicate
symbols

The predicate = is interpreted via the following axioms:
1. ∀

x
x = x (reflexivity)

2. ∀
x,y

x = y =⇒ y = x (symmetry)

3. ∀
x,y ,z

x = y ∧ y = z =⇒ x = z (transitivity)

4. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ f (x̄) = f (ȳ) (function congruence),

where n is a positive integer and f is an n-ary function symbol

5. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ P(x̄) = P(ȳ) (function congruence),

where n is a positive integer and P is an n-ary predicate symbol

We have
1. = is an equivalence relation
2. = is a congruence relation

TEUF

This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).

Signature: ΣE = {=, a, b, c , ..., f , g , h, ...,P,Q,R, ...}
a, b, c ,... – constants, f , g , h,... – function symbols, P,Q,R,... – predicate
symbols

The predicate = is interpreted via the following axioms:
1. ∀

x
x = x (reflexivity)

2. ∀
x,y

x = y =⇒ y = x (symmetry)

3. ∀
x,y ,z

x = y ∧ y = z =⇒ x = z (transitivity)

4. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ f (x̄) = f (ȳ) (function congruence),

where n is a positive integer and f is an n-ary function symbol

5. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ P(x̄) = P(ȳ) (function congruence),

where n is a positive integer and P is an n-ary predicate symbol

We have
1. = is an equivalence relation
2. = is a congruence relation

TEUF

This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).

Signature: ΣE = {=, a, b, c , ..., f , g , h, ...,P,Q,R, ...}
a, b, c ,... – constants, f , g , h,... – function symbols, P,Q,R,... – predicate
symbols

The predicate = is interpreted via the following axioms:
1. ∀

x
x = x (reflexivity)

2. ∀
x,y

x = y =⇒ y = x (symmetry)

3. ∀
x,y ,z

x = y ∧ y = z =⇒ x = z (transitivity)

4. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ f (x̄) = f (ȳ) (function congruence),

where n is a positive integer and f is an n-ary function symbol

5. ∀̄
x,ȳ

(
n∧

i=1

xi = yi

)
=⇒ P(x̄) = P(ȳ) (function congruence),

where n is a positive integer and P is an n-ary predicate symbol

We have
1. = is an equivalence relation
2. = is a congruence relation

TEUF (cont’d)

Is TE decidable?

Is quantifier-free TE decidable?

Without quantifiers, free variables and constants play the same role.

Example:
Prove that F is TE valid where

F :⇐⇒ a = b ∧ b = c =⇒ g [f [a], b] = g [f [c], a]

Goal: decision procedure for satisfiability of quantifier - free theory of
equality (QFEUF)

TEUF (cont’d)

Is TE decidable?

Is quantifier-free TE decidable?

Without quantifiers, free variables and constants play the same role.

Example:
Prove that F is TE valid where

F :⇐⇒ a = b ∧ b = c =⇒ g [f [a], b] = g [f [c], a]

Goal: decision procedure for satisfiability of quantifier - free theory of
equality (QFEUF)

TEUF (cont’d)

Is TE decidable?

Is quantifier-free TE decidable?

Without quantifiers, free variables and constants play the same role.

Example:
Prove that F is TE valid where

F :⇐⇒ a = b ∧ b = c =⇒ g [f [a], b] = g [f [c], a]

Goal: decision procedure for satisfiability of quantifier - free theory of
equality (QFEUF)

TEUF (cont’d)

Is TE decidable?

Is quantifier-free TE decidable?

Without quantifiers, free variables and constants play the same role.

Example:
Prove that F is TE valid where

F :⇐⇒ a = b ∧ b = c =⇒ g [f [a], b] = g [f [c], a]

Goal: decision procedure for satisfiability of quantifier - free theory of
equality (QFEUF)

TEUF (cont’d)

Is TE decidable?

Is quantifier-free TE decidable?

Without quantifiers, free variables and constants play the same role.

Example:
Prove that F is TE valid where

F :⇐⇒ a = b ∧ b = c =⇒ g [f [a], b] = g [f [c], a]

Goal: decision procedure for satisfiability of quantifier - free theory of
equality (QFEUF)

Relations

Let S be a set and R a binary relation over S .

For two elements s1, s2 ∈ S , either s1Rs2 or ¬(s1Rs2).

The relation R is an equivalence relation if it is

1. reflexive: ∀
s∈S

sRs

2. symmetric: ∀
s1,s2∈S

s1Rs2 =⇒ s2Rs1

3. transitive: ∀
s1,s2,s3∈S

s1Rs2 ∧ s2Rs3 =⇒ s1Rs3

The relation R is a congruence relation if

1. 1 – 3 hold

2. for any n-ary function f ,

∀
s̄,t̄

(
n∧

i=1

siRti

)
=⇒ f (s̄)Rf (t̄)

Relations

Let S be a set and R a binary relation over S .

For two elements s1, s2 ∈ S , either s1Rs2 or ¬(s1Rs2).

The relation R is an equivalence relation if it is

1. reflexive: ∀
s∈S

sRs

2. symmetric: ∀
s1,s2∈S

s1Rs2 =⇒ s2Rs1

3. transitive: ∀
s1,s2,s3∈S

s1Rs2 ∧ s2Rs3 =⇒ s1Rs3

The relation R is a congruence relation if

1. 1 – 3 hold

2. for any n-ary function f ,

∀
s̄,t̄

(
n∧

i=1

siRti

)
=⇒ f (s̄)Rf (t̄)

Relations

Let S be a set and R a binary relation over S .

For two elements s1, s2 ∈ S , either s1Rs2 or ¬(s1Rs2).

The relation R is an equivalence relation if it is

1. reflexive: ∀
s∈S

sRs

2. symmetric: ∀
s1,s2∈S

s1Rs2 =⇒ s2Rs1

3. transitive: ∀
s1,s2,s3∈S

s1Rs2 ∧ s2Rs3 =⇒ s1Rs3

The relation R is a congruence relation if

1. 1 – 3 hold

2. for any n-ary function f ,

∀
s̄,t̄

(
n∧

i=1

siRti

)
=⇒ f (s̄)Rf (t̄)

Relations

Let S be a set and R a binary relation over S .

For two elements s1, s2 ∈ S , either s1Rs2 or ¬(s1Rs2).

The relation R is an equivalence relation if it is

1. reflexive: ∀
s∈S

sRs

2. symmetric: ∀
s1,s2∈S

s1Rs2 =⇒ s2Rs1

3. transitive: ∀
s1,s2,s3∈S

s1Rs2 ∧ s2Rs3 =⇒ s1Rs3

The relation R is a congruence relation if

1. 1 – 3 hold

2. for any n-ary function f ,

∀
s̄,t̄

(
n∧

i=1

siRti

)
=⇒ f (s̄)Rf (t̄)

Relations

Let S be a set and R a binary relation over S .

For two elements s1, s2 ∈ S , either s1Rs2 or ¬(s1Rs2).

The relation R is an equivalence relation if it is

1. reflexive: ∀
s∈S

sRs

2. symmetric: ∀
s1,s2∈S

s1Rs2 =⇒ s2Rs1

3. transitive: ∀
s1,s2,s3∈S

s1Rs2 ∧ s2Rs3 =⇒ s1Rs3

The relation R is a congruence relation if

1. 1 – 3 hold

2. for any n-ary function f ,

∀
s̄,t̄

(
n∧

i=1

siRti

)
=⇒ f (s̄)Rf (t̄)

Relations

Let S be a set and R a binary relation over S .

For two elements s1, s2 ∈ S , either s1Rs2 or ¬(s1Rs2).

The relation R is an equivalence relation if it is

1. reflexive: ∀
s∈S

sRs

2. symmetric: ∀
s1,s2∈S

s1Rs2 =⇒ s2Rs1

3. transitive: ∀
s1,s2,s3∈S

s1Rs2 ∧ s2Rs3 =⇒ s1Rs3

The relation R is a congruence relation if

1. 1 – 3 hold

2. for any n-ary function f ,

∀
s̄,t̄

(
n∧

i=1

siRti

)
=⇒ f (s̄)Rf (t̄)

Relations

Let S be a set and R a binary relation over S .

For two elements s1, s2 ∈ S , either s1Rs2 or ¬(s1Rs2).

The relation R is an equivalence relation if it is

1. reflexive: ∀
s∈S

sRs

2. symmetric: ∀
s1,s2∈S

s1Rs2 =⇒ s2Rs1

3. transitive: ∀
s1,s2,s3∈S

s1Rs2 ∧ s2Rs3 =⇒ s1Rs3

The relation R is a congruence relation if

1. 1 – 3 hold

2. for any n-ary function f ,

∀
s̄,t̄

(
n∧

i=1

siRti

)
=⇒ f (s̄)Rf (t̄)

Relations

Let S be a set and R a binary relation over S .

For two elements s1, s2 ∈ S , either s1Rs2 or ¬(s1Rs2).

The relation R is an equivalence relation if it is

1. reflexive: ∀
s∈S

sRs

2. symmetric: ∀
s1,s2∈S

s1Rs2 =⇒ s2Rs1

3. transitive: ∀
s1,s2,s3∈S

s1Rs2 ∧ s2Rs3 =⇒ s1Rs3

The relation R is a congruence relation if

1. 1 – 3 hold

2. for any n-ary function f ,

∀
s̄,t̄

(
n∧

i=1

siRti

)
=⇒ f (s̄)Rf (t̄)

Relations

Let S be a set and R a binary relation over S .

For two elements s1, s2 ∈ S , either s1Rs2 or ¬(s1Rs2).

The relation R is an equivalence relation if it is

1. reflexive: ∀
s∈S

sRs

2. symmetric: ∀
s1,s2∈S

s1Rs2 =⇒ s2Rs1

3. transitive: ∀
s1,s2,s3∈S

s1Rs2 ∧ s2Rs3 =⇒ s1Rs3

The relation R is a congruence relation if

1. 1 – 3 hold

2. for any n-ary function f ,

∀
s̄,t̄

(
n∧

i=1

siRti

)
=⇒ f (s̄)Rf (t̄)

Relations (cont’d)

Let R be a equivalence relation over the set S .

The equivalence class of s ∈ S under R is the set

[s]R
def
= {s ′ ∈ S : sRs ′}

If R is a congruence relation over S , then [s]R is the congruence class of s.
A partition P of S is a set of subsets of S that is

1. total:

(⋃
S′∈P

S ′
)

= S

2. disjoint: ∀
S1,S2∈P

S1 6= S2 =⇒ S1 ∩ S2 = ∅

The quotient S/R of S by the equivalence (congruence) relation R is a
partition of S : it is a set of equivalence (congruence) classes
S/R = {[s]R : s ∈ S}.

Relations (cont’d)

Let R be a equivalence relation over the set S .

The equivalence class of s ∈ S under R is the set

[s]R
def
= {s ′ ∈ S : sRs ′}

If R is a congruence relation over S , then [s]R is the congruence class of s.
A partition P of S is a set of subsets of S that is

1. total:

(⋃
S′∈P

S ′
)

= S

2. disjoint: ∀
S1,S2∈P

S1 6= S2 =⇒ S1 ∩ S2 = ∅

The quotient S/R of S by the equivalence (congruence) relation R is a
partition of S : it is a set of equivalence (congruence) classes
S/R = {[s]R : s ∈ S}.

Relations (cont’d)

Let R be a equivalence relation over the set S .

The equivalence class of s ∈ S under R is the set

[s]R
def
= {s ′ ∈ S : sRs ′}

If R is a congruence relation over S , then [s]R is the congruence class of s.
A partition P of S is a set of subsets of S that is

1. total:

(⋃
S′∈P

S ′
)

= S

2. disjoint: ∀
S1,S2∈P

S1 6= S2 =⇒ S1 ∩ S2 = ∅

The quotient S/R of S by the equivalence (congruence) relation R is a
partition of S : it is a set of equivalence (congruence) classes
S/R = {[s]R : s ∈ S}.

Relations (cont’d)

Let R be a equivalence relation over the set S .

The equivalence class of s ∈ S under R is the set

[s]R
def
= {s ′ ∈ S : sRs ′}

If R is a congruence relation over S , then [s]R is the congruence class of s.
A partition P of S is a set of subsets of S that is

1. total:

(⋃
S′∈P

S ′
)

= S

2. disjoint: ∀
S1,S2∈P

S1 6= S2 =⇒ S1 ∩ S2 = ∅

The quotient S/R of S by the equivalence (congruence) relation R is a
partition of S : it is a set of equivalence (congruence) classes
S/R = {[s]R : s ∈ S}.

Relations (cont’d)

Let R be a equivalence relation over the set S .

The equivalence class of s ∈ S under R is the set

[s]R
def
= {s ′ ∈ S : sRs ′}

If R is a congruence relation over S , then [s]R is the congruence class of s.
A partition P of S is a set of subsets of S that is

1. total:

(⋃
S′∈P

S ′
)

= S

2. disjoint: ∀
S1,S2∈P

S1 6= S2 =⇒ S1 ∩ S2 = ∅

The quotient S/R of S by the equivalence (congruence) relation R is a
partition of S : it is a set of equivalence (congruence) classes
S/R = {[s]R : s ∈ S}.

Relations (cont’d)

Let R be a equivalence relation over the set S .

The equivalence class of s ∈ S under R is the set

[s]R
def
= {s ′ ∈ S : sRs ′}

If R is a congruence relation over S , then [s]R is the congruence class of s.
A partition P of S is a set of subsets of S that is

1. total:

(⋃
S′∈P

S ′
)

= S

2. disjoint: ∀
S1,S2∈P

S1 6= S2 =⇒ S1 ∩ S2 = ∅

The quotient S/R of S by the equivalence (congruence) relation R is a
partition of S : it is a set of equivalence (congruence) classes
S/R = {[s]R : s ∈ S}.

Relations (cont’d)

Let R be a equivalence relation over the set S .

The equivalence class of s ∈ S under R is the set

[s]R
def
= {s ′ ∈ S : sRs ′}

If R is a congruence relation over S , then [s]R is the congruence class of s.
A partition P of S is a set of subsets of S that is

1. total:

(⋃
S′∈P

S ′
)

= S

2. disjoint: ∀
S1,S2∈P

S1 6= S2 =⇒ S1 ∩ S2 = ∅

The quotient S/R of S by the equivalence (congruence) relation R is a
partition of S : it is a set of equivalence (congruence) classes
S/R = {[s]R : s ∈ S}.

Relations (cont’d)

Let R1 and R2 be two binary relations over set S .

R1 is a refinement of R2, or R1 ≺ R2, if ∀
s1,s2∈S

s1R1s2 =⇒ s1R2s2.

In other words, R1 refines R2.

Viewing the relations as sets of pairs, R1 ≺ R2 iff R1 ⊆ R2.

Examples

I Let S = a, b, R1 : aR1b, R2 : aR2b, bR2b. Then R1 ≺ R2.

I Let S be a set.
Relation R1 : sR1s : s ∈ S induced by the partition P1 : s : s ∈ S ;
Relation R2 : sR2t : s, t ∈ S induced by the partition P2 : S .
Then R1 ≺ R2.

Relations (cont’d)

Let R1 and R2 be two binary relations over set S .

R1 is a refinement of R2, or R1 ≺ R2, if ∀
s1,s2∈S

s1R1s2 =⇒ s1R2s2.

In other words, R1 refines R2.

Viewing the relations as sets of pairs, R1 ≺ R2 iff R1 ⊆ R2.

Examples

I Let S = a, b, R1 : aR1b, R2 : aR2b, bR2b. Then R1 ≺ R2.

I Let S be a set.
Relation R1 : sR1s : s ∈ S induced by the partition P1 : s : s ∈ S ;
Relation R2 : sR2t : s, t ∈ S induced by the partition P2 : S .
Then R1 ≺ R2.

Relations (cont’d)

Let R1 and R2 be two binary relations over set S .

R1 is a refinement of R2, or R1 ≺ R2, if ∀
s1,s2∈S

s1R1s2 =⇒ s1R2s2.

In other words, R1 refines R2.

Viewing the relations as sets of pairs, R1 ≺ R2 iff R1 ⊆ R2.

Examples

I Let S = a, b, R1 : aR1b, R2 : aR2b, bR2b. Then R1 ≺ R2.

I Let S be a set.
Relation R1 : sR1s : s ∈ S induced by the partition P1 : s : s ∈ S ;
Relation R2 : sR2t : s, t ∈ S induced by the partition P2 : S .
Then R1 ≺ R2.

Relations (cont’d)

Let R1 and R2 be two binary relations over set S .

R1 is a refinement of R2, or R1 ≺ R2, if ∀
s1,s2∈S

s1R1s2 =⇒ s1R2s2.

In other words, R1 refines R2.

Viewing the relations as sets of pairs, R1 ≺ R2 iff R1 ⊆ R2.

Examples

I Let S = a, b, R1 : aR1b, R2 : aR2b, bR2b. Then R1 ≺ R2.

I Let S be a set.
Relation R1 : sR1s : s ∈ S induced by the partition P1 : s : s ∈ S ;
Relation R2 : sR2t : s, t ∈ S induced by the partition P2 : S .
Then R1 ≺ R2.

Relations (cont’d)

Let R1 and R2 be two binary relations over set S .

R1 is a refinement of R2, or R1 ≺ R2, if ∀
s1,s2∈S

s1R1s2 =⇒ s1R2s2.

In other words, R1 refines R2.

Viewing the relations as sets of pairs, R1 ≺ R2 iff R1 ⊆ R2.

Examples

I Let S = a, b, R1 : aR1b, R2 : aR2b, bR2b. Then R1 ≺ R2.

I Let S be a set.
Relation R1 : sR1s : s ∈ S induced by the partition P1 : s : s ∈ S ;
Relation R2 : sR2t : s, t ∈ S induced by the partition P2 : S .
Then R1 ≺ R2.

Relations (cont’d)

Let R1 and R2 be two binary relations over set S .

R1 is a refinement of R2, or R1 ≺ R2, if ∀
s1,s2∈S

s1R1s2 =⇒ s1R2s2.

In other words, R1 refines R2.

Viewing the relations as sets of pairs, R1 ≺ R2 iff R1 ⊆ R2.

Examples

I Let S = a, b, R1 : aR1b, R2 : aR2b, bR2b. Then R1 ≺ R2.

I Let S be a set.
Relation R1 : sR1s : s ∈ S induced by the partition P1 : s : s ∈ S ;
Relation R2 : sR2t : s, t ∈ S induced by the partition P2 : S .
Then R1 ≺ R2.

Relations (cont’d)

Let R1 and R2 be two binary relations over set S .

R1 is a refinement of R2, or R1 ≺ R2, if ∀
s1,s2∈S

s1R1s2 =⇒ s1R2s2.

In other words, R1 refines R2.

Viewing the relations as sets of pairs, R1 ≺ R2 iff R1 ⊆ R2.

Examples

I Let S = a, b, R1 : aR1b, R2 : aR2b, bR2b. Then R1 ≺ R2.

I Let S be a set.
Relation R1 : sR1s : s ∈ S induced by the partition P1 : s : s ∈ S ;
Relation R2 : sR2t : s, t ∈ S induced by the partition P2 : S .
Then R1 ≺ R2.

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

I R refines RE : R ≺ RE ;

I for all other equivalence relations R ′ such that R ≺ R ′, either
R ′ = RE or RE ≺ R ′

In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b, c , d} and R = {aRb, bRc , dRd}, then

I aRb, bRc , dRd ∈ RE since R ⊆ RE

I aRa, bRb, cRc ∈ RE by reflexivity

I bRa, cRb ∈ RE by symmetry;

I aRc ∈ RE by transitivity;

I cRa ∈ RE by symmetry

Hence, RE = {aRb, bRa, aRa, bRb, bRc, cRb, cRc , aRc , cRa, dRd}.

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

I R refines RE : R ≺ RE ;

I for all other equivalence relations R ′ such that R ≺ R ′, either
R ′ = RE or RE ≺ R ′

In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b, c , d} and R = {aRb, bRc , dRd}, then

I aRb, bRc , dRd ∈ RE since R ⊆ RE

I aRa, bRb, cRc ∈ RE by reflexivity

I bRa, cRb ∈ RE by symmetry;

I aRc ∈ RE by transitivity;

I cRa ∈ RE by symmetry

Hence, RE = {aRb, bRa, aRa, bRb, bRc, cRb, cRc , aRc , cRa, dRd}.

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

I R refines RE : R ≺ RE ;

I for all other equivalence relations R ′ such that R ≺ R ′, either
R ′ = RE or RE ≺ R ′

In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b, c , d} and R = {aRb, bRc , dRd}, then

I aRb, bRc , dRd ∈ RE since R ⊆ RE

I aRa, bRb, cRc ∈ RE by reflexivity

I bRa, cRb ∈ RE by symmetry;

I aRc ∈ RE by transitivity;

I cRa ∈ RE by symmetry

Hence, RE = {aRb, bRa, aRa, bRb, bRc, cRb, cRc , aRc , cRa, dRd}.

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

I R refines RE : R ≺ RE ;

I for all other equivalence relations R ′ such that R ≺ R ′, either
R ′ = RE or RE ≺ R ′

In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b, c , d} and R = {aRb, bRc , dRd}, then

I aRb, bRc , dRd ∈ RE since R ⊆ RE

I aRa, bRb, cRc ∈ RE by reflexivity

I bRa, cRb ∈ RE by symmetry;

I aRc ∈ RE by transitivity;

I cRa ∈ RE by symmetry

Hence, RE = {aRb, bRa, aRa, bRb, bRc, cRb, cRc , aRc , cRa, dRd}.

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

I R refines RE : R ≺ RE ;

I for all other equivalence relations R ′ such that R ≺ R ′, either
R ′ = RE or RE ≺ R ′

In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b, c , d} and R = {aRb, bRc , dRd}, then

I aRb, bRc , dRd ∈ RE since R ⊆ RE

I aRa, bRb, cRc ∈ RE by reflexivity

I bRa, cRb ∈ RE by symmetry;

I aRc ∈ RE by transitivity;

I cRa ∈ RE by symmetry

Hence, RE = {aRb, bRa, aRa, bRb, bRc, cRb, cRc , aRc , cRa, dRd}.

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

I R refines RE : R ≺ RE ;

I for all other equivalence relations R ′ such that R ≺ R ′, either
R ′ = RE or RE ≺ R ′

In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b, c , d} and R = {aRb, bRc , dRd}, then

I aRb, bRc , dRd ∈ RE since R ⊆ RE

I aRa, bRb, cRc ∈ RE by reflexivity

I bRa, cRb ∈ RE by symmetry;

I aRc ∈ RE by transitivity;

I cRa ∈ RE by symmetry

Hence, RE = {aRb, bRa, aRa, bRb, bRc , cRb, cRc , aRc , cRa, dRd}.

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

I R refines RE : R ≺ RE ;

I for all other equivalence relations R ′ such that R ≺ R ′, either
R ′ = RE or RE ≺ R ′

In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b, c , d} and R = {aRb, bRc , dRd}, then

I aRb, bRc , dRd ∈ RE since R ⊆ RE

I aRa, bRb, cRc ∈ RE by reflexivity

I bRa, cRb ∈ RE by symmetry;

I aRc ∈ RE by transitivity;

I cRa ∈ RE by symmetry

Hence, RE = {aRb, bRa, aRa, bRb, bRc , cRb, cRc , aRc , cRa, dRd}.

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

I R refines RE : R ≺ RE ;

I for all other equivalence relations R ′ such that R ≺ R ′, either
R ′ = RE or RE ≺ R ′

In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b, c , d} and R = {aRb, bRc , dRd}, then

I aRb, bRc , dRd ∈ RE since R ⊆ RE

I aRa, bRb, cRc ∈ RE by reflexivity

I bRa, cRb ∈ RE by symmetry;

I aRc ∈ RE by transitivity;

I cRa ∈ RE by symmetry

Hence, RE = {aRb, bRa, aRa, bRb, bRc , cRb, cRc , aRc , cRa, dRd}.

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

I R refines RE : R ≺ RE ;

I for all other equivalence relations R ′ such that R ≺ R ′, either
R ′ = RE or RE ≺ R ′

In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b, c , d} and R = {aRb, bRc , dRd}, then

I aRb, bRc , dRd ∈ RE since R ⊆ RE

I aRa, bRb, cRc ∈ RE by reflexivity

I bRa, cRb ∈ RE by symmetry;

I aRc ∈ RE by transitivity;

I cRa ∈ RE by symmetry

Hence, RE = {aRb, bRa, aRa, bRb, bRc , cRb, cRc , aRc , cRa, dRd}.

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

I R refines RE : R ≺ RE ;

I for all other equivalence relations R ′ such that R ≺ R ′, either
R ′ = RE or RE ≺ R ′

In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b, c , d} and R = {aRb, bRc , dRd}, then

I aRb, bRc , dRd ∈ RE since R ⊆ RE

I aRa, bRb, cRc ∈ RE by reflexivity

I bRa, cRb ∈ RE by symmetry;

I aRc ∈ RE by transitivity;

I cRa ∈ RE by symmetry

Hence, RE = {aRb, bRa, aRa, bRb, bRc , cRb, cRc , aRc , cRa, dRd}.

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

I R refines RE : R ≺ RE ;

I for all other equivalence relations R ′ such that R ≺ R ′, either
R ′ = RE or RE ≺ R ′

In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b, c , d} and R = {aRb, bRc , dRd}, then

I aRb, bRc , dRd ∈ RE since R ⊆ RE

I aRa, bRb, cRc ∈ RE by reflexivity

I bRa, cRb ∈ RE by symmetry;

I aRc ∈ RE by transitivity;

I cRa ∈ RE by symmetry

Hence, RE = {aRb, bRa, aRa, bRb, bRc , cRb, cRc , aRc , cRa, dRd}.

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

I R refines RE : R ≺ RE ;

I for all other equivalence relations R ′ such that R ≺ R ′, either
R ′ = RE or RE ≺ R ′

In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b, c , d} and R = {aRb, bRc , dRd}, then

I aRb, bRc , dRd ∈ RE since R ⊆ RE

I aRa, bRb, cRc ∈ RE by reflexivity

I bRa, cRb ∈ RE by symmetry;

I aRc ∈ RE by transitivity;

I cRa ∈ RE by symmetry

Hence, RE = {aRb, bRa, aRa, bRb, bRc , cRb, cRc , aRc , cRa, dRd}.

Relations (cont’d)

The subterm set SF of Σ-formula F is the set that contains precisely the
subterms of F .

Example: Let

F :⇐⇒ f [a, b] = a ∧ f [f [a, b], b] 6= a.

Then
SF = {a, b, f [a, b], f [f [a, b], b]}.

Relations (cont’d)

The subterm set SF of Σ-formula F is the set that contains precisely the
subterms of F .

Example: Let

F :⇐⇒ f [a, b] = a ∧ f [f [a, b], b] 6= a.

Then
SF = {a, b, f [a, b], f [f [a, b], b]}.

Congruence Closure Algorithm for TQFEUF

Given ΣE - formula F

F :⇐⇒ s1 = t1 ∧ ... ∧ sm = tm ∧ sm+1 6= tm+1 ∧ ... ∧ sn 6= tn

with subterm set SF . F is TE - satisfiable iff there exists a congruence
relation over SF such that

I for each i ∈ {1, ...,m}, si ∼ ti ;

I for each i ∈ {m + 1, ..., n}, si 6∼ ti .

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure ∼ of

{s1 = t1, ..., sm = tm}

over the subterm set SF . Then

∼|= s1 = t1 ∧ ... ∧ sm = tm

2. If si ∼ ti for any i ∈ {m + 1, ..., n}, return unsatisfiable.

3. Otherwise, ∼|= F , so return satisfiable.

Congruence Closure Algorithm for TQFEUF

Given ΣE - formula F

F :⇐⇒ s1 = t1 ∧ ... ∧ sm = tm ∧ sm+1 6= tm+1 ∧ ... ∧ sn 6= tn

with subterm set SF . F is TE - satisfiable iff there exists a congruence
relation over SF such that

I for each i ∈ {1, ...,m}, si ∼ ti ;

I for each i ∈ {m + 1, ..., n}, si 6∼ ti .

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure ∼ of

{s1 = t1, ..., sm = tm}

over the subterm set SF . Then

∼|= s1 = t1 ∧ ... ∧ sm = tm

2. If si ∼ ti for any i ∈ {m + 1, ..., n}, return unsatisfiable.

3. Otherwise, ∼|= F , so return satisfiable.

Congruence Closure Algorithm for TQFEUF

Given ΣE - formula F

F :⇐⇒ s1 = t1 ∧ ... ∧ sm = tm ∧ sm+1 6= tm+1 ∧ ... ∧ sn 6= tn

with subterm set SF . F is TE - satisfiable iff there exists a congruence
relation over SF such that

I for each i ∈ {1, ...,m}, si ∼ ti ;

I for each i ∈ {m + 1, ..., n}, si 6∼ ti .

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure ∼ of

{s1 = t1, ..., sm = tm}

over the subterm set SF . Then

∼|= s1 = t1 ∧ ... ∧ sm = tm

2. If si ∼ ti for any i ∈ {m + 1, ..., n}, return unsatisfiable.

3. Otherwise, ∼|= F , so return satisfiable.

Congruence Closure Algorithm for TQFEUF

Given ΣE - formula F

F :⇐⇒ s1 = t1 ∧ ... ∧ sm = tm ∧ sm+1 6= tm+1 ∧ ... ∧ sn 6= tn

with subterm set SF . F is TE - satisfiable iff there exists a congruence
relation over SF such that

I for each i ∈ {1, ...,m}, si ∼ ti ;

I for each i ∈ {m + 1, ..., n}, si 6∼ ti .

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure ∼ of

{s1 = t1, ..., sm = tm}

over the subterm set SF . Then

∼|= s1 = t1 ∧ ... ∧ sm = tm

2. If si ∼ ti for any i ∈ {m + 1, ..., n}, return unsatisfiable.

3. Otherwise, ∼|= F , so return satisfiable.

Congruence Closure Algorithm for TQFEUF

Given ΣE - formula F

F :⇐⇒ s1 = t1 ∧ ... ∧ sm = tm ∧ sm+1 6= tm+1 ∧ ... ∧ sn 6= tn

with subterm set SF . F is TE - satisfiable iff there exists a congruence
relation over SF such that

I for each i ∈ {1, ...,m}, si ∼ ti ;

I for each i ∈ {m + 1, ..., n}, si 6∼ ti .

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure ∼ of

{s1 = t1, ..., sm = tm}

over the subterm set SF . Then

∼|= s1 = t1 ∧ ... ∧ sm = tm

2. If si ∼ ti for any i ∈ {m + 1, ..., n}, return unsatisfiable.

3. Otherwise, ∼|= F , so return satisfiable.

Congruence Closure Algorithm for TQFEUF

Given ΣE - formula F

F :⇐⇒ s1 = t1 ∧ ... ∧ sm = tm ∧ sm+1 6= tm+1 ∧ ... ∧ sn 6= tn

with subterm set SF . F is TE - satisfiable iff there exists a congruence
relation over SF such that

I for each i ∈ {1, ...,m}, si ∼ ti ;

I for each i ∈ {m + 1, ..., n}, si 6∼ ti .

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure ∼ of

{s1 = t1, ..., sm = tm}

over the subterm set SF . Then

∼|= s1 = t1 ∧ ... ∧ sm = tm

2. If si ∼ ti for any i ∈ {m + 1, ..., n}, return unsatisfiable.

3. Otherwise, ∼|= F , so return satisfiable.

Congruence Closure Algorithm for TQFEUF

Given ΣE - formula F

F :⇐⇒ s1 = t1 ∧ ... ∧ sm = tm ∧ sm+1 6= tm+1 ∧ ... ∧ sn 6= tn

with subterm set SF . F is TE - satisfiable iff there exists a congruence
relation over SF such that

I for each i ∈ {1, ...,m}, si ∼ ti ;

I for each i ∈ {m + 1, ..., n}, si 6∼ ti .

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure ∼ of

{s1 = t1, ..., sm = tm}

over the subterm set SF . Then

∼|= s1 = t1 ∧ ... ∧ sm = tm

2. If si ∼ ti for any i ∈ {m + 1, ..., n}, return unsatisfiable.

3. Otherwise, ∼|= F , so return satisfiable.

Congruence Closure Algorithm for TQFEUF (cont’d)

Examples: Determine if the following formulas are satisfiable or not

1. F1 :⇐⇒ f [a, b] = a ∧ f [f [a, b], b] 6= a

2. F2 :⇐⇒ f [x] = f [y] ∧ x 6= y

	Preliminaries
	Decidability of PL and FOL
	First-Order Theories
	Theory of Equality (TEUF). Congruence Closure Algorithm for TQFEUF

