Logic-based Program Verification Decidability of Propositional and First-Order Logic. First-Order Theories. Theory of Equality

Mădălina Erașcu Tudor Jebelean

Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria

{merascu,tjebelea}@risc.jku.at

November 20, 2013

Outline

Preliminaries

Decidability of PL and FOL

First-Order Theories

Theory of Equality (T_{EUF}). Congruence Closure Algorithm for T_{QFEUF}

Outline

Preliminaries

Decidability of PL and FOL

First-Order Theories Theory of Equality (T_{EUF}). Congruence Closure Algorithm for T_{QFEUF}

The decision problem for a given formula ϕ is to determine whether ϕ is valid/satisfiable.

A procedure for the decision problem is sound if when it returns "Valid" / "Satisfiable", the input formula is indeed valid/satisfiable.

- A procedure for the decision problem is complete if
 - 1. it always terminates, and
 - 2. it returns "Valid" / "Satisfiable" when the input formula is indeed valid/satisfiable.

A procedure is called a decision procedure for the theory T (e.g. propositional logic, first-order logic, other theories to be discussed later) if it is sound and complete with respect to every formula of T.

The decision problem for a given formula ϕ is to determine whether ϕ is valid/satisfiable.

A procedure for the decision problem is sound if when it returns "Valid" / "Satisfiable", the input formula is indeed valid/satisfiable.

A procedure for the decision problem is complete if

- 1. it always terminates, and
- **2.** it returns "Valid" / "Satisfiable" when the input formula is indeed valid/satisfiable.

A procedure is called a decision procedure for the theory T (e.g. propositional logic, first-order logic, other theories to be discussed later) if it is sound and complete with respect to every formula of T.

The decision problem for a given formula ϕ is to determine whether ϕ is valid/satisfiable.

A procedure for the decision problem is sound if when it returns "Valid" / "Satisfiable", the input formula is indeed valid/satisfiable.

A procedure for the decision problem is complete if

- 1. it always terminates, and
- it returns "Valid" / "Satisfiable" when the input formula is indeed valid/satisfiable.

A procedure is called a decision procedure for the theory T (e.g. propositional logic, first-order logic, other theories to be discussed later) if it is sound and complete with respect to every formula of T.

The decision problem for a given formula ϕ is to determine whether ϕ is valid/satisfiable.

A procedure for the decision problem is sound if when it returns "Valid" / "Satisfiable", the input formula is indeed valid/satisfiable.

A procedure for the decision problem is complete if

- 1. it always terminates, and
- it returns "Valid" / "Satisfiable" when the input formula is indeed valid/satisfiable.

A procedure is called a decision procedure for the theory T (e.g. propositional logic, first-order logic, other theories to be discussed later) if it is sound and complete with respect to every formula of T.

The decision problem for a given formula ϕ is to determine whether ϕ is valid/satisfiable.

A procedure for the decision problem is sound if when it returns "Valid" / "Satisfiable", the input formula is indeed valid/satisfiable.

A procedure for the decision problem is complete if

- 1. it always terminates, and
- it returns "Valid" / "Satisfiable" when the input formula is indeed valid/satisfiable.

A procedure is called a decision procedure for the theory T (e.g. propositional logic, first-order logic, other theories to be discussed later) if it is sound and complete with respect to every formula of T.

Outline

Preliminaries

Decidability of PL and FOL

First-Order Theories Theory of Equality (T_{EUF}). Congruence Closure Algorithm for T_{QFEUF}

- Is propositional logic (PL) decidable? If so, give example of decision procedures
- Yes! (truth table, resolution, DPLL)
- Is first-order logic (FOL) decidable? If so, give example of decision procedures.
- ▶ FOL is undecidable (Church & Turing): there does not exist a decision procedure/algorithm for deciding if a FOL formula *F* is valid/satisfiable.
- ► FOL is semi-decidable: there is a procedure that halts and says "yes" if *F* is indeed valid/satisfiable.

- Is propositional logic (PL) decidable? If so, give example of decision procedures
- Yes! (truth table, resolution, DPLL)
- Is first-order logic (FOL) decidable? If so, give example of decision procedures.
- ▶ FOL is undecidable (Church & Turing): there does not exist a decision procedure/algorithm for deciding if a FOL formula *F* is valid/satisfiable.
- ► FOL is semi-decidable: there is a procedure that halts and says "yes" if *F* is indeed valid/satisfiable.

- Is propositional logic (PL) decidable? If so, give example of decision procedures
- Yes! (truth table, resolution, DPLL)
- Is first-order logic (FOL) decidable? If so, give example of decision procedures.
- ▶ FOL is undecidable (Church & Turing): there does not exist a decision procedure/algorithm for deciding if a FOL formula *F* is valid/satisfiable.
- ► FOL is semi-decidable: there is a procedure that halts and says "yes" if *F* is indeed valid/satisfiable.

- Is propositional logic (PL) decidable? If so, give example of decision procedures
- Yes! (truth table, resolution, DPLL)
- Is first-order logic (FOL) decidable? If so, give example of decision procedures.
- ▶ FOL is undecidable (Church & Turing): there does not exist a decision procedure/algorithm for deciding if a FOL formula *F* is valid/satisfiable.
- ► FOL is semi-decidable: there is a procedure that halts and says "yes" if *F* is indeed valid/satisfiable.

- Is propositional logic (PL) decidable? If so, give example of decision procedures
- Yes! (truth table, resolution, DPLL)
- Is first-order logic (FOL) decidable? If so, give example of decision procedures.
- ► FOL is undecidable (Church & Turing): there does not exist a decision procedure/algorithm for deciding if a FOL formula *F* is valid/satisfiable.
- ► FOL is semi-decidable: there is a procedure that halts and says "yes" if *F* is indeed valid/satisfiable.

- Is propositional logic (PL) decidable? If so, give example of decision procedures
- Yes! (truth table, resolution, DPLL)
- Is first-order logic (FOL) decidable? If so, give example of decision procedures.
- ► FOL is undecidable (Church & Turing): there does not exist a decision procedure/algorithm for deciding if a FOL formula F is valid/satisfiable.
- ► FOL is semi-decidable: there is a procedure that halts and says "yes" if *F* is indeed valid/satisfiable.

Outline

Preliminaries

Decidability of PL and FOL

First-Order Theories

Theory of Equality (T_{EUF}) . Congruence Closure Algorithm for T_{QFEUF}

Motivation:

- Reasoning in applications domains, e.g. software, hardware, necessitates various notions (numbers, lists, arrays, memory, etc.) which can be formalized using FOL.
- While FOL is undecidable, validity in particular theories or fragments of theories interesting for verification is sometimes decidable and even efficiently decidable.

Motivation:

- Reasoning in applications domains, e.g. software, hardware, necessitates various notions (numbers, lists, arrays, memory, etc.) which can be formalized using FOL.
- While FOL is undecidable, validity in particular theories or fragments of theories interesting for verification is sometimes decidable and even efficiently decidable.

Motivation:

- Reasoning in applications domains, e.g. software, hardware, necessitates various notions (numbers, lists, arrays, memory, etc.) which can be formalized using FOL.
- While FOL is undecidable, validity in particular theories or fragments of theories interesting for verification is sometimes decidable and even efficiently decidable.

A first-order theory T is defined by:

signature Σ: set of constant, function, predicate symbols
 a set of axioms A: closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.
 A formula F is closed if it does not contain any free variables.
 A Σ-formula F is valid in T (T-valid), if every interpretation I that satisfies the axioms of T,

 $I \models A$ for every $A \in \mathcal{A}$,

also satisfies $F : I \models F$. We also write $T \models F$ (F is T-valid).

The theory T consists of all (closed) formulas that are T-valid.

A Σ -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation I that satisfies F.

A theory T is complete if for every closed Σ -formula F, $T \models F$ or $T \models \neg F$.

A theory is **consistent** if there is at least one *T*-interpretation.

A first-order theory T is defined by:

1. signature Σ : set of constant, function, predicate symbols

a set of axioms A: closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.
 A formula F is closed if it does not contain any free variables.
 A Σ-formula F is valid in T (T-valid), if every interpretation I that satisfies the axioms of T,

 $I \models A$ for every $A \in \mathcal{A}$,

(1)

also satisfies $F : I \models F$. We also write $T \models F$ (F is T-valid).

The theory ${\mathcal T}$ consists of all (closed) formulas that are ${\mathcal T}$ -valid.

An interpretation satisfying (1) is a *T*-interpretation.

A Σ -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation I that satisfies F.

A theory T is complete if for every closed Σ -formula F, $T \models F$ or $T \models \neg F$.

A theory is **consistent** if there is at least one *T*-interpretation.

A first-order **theory** T is defined by:

- 1. signature Σ : set of constant, function, predicate symbols
- 2. a set of axioms A: closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.

A formula F is closed if it does not contain any free variables. A Σ -formula F is valid in T (T-valid), if every interpretation I that satisfies the axioms of T,

 $I \models A$ for every $A \in \mathcal{A}$,

(1)

also satisfies $F : I \models F$. We also write $T \models F$ (F is T-valid).

The theory ${\mathcal T}$ consists of all (closed) formulas that are ${\mathcal T}$ -valid.

An interpretation satisfying (1) is a *T*-interpretation.

A Σ -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation I that satisfies F.

A theory T is complete if for every closed Σ -formula F, $T \models F$ or $T \models \neg F$.

A theory is **consistent** if there is at least one *T*-interpretation.

A first-order **theory** T is defined by:

1. signature Σ : set of constant, function, predicate symbols

2. a set of axioms A: closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.

A formula F is closed if it does not contain any free variables.

A Σ -formula F is valid in T (T-valid), if every interpretation I that satisfies the axioms of T,

 $I \models A$ for every $A \in \mathcal{A}$,

(1)

also satisfies $F : I \models F$. We also write $T \models F$ (F is T-valid).

The theory ${\mathcal T}$ consists of all (closed) formulas that are ${\mathcal T}$ -valid.

An interpretation satisfying (1) is a *T*-interpretation.

A Σ -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation I that satisfies F.

A theory T is complete if for every closed Σ -formula F, $T \models F$ or $T \models \neg F$.

A theory is consistent if there is at least one T-interpretation.

A first-order **theory** T is defined by:

1. signature Σ : set of constant, function, predicate symbols

- 2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.
- A formula F is closed if it does not contain any free variables.

A Σ -formula F is valid in T (T-valid), if every interpretation I that satisfies the axioms of T,

 $I \models A \text{ for every } A \in \mathcal{A}, \tag{1}$

also satisfies $F : I \models F$. We also write $T \models F$ (F is T-valid).

- The theory T consists of all (closed) formulas that are T-valid. An interpretation satisfying (1) is a T-interpretation.
- A Σ -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation I that satisfies F.
- A theory T is complete if for every closed Σ -formula F, $T \models F$ or $T \models \neg F$.

A theory is consistent if there is at least one T-interpretation.

A first-order **theory** T is defined by:

1. signature Σ : set of constant, function, predicate symbols

2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.

A formula F is closed if it does not contain any free variables.

A Σ -formula F is valid in T (T-valid), if every interpretation I that satisfies the axioms of T,

 $I \models A \text{ for every } A \in \mathcal{A}, \tag{1}$

also satisfies $F : I \models F$. We also write $T \models F$ (*F* is *T*-valid).

The theory T consists of all (closed) formulas that are T-valid.

An interpretation satisfying (1) is a *T*-interpretation.

A Σ -formula F is satisfiable in T (T-satisfiable), if there is a

T-interpretation I that satisfies F.

A theory T is complete if for every closed Σ -formula F, $T \models F$ or $T \models \neg F$.

A theory is consistent if there is at least one T-interpretation.

A first-order **theory** T is defined by:

1. signature Σ : set of constant, function, predicate symbols

2. a set of axioms A: closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.

A formula F is closed if it does not contain any free variables.

A Σ -formula F is valid in T (T-valid), if every interpretation I that satisfies the axioms of T,

$$I \models A \text{ for every } A \in \mathcal{A}, \tag{1}$$

also satisfies $F : I \models F$. We also write $T \models F$ (*F* is *T*-valid).

The theory T consists of all (closed) formulas that are T-valid. An interpretation satisfying (1) is a T-interpretation.

A Σ -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation I that satisfies F.

A theory T is complete if for every closed Σ -formula F, $T \models F$ or $T \models \neg F$.

A theory is consistent if there is at least one T-interpretation.

A first-order **theory** T is defined by:

1. signature Σ : set of constant, function, predicate symbols

2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.

A formula F is closed if it does not contain any free variables.

A Σ -formula F is valid in T (T-valid), if every interpretation I that satisfies the axioms of T,

$$I \models A \text{ for every } A \in \mathcal{A}, \tag{1}$$

also satisfies $F : I \models F$. We also write $T \models F$ (*F* is *T*-valid).

The theory T consists of all (closed) formulas that are T-valid. An interpretation satisfying (1) is a T-interpretation.

A Σ -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation I that satisfies F.

A theory T is complete if for every closed Σ -formula F, $T \models F$ or $T \models \neg F$.

A theory is **consistent** if there is at least one *T*-interpretation.

A first-order **theory** T is defined by:

1. signature Σ : set of constant, function, predicate symbols

2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.

A formula F is closed if it does not contain any free variables.

A Σ -formula F is valid in T (T-valid), if every interpretation I that satisfies the axioms of T,

$$I \models A \text{ for every } A \in \mathcal{A}, \tag{1}$$

also satisfies $F : I \models F$. We also write $T \models F$ (*F* is *T*-valid).

The theory T consists of all (closed) formulas that are T-valid. An interpretation satisfying (1) is a T-interpretation.

A Σ -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation I that satisfies F.

A theory T is complete if for every closed Σ -formula F, $T \models F$ or $T \models \neg F$.

A theory is **consistent** if there is at least one *T*-interpretation.

A first-order **theory** T is defined by:

1. signature Σ : set of constant, function, predicate symbols

2. a set of axioms \mathcal{A} : closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.

A formula F is closed if it does not contain any free variables.

A Σ -formula F is valid in T (T-valid), if every interpretation I that satisfies the axioms of T,

$$I \models A \text{ for every } A \in \mathcal{A}, \tag{1}$$

also satisfies $F : I \models F$. We also write $T \models F$ (*F* is *T*-valid).

The theory T consists of all (closed) formulas that are T-valid. An interpretation satisfying (1) is a T-interpretation.

A Σ -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation I that satisfies F.

A theory T is complete if for every closed Σ -formula F, $T \models F$ or $T \models \neg F$.

A theory is consistent if there is at least one *T*-interpretation.

A first-order **theory** T is defined by:

1. signature Σ : set of constant, function, predicate symbols

2. a set of axioms A: closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.

A formula F is closed if it does not contain any free variables.

A Σ -formula F is valid in T (T-valid), if every interpretation I that satisfies the axioms of T,

$$I \models A \text{ for every } A \in \mathcal{A}, \tag{1}$$

also satisfies $F : I \models F$. We also write $T \models F$ (*F* is *T*-valid).

The theory T consists of all (closed) formulas that are T-valid. An interpretation satisfying (1) is a T-interpretation.

A Σ -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation I that satisfies F.

A theory T is complete if for every closed Σ -formula F, $T \models F$ or $T \models \neg F$.

A theory is consistent if there is at least one *T*-interpretation.

A first-order **theory** T is defined by:

1. signature Σ : set of constant, function, predicate symbols

2. a set of axioms A: closed set of FOL formulas in which only constant, function, and predicate symbols of Σ appear.

A formula F is closed if it does not contain any free variables.

A Σ -formula F is valid in T (T-valid), if every interpretation I that satisfies the axioms of T,

$$I \models A \text{ for every } A \in \mathcal{A}, \tag{1}$$

also satisfies $F : I \models F$. We also write $T \models F$ (*F* is *T*-valid).

The theory T consists of all (closed) formulas that are T-valid. An interpretation satisfying (1) is a T-interpretation.

A Σ -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation I that satisfies F.

A theory T is complete if for every closed Σ -formula F, $T \models F$ or $T \models \neg F$.

A theory is consistent if there is at least one *T*-interpretation.

T_{EUF}

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).

Signature: $\Sigma_E = \{=, a, b, c, ..., f, g, h, ..., P, Q, R, ...\}$

a, *b*, *c*,... – constants, *f*, *g*, *h*,... – function symbols, P,Q,R,... – predicate symbols

The predicate = is interpreted via the following axioms:

1.
$$\forall x = x$$
 (reflexivity)

2.
$$\bigvee_{x,y} x = y \implies y = x$$
 (symmetry)

3.
$$\bigvee_{x,y,z} x = y \land y = z \implies x = z$$
 (transitivity)

4.
$$\bigvee_{\bar{x},\bar{y}} \left(\bigwedge_{i=1}^n x_i = y_i \right) \implies f(\bar{x}) = f(\bar{y})$$
 (function congruence),

where *n* is a positive integer and *f* is an *n*-ary function symbol

5.
$$\bigvee_{\overline{x},\overline{y}} \left(\bigwedge_{i=1}^{n} x_i = y_i \right) \implies P(\overline{x}) = P(\overline{y})$$
 (function congruence),

where n is a positive integer and P is an n-ary predicate symbol

We have

- 1. = is an equivalence relation
- **2.** = is a congruence relation

T_{EUF}

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).

Signature: $\Sigma_E = \{=, a, b, c, ..., f, g, h, ..., P, Q, R, ...\}$

 a, b, c, \ldots – constants, f, g, h, \ldots – function symbols, P,Q,R, \ldots – predicate symbols

The predicate = is interpreted via the following axioms:

- **1.** $\forall x = x$ (reflexivity)
- 2. $\forall x = y \implies y = x$ (symmetry)
- **3.** $\forall x = y \land y = z \implies x = z$ (transitivity)
- **4.** $\bigvee_{\bar{x},\bar{y}} \left(\bigwedge_{i=1}^n x_i = y_i \right) \implies f(\bar{x}) = f(\bar{y})$ (function congruence),

where *n* is a positive integer and *f* is an *n*-ary function symbo

5. $\bigvee_{\overline{x},\overline{y}} \left(\bigwedge_{i=1}^{n} x_i = y_i \right) \implies P(\overline{x}) = P(\overline{y})$ (function congruence), where n is a positive integer and P is an n-any predicate symbol.

We have

- 1. = is an equivalence relation
- **2.** = is a congruence relation

T_{EUF}

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).

Signature: $\Sigma_E = \{=, a, b, c, ..., f, g, h, ..., P, Q, R, ...\}$

 a, b, c, \dots – constants, f, g, h, \dots – function symbols, P,Q,R, … – predicate symbols

The predicate = is interpreted via the following axioms:

1.
$$\forall x = x$$
 (reflexivity)
2. $\forall x = y \implies y = x$ (symmetry)
3. $\forall x = y \land y = z \implies x = z$ (transitivity)
4. $\forall (\bigwedge_{\bar{x},\bar{y},\bar{z}} (\bigwedge_{i=1}^{n} x_i = y_i) \implies f(\bar{x}) = f(\bar{y})$ (function congruence),
where *n* is a positive integer and *f* is an *n*-ary function symbol
5. $\forall (\bigwedge_{\bar{x},\bar{y}} (\bigwedge_{i=1}^{n} x_i = y_i) \implies P(\bar{x}) = P(\bar{y})$ (function congruence),
where *n* is a positive integer and *P* is an *n*-ary predicate symbol
We have

- 1. = is an equivalence relation
- **2.** = is a congruence relation

T_{EUF}

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).

Signature: $\Sigma_E = \{=, a, b, c, ..., f, g, h, ..., P, Q, R, ...\}$

 a, b, c, \dots – constants, f, g, h, \dots – function symbols, P,Q,R, … – predicate symbols

The predicate = is interpreted via the following axioms:

- 1. $\forall x = x$ (reflexivity) 2. $\forall x = y \implies y = x$ (symmetry) 3. $\forall x = y \implies y = z \implies x = z$ (transitivity) 4. $\forall (\bigwedge_{i=1}^{n} x_i = y_i) \implies f(\bar{x}) = f(\bar{y})$ (function congruence), where *n* is a positive integer and *f* is an *n*-ary function symbol 5. $\forall (\bigwedge_{i=1}^{n} x_i = y_i) \implies P(\bar{x}) = P(\bar{y})$ (function congruence), where *n* is a positive integer and *P* is an *n*-ary predicate symbol We have
- 1. = is an equivalence relation
- **2.** = is a congruence relation

T_{EUF}

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).

Signature: $\Sigma_E = \{=, a, b, c, ..., f, g, h, ..., P, Q, R, ...\}$

 a, b, c, \dots – constants, f, g, h, \dots – function symbols, P,Q,R, … – predicate symbols

The predicate = is interpreted via the following axioms:

1. $\forall x = x$ (reflexivity) 2. $\forall x = y \implies y = x$ (symmetry) 3. $\forall x = y \implies y = z \implies x = z$ (transitivity) 4. $\forall (\bigwedge_{\bar{x},\bar{y}} (\bigwedge_{i=1}^{n} x_i = y_i) \implies f(\bar{x}) = f(\bar{y})$ (function congruence), where *n* is a positive integer and *f* is an *n*-ary function symbol 5. $\forall (\bigwedge_{\bar{x},\bar{y}} (\bigwedge_{i=1}^{n} x_i = y_i) \implies P(\bar{x}) = P(\bar{y})$ (function congruence), where *n* is a positive integer and *P* is an *n*-ary predicate symbol We have

- **1.** = is an equivalence relation
- **2.** = is a congruence relation

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).

Signature: $\Sigma_E = \{=, a, b, c, ..., f, g, h, ..., P, Q, R, ...\}$

 a, b, c, \dots – constants, f, g, h, \dots – function symbols, P,Q,R, … – predicate symbols

The predicate = is interpreted via the following axioms:

1. $\forall x = x$ (reflexivity) 2. $\forall x = y \implies y = x$ (symmetry) 3. $\forall x = y \implies y = z \implies x = z$ (transitivity) 4. $\forall \bigwedge_{\bar{x},\bar{y},z} \left(\bigwedge_{i=1}^{n} x_i = y_i \right) \implies f(\bar{x}) = f(\bar{y})$ (function congruence), where *n* is a positive integer and *f* is an *n*-ary function symbol 5. $\forall \bigwedge_{\bar{x},\bar{y}} \left(\bigwedge_{i=1}^{n} x_i = y_i \right) \implies P(\bar{x}) = P(\bar{y})$ (function congruence), where *n* is a positive integer and *P* is an *n*-ary predicate symbol We have

- 1. = is an equivalence relation
- **2.** = is a congruence relation

T_{EUF}

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).

Signature: $\Sigma_E = \{=, a, b, c, ..., f, g, h, ..., P, Q, R, ...\}$

 a, b, c, \dots – constants, f, g, h, \dots – function symbols, P,Q,R, … – predicate symbols

The predicate = is interpreted via the following axioms:

- 1. $\forall x = x$ (reflexivity) 2. $\forall x = y \implies y = x$ (symmetry) 3. $\forall x = y \implies y = z \implies x = z$ (transitivity) 4. $\forall (\bigwedge_{i=1}^{n} x_i = y_i) \implies f(\bar{x}) = f(\bar{y})$ (function congruence), where *n* is a positive integer and *f* is an *n*-ary function symbol 5. $\forall (\bigwedge_{\bar{x},\bar{y}} (\bigwedge_{i=1}^{n} x_i = y_i) \implies P(\bar{x}) = P(\bar{y})$ (function congruence), where *n* is a positive integer and *P* is an *n*-ary predicate symbol We have
- 1. = is an equivalence relation
- **2.** = is a congruence relation

T_{EUF}

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).

Signature: $\Sigma_E = \{=, a, b, c, ..., f, g, h, ..., P, Q, R, ...\}$

 a, b, c, \dots – constants, f, g, h, \dots – function symbols, P,Q,R, … – predicate symbols

The predicate = is interpreted via the following axioms:

1. $\forall x = x$ (reflexivity) 2. $\forall x = y \implies y = x$ (symmetry) 3. $\forall x = y \implies y = z \implies x = z$ (transitivity) 4. $\forall (\bigwedge_{\bar{x},\bar{y},\bar{y}} (\bigwedge_{i=1}^{n} x_i = y_i) \implies f(\bar{x}) = f(\bar{y})$ (function congruence), where *n* is a positive integer and *f* is an *n*-ary function symbol 5. $\forall (\bigwedge_{\bar{x},\bar{y}} (\bigwedge_{i=1}^{n} x_i = y_i) \implies P(\bar{x}) = P(\bar{y})$ (function congruence), where *n* is a positive integer and *P* is an *n*-ary predicate symbol We have

 $\mathbf{1.}$ = is an equivalence relation

2. = is a congruence relation

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).

Signature: $\Sigma_E = \{=, a, b, c, ..., f, g, h, ..., P, Q, R, ...\}$

 a, b, c, \dots – constants, f, g, h, \dots – function symbols, P,Q,R, … – predicate symbols

The predicate = is interpreted via the following axioms:

- 1. $\forall x = x$ (reflexivity) 2. $\forall x = y \implies y = x$ (symmetry) 3. $\forall x = y \implies y = z \implies x = z$ (transitivity) 4. $\forall (\bigwedge_{i=1}^{n} x_i = y_i) \implies f(\bar{x}) = f(\bar{y})$ (function congruence), where *n* is a positive integer and *f* is an *n*-ary function symbol 5. $\forall (\bigwedge_{i=1}^{n} x_i = y_i) \implies P(\bar{x}) = P(\bar{y})$ (function congruence), where *n* is a positive integer and *P* is an *n*-ary predicate symbol We have
 - 1. = is an equivalence relation
 - **2.** = is a congruence relation

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).

Signature: $\Sigma_E = \{=, a, b, c, ..., f, g, h, ..., P, Q, R, ...\}$

 a, b, c, \dots – constants, f, g, h, \dots – function symbols, P,Q,R, … – predicate symbols

The predicate = is interpreted via the following axioms:

1. $\forall x = x$ (reflexivity) 2. $\forall x = y \implies y = x$ (symmetry) 3. $\forall x = y \implies y = z \implies x = z$ (transitivity) 4. $\forall (\bigwedge_{i=1}^{n} x_i = y_i) \implies f(\bar{x}) = f(\bar{y})$ (function congruence), where *n* is a positive integer and *f* is an *n*-ary function symbol 5. $\forall (\bigwedge_{i=1}^{n} x_i = y_i) \implies P(\bar{x}) = P(\bar{y})$ (function congruence), where *n* is a positive integer and *P* is an *n*-ary predicate symbol We have

- 1. = is an equivalence relation
- **2.** = is a congruence relation

This theory is sometimes referred to as the theory of equality with uninterpreted functions (EUF).

Signature: $\Sigma_E = \{=, a, b, c, ..., f, g, h, ..., P, Q, R, ...\}$

 a, b, c, \dots – constants, f, g, h, \dots – function symbols, P,Q,R, … – predicate symbols

The predicate = is interpreted via the following axioms:

- 1. $\forall x = x$ (reflexivity) 2. $\forall x = y \implies y = x$ (symmetry) 3. $\forall x = y \implies y = z \implies x = z$ (transitivity) 4. $\forall (\bigwedge_{i=1}^{n} x_i = y_i) \implies f(\bar{x}) = f(\bar{y})$ (function congruence), where *n* is a positive integer and *f* is an *n*-ary function symbol 5. $\forall (\bigwedge_{i=1}^{n} x_i = y_i) \implies P(\bar{x}) = P(\bar{y})$ (function congruence), where *n* is a positive integer and *P* is an *n*-ary predicate symbol We have
 - 1. = is an equivalence relation
 - **2.** = is a congruence relation

Is T_E decidable?

Is quantifier-free T_E decidable?

Without quantifiers, free variables and constants play the same role.

Example: Prove that *F* is *T_E* valid where

$$F : \iff a = b \land b = c \implies g[f[a], b] = g[f[c], a]$$

Is T_E decidable?

Is quantifier-free T_E decidable?

Without quantifiers, free variables and constants play the same role.

Example: Prove that *F* is *T_E* valid where

$$F : \iff a = b \land b = c \implies g[f[a], b] = g[f[c], a]$$

Is T_E decidable?

Is quantifier-free T_E decidable?

Without quantifiers, free variables and constants play the same role.

Example: Prove that *F* is *T_E* valid where

$$F : \iff a = b \land b = c \implies g[f[a], b] = g[f[c], a]$$

Is T_E decidable?

Is quantifier-free T_E decidable?

Without quantifiers, free variables and constants play the same role.

Example: Prove that F is T_E valid where

$$F$$
 : \iff $a = b \land b = c \implies g[f[a], b] = g[f[c], a]$

Is T_E decidable?

Is quantifier-free T_E decidable?

Without quantifiers, free variables and constants play the same role.

Example: Prove that F is T_E valid where

$$F : \iff a = b \land b = c \implies g[f[a], b] = g[f[c], a]$$

Let S be a set and R a binary relation over S.

For two elements s_1 , $s_2 \in S$, either s_1Rs_2 or $\neg(s_1Rs_2)$.

The relation R is an equivalence relation if it is

- **1.** reflexive: $\forall_{s \in S} sRs$
- **2.** symmetric: $\bigvee_{s_1, s_2 \in S} s_1 R s_2 \Longrightarrow s_2 R s_1$
- 3. transitive: $orall _{s_1,s_2,s_3\in S}$ $s_1Rs_2\wedge s_2Rs_3 \implies s_1Rs_3$

The relation R is a congruence relation if

1. 1 – 3 hold

$$orall \limits_{\overline{s},\overline{t}} \left(\bigwedge_{i=1}^n s_i Rt_i
ight) \implies f(\overline{s})Rf(\overline{t})$$

Let S be a set and R a binary relation over S. For two elements s_1 , $s_2 \in S$, either s_1Rs_2 or $\neg(s_1Rs_2)$.

The relation R is an equivalence relation if it is

- **1.** reflexive: $\bigvee_{a \in S} sRs$
- **2.** symmetric: $\bigvee_{s_1, s_2 \in S} s_1 R s_2 \Longrightarrow s_2 R s_1$
- 3. transitive: $\forall s_1 R s_2 \land s_2 R s_3 \implies s_1 R s_3$

The relation R is a congruence relation if

1. 1 – 3 hold

$$orall \limits_{\overline{s},\overline{t}} \left(\bigwedge_{i=1}^{n} s_{i}Rt_{i}
ight) \implies f(\overline{s})Rf(\overline{t})$$

Let S be a set and R a binary relation over S. For two elements s_1 , $s_2 \in S$, either s_1Rs_2 or $\neg(s_1Rs_2)$.

The relation R is an equivalence relation if it is

1. reflexive:
$$\forall sRs$$

2. symmetric: $\forall s_1Rs_2 \Longrightarrow s_2Rs_1$
3. transitive: $\forall s_1, s_2 \in S \ s_1Rs_2 \land s_2Rs_3 \implies s_1Rs_3$

The relation R is a congruence relation if

1. 1 – 3 hold

$$orall _{ar{s},ar{t}} \left(igwedge_{i=1}^n s_i R t_i
ight) \implies f(ar{s}) R f(ar{t})$$

Let S be a set and R a binary relation over S. For two elements s_1 , $s_2 \in S$, either s_1Rs_2 or $\neg(s_1Rs_2)$.

The relation R is an equivalence relation if it is

1. reflexive: $\bigvee_{s \in S} sRs$ 2. symmetric: $\bigvee_{s_1, s_2 \in S} s_1Rs_2 \Longrightarrow s_2Rs_1$ 3. transitive: $\bigvee_{s_1, s_2, s_3 \in S} s_1Rs_2 \land s_2Rs_3 \implies s_1Rs_3$

The relation R is a congruence relation if

1. 1 – 3 hold

$$orall _{ar{s},ar{t}} \left(igwedge_{i=1}^n s_i R t_i
ight) \implies f(ar{s}) R f(ar{t})$$

Let S be a set and R a binary relation over S. For two elements s_1 , $s_2 \in S$, either s_1Rs_2 or $\neg(s_1Rs_2)$.

The relation R is an equivalence relation if it is

1. reflexive:
$$\forall sRs \\ s \in S$$

2. symmetric: $\forall s_1, s_2 \in S$
3. transitive: $\forall s_1, s_2 \land s_2 Rs_1 \Rightarrow s_1 Rs_3$
The relation P is a congruence relation if

1. 1 – 3 hold

$$orall _{ar{s},ar{t}} \left(igwedge_{i=1}^n s_i R t_i
ight) \implies f(ar{s}) R f(ar{t})$$

Let S be a set and R a binary relation over S. For two elements s_1 , $s_2 \in S$, either s_1Rs_2 or $\neg(s_1Rs_2)$.

The relation R is an equivalence relation if it is

1. reflexive:
$$\forall sRs \\ s \in S$$

2. symmetric: $\forall s_{1}, s_{2} \in S$
3. transitive: $\forall s_{1}, s_{2}, s_{3} \in S$
 $s_{1}Rs_{2} \land s_{2}Rs_{3} \implies s_{1}Rs_{3}$

0

$$\bigvee_{ar{s},ar{t}} \left(igwedge_{i=1}^n s_i R t_i
ight) \implies f(ar{s}) R f(ar{t})$$

Let S be a set and R a binary relation over S. For two elements s_1 , $s_2 \in S$, either s_1Rs_2 or $\neg(s_1Rs_2)$.

The relation R is an equivalence relation if it is

1. reflexive:
$$\forall sRs \\ s \in S$$

2. symmetric: $\forall s_1, s_2 \in S$
3. transitive: $\forall s_1, s_2 \land s_2 Rs_3 \implies s_1Rs_3$

The relation R is a congruence relation if

1. 1 – 3 hold

$$\bigvee_{\bar{s},\bar{t}} \left(\bigwedge_{i=1}^{n} s_{i}Rt_{i} \right) \implies f(\bar{s})Rf(\bar{t})$$

Let S be a set and R a binary relation over S. For two elements s_1 , $s_2 \in S$, either s_1Rs_2 or $\neg(s_1Rs_2)$.

The relation R is an equivalence relation if it is

1. reflexive:
$$\forall sRs \\ s \in S$$

2. symmetric: $\forall s_{1}, s_{2} \in S$
3. transitive: $\forall s_{1}, s_{2} \in S$
 $s_{1}Rs_{2} \rightarrow s_{2}Rs_{3} \implies s_{1}Rs_{3}$

The relation R is a congruence relation if

1. 1 – 3 hold

$$\forall \left(\bigwedge_{i=1}^{n} s_{i}Rt_{i} \right) \implies f(\bar{s})Rf(\bar{t})$$

Let S be a set and R a binary relation over S. For two elements s_1 , $s_2 \in S$, either s_1Rs_2 or $\neg(s_1Rs_2)$.

The relation R is an equivalence relation if it is

1. reflexive:
$$\forall sRs \\ s \in S$$

2. symmetric: $\forall s_1, s_2 \in S$
3. transitive: $\forall s_1, s_2 \in S$
 $s_1Rs_2 \implies s_2Rs_1$
 $s_1Rs_2 \land s_2Rs_3 \implies s_1Rs_3$

The relation R is a congruence relation if

1. 1 – 3 hold

$$\forall_{\bar{s},\bar{t}} \left(\bigwedge_{i=1}^{n} s_{i}Rt_{i} \right) \implies f(\bar{s})Rf(\bar{t})$$

Let R be a *equivalence relation* over the set S.

The equivalence class of $s \in S$ under R is the set

$$[s]_R \stackrel{def}{=} \{s' \in S : sRs'\}$$

If R is a congruence relation over S, then $[s]_R$ is the congruence class of s. A partition P of S is a set of subsets of S that is

1. total:
$$\left(\bigcup_{S' \in P} S'\right) = S$$

2. disjoint:
$$\forall_{S_1, S_2 \in P} S_1 \neq S_2 \implies S_1 \cap S_2 = \emptyset$$

Let R be a equivalence relation over the set S. The equivalence class of $s \in S$ under R is the set

$$[s]_R \stackrel{def}{=} \{s' \in S : sRs'\}$$

If R is a congruence relation over S, then $[s]_R$ is the congruence class of s. A partition P of S is a set of subsets of S that is

1. total:
$$\left(\bigcup_{S' \in P} S'\right) = S$$

2. disjoint:
$$\forall S_1 \neq S_2 \implies S_1 \cap S_2 = \emptyset$$

Let R be a equivalence relation over the set S. The equivalence class of $s \in S$ under R is the set

$$[s]_R \stackrel{def}{=} \{s' \in S : sRs'\}$$

If R is a congruence relation over S, then $[s]_R$ is the congruence class of s. A partition P of S is a set of subsets of S that is

1. total:
$$\left(\bigcup_{S'\in P} S'\right) = S$$

2. disjoint: $\bigvee_{S_1 \in S_2 \in P} S_1 \neq S_2 \implies S_1 \cap S_2 = \emptyset$

Let *R* be a *equivalence relation* over the set *S*. The equivalence class of $s \in S$ under *R* is the set

$$[s]_R \stackrel{def}{=} \{s' \in S : sRs'\}$$

If R is a congruence relation over S, then $[s]_R$ is the congruence class of s. A partition P of S is a set of subsets of S that is

1. total:
$$\left(\bigcup_{S' \in P} S'\right) = S$$

2. disjoint: $\forall S_1, S_2 \in P S_1 \neq S_2 \implies S_1 \cap S_2 = \emptyset$

Let R be a *equivalence relation* over the set S.

The equivalence class of $s \in S$ under R is the set

$$[s]_R \stackrel{def}{=} \{s' \in S : sRs'\}$$

If R is a congruence relation over S, then $[s]_R$ is the congruence class of s. A partition P of S is a set of subsets of S that is

1. total:
$$\left(\bigcup_{S'\in P} S'\right) = S$$

2. disjoint: $\forall S_1 \neq S_2 \implies S_1 \cap S_2 = \emptyset$

Let R be a *equivalence relation* over the set S.

The equivalence class of $s \in S$ under R is the set

$$[s]_R \stackrel{def}{=} \{s' \in S : sRs'\}$$

If R is a congruence relation over S, then $[s]_R$ is the congruence class of s. A partition P of S is a set of subsets of S that is

1. total:
$$\left(\bigcup_{S' \in P} S'\right) = S$$

2. disjoint: $\forall S_1, S_2 \in P S_1 \neq S_2 \implies S_1 \cap S_2 = \emptyset$

Let R be a *equivalence relation* over the set S.

The equivalence class of $s \in S$ under R is the set

$$[s]_R \stackrel{def}{=} \{s' \in S : sRs'\}$$

If R is a congruence relation over S, then $[s]_R$ is the congruence class of s. A partition P of S is a set of subsets of S that is

1. total:
$$\left(\bigcup_{S' \in P} S'\right) = S$$

2. disjoint: $\forall S_{1}, S_{2} \in P$ $S_{1} \neq S_{2} \implies S_{1} \cap S_{2} = \emptyset$

Let R_1 and R_2 be two binary relations over set S.

 R_1 is a refinement of R_2 , or $R_1 \prec R_2$, if $\bigvee_{s_1, s_2 \in S} s_1 R_1 s_2 \implies s_1 R_2 s_2$.

In other words, R_1 refines R_2 .

Viewing the relations as sets of pairs, $R_1 \prec R_2$ iff $R_1 \subseteq R_2$. Examples

- Let $S = a, b, R_1 : aR_1b, R_2 : aR_2b, bR_2b$. Then $R_1 \prec R_2$.
- ► Let *S* be a set.

Let R_1 and R_2 be two binary relations over set S. R_1 is a refinement of R_2 , or $R_1 \prec R_2$, if $\underset{s_1,s_2 \in S}{\forall} s_1R_1s_2 \implies s_1R_2s_2$. In other words, R_1 refines R_2 . Viewing the relations as sets of pairs, $R_1 \prec R_2$ iff $R_1 \subseteq R_2$.

- Let $S = a, b, R_1 : aR_1b, R_2 : aR_2b, bR_2b$. Then $R_1 \prec R_2$.
- ► Let *S* be a set.

Let R_1 and R_2 be two binary relations over set S. R_1 is a refinement of R_2 , or $R_1 \prec R_2$, if $\bigvee_{s_1, s_2 \in S} s_1 R_1 s_2 \implies s_1 R_2 s_2$. In other words, R_1 refines R_2 .

Viewing the relations as sets of pairs, $R_1\prec R_2$ iff $R_1\subseteq R_2.$ Examples

- Let $S = a, b, R_1 : aR_1b, R_2 : aR_2b, bR_2b$. Then $R_1 \prec R_2$.
- ► Let *S* be a set.

Let R_1 and R_2 be two binary relations over set S. R_1 is a refinement of R_2 , or $R_1 \prec R_2$, if $\underset{s_1, s_2 \in S}{\forall} s_1 R_1 s_2 \implies s_1 R_2 s_2$. In other words, R_1 refines R_2 . Viewing the relations as sets of pairs, $R_1 \prec R_2$ iff $R_1 \subseteq R_2$. Examples

- Let $S = a, b, R_1 : aR_1b, R_2 : aR_2b, bR_2b$. Then $R_1 \prec R_2$.
- ► Let *S* be a set.

Let R_1 and R_2 be two binary relations over set S.

 R_1 is a refinement of R_2 , or $R_1 \prec R_2$, if $\bigvee_{s_1, s_2 \in S} s_1 R_1 s_2 \implies s_1 R_2 s_2$.

In other words, R_1 refines R_2 .

Viewing the relations as sets of pairs, $R_1 \prec R_2$ iff $R_1 \subseteq R_2$. Examples

- ▶ Let $S = a, b, R_1 : aR_1b, R_2 : aR_2b, bR_2b$. Then $R_1 \prec R_2$.
- ► Let *S* be a set.

Let R_1 and R_2 be two binary relations over set S.

 R_1 is a refinement of R_2 , or $R_1 \prec R_2$, if $\bigvee_{s_1, s_2 \in S} s_1 R_1 s_2 \implies s_1 R_2 s_2$.

In other words, R_1 refines R_2 .

Viewing the relations as sets of pairs, $R_1 \prec R_2$ iff $R_1 \subseteq R_2$. Examples

▶ Let $S = a, b, R_1 : aR_1b, R_2 : aR_2b, bR_2b$. Then $R_1 \prec R_2$.

Let R_1 and R_2 be two binary relations over set S.

 R_1 is a refinement of R_2 , or $R_1 \prec R_2$, if $\bigvee_{s_1, s_2 \in S} s_1 R_1 s_2 \implies s_1 R_2 s_2$.

In other words, R_1 refines R_2 .

Viewing the relations as sets of pairs, $R_1 \prec R_2$ iff $R_1 \subseteq R_2$. Examples

- Let $S = a, b, R_1 : aR_1b, R_2 : aR_2b, bR_2b$. Then $R_1 \prec R_2$.
- ▶ Let S be a set. Relation $R_1 : sR_1s : s \in S$ induced by the partition $P_1 : s : s \in S$; Relation $R_2 : sR_2t : s, t \in S$ induced by the partition $P_2 : S$. Then $R_1 \prec R_2$.

The equivalence closure R^E of the binary relation R over S is the equivalence relation such that

 $\blacktriangleright R \text{ refines } R^E: R \prec R_E;$

▶ for all other equivalence relations R' such that $R \prec R'$, either $R' = R^E$ or $R^E \prec R'$

In other words, R^E is the "smallest" equivalence relation that "covers" R. The congruence closure R^C of R is the "smallest" congruence relation that "covers" R.

Examples If $S = \{a, b, c, d\}$ and $R = \{aRb, bRc, dRd\}$, then

• $aRb, bRc, dRd \in R^E$ since $R \subseteq R^E$

- $aRa, bRb, cRc \in R^E$ by reflexivity
- $bRa, cRb \in R^E$ by symmetry;
- ► aRc ∈ R^E by transitivity;
- $cRa \in R^E$ by symmetry

Hence, $R^E = \{aRb, bRa, aRa, bRb, bRc, cRb, cRc, aRc, cRa, dRd\}$.

The equivalence closure R^E of the binary relation R over S is the equivalence relation such that

• *R* refines R^E : $R \prec R_E$;

▶ for all other equivalence relations R' such that $R \prec R'$, either $R' = R^E$ or $R^E \prec R'$

In other words, R^E is the "smallest" equivalence relation that "covers" R. The congruence closure R^C of R is the "smallest" congruence relation that "covers" R.

Examples If $S = \{a, b, c, d\}$ and $R = \{aRb, bRc, dRd\}$, then

- $aRb, bRc, dRd \in R^E$ since $R \subseteq R^E$
- $aRa, bRb, cRc \in R^E$ by reflexivity
- $bRa, cRb \in R^E$ by symmetry;
- ► aRc ∈ R^E by transitivity;
- $cRa \in R^E$ by symmetry

Hence, $R^E = \{aRb, bRa, aRa, bRb, bRc, cRb, cRc, aRc, cRa, dRd\}$.

The equivalence closure R^E of the binary relation R over S is the equivalence relation such that

- *R* refines R^E : $R \prec R_E$;
- ▶ for all other equivalence relations R' such that $R \prec R'$, either $R' = R^E$ or $R^E \prec R'$

In other words, R^E is the "smallest" equivalence relation that "covers" R. The congruence closure R^C of R is the "smallest" congruence relation that "covers" R.

Examples If $S = \{a, b, c, d\}$ and $R = \{aRb, bRc, dRd\}$, then

- $aRb, bRc, dRd \in R^E$ since $R \subseteq R^E$
- $aRa, bRb, cRc \in R^E$ by reflexivity
- $bRa, cRb \in R^E$ by symmetry;
- ► aRc ∈ R^E by transitivity;
- $cRa \in R^E$ by symmetry

The equivalence closure R^E of the binary relation R over S is the equivalence relation such that

- *R* refines R^E : $R \prec R_E$;
- ▶ for all other equivalence relations R' such that $R \prec R'$, either $R' = R^E$ or $R^E \prec R'$

In other words, R^E is the "smallest" equivalence relation that "covers" R.

The congruence closure R^{C} of R is the "smallest" congruence relation that "covers" R.

Examples If $S = \{a, b, c, d\}$ and $R = \{aRb, bRc, dRd\}$, then

• $aRb, bRc, dRd \in R^E$ since $R \subseteq R^L$

- $aRa, bRb, cRc \in R^E$ by reflexivity
- $bRa, cRb \in R^E$ by symmetry;
- ► aRc ∈ R^E by transitivity;
- $cRa \in R^E$ by symmetry

The equivalence closure R^E of the binary relation R over S is the equivalence relation such that

- *R* refines R^E : $R \prec R_E$;
- ▶ for all other equivalence relations R' such that $R \prec R'$, either $R' = R^E$ or $R^E \prec R'$

In other words, R^E is the "smallest" equivalence relation that "covers" R. The congruence closure R^C of R is the "smallest" congruence relation that "covers" R.

Examples If $S = \{a, b, c, d\}$ and $R = \{aRb, bRc, dRd\}$, then

• $aRb, bRc, dRd \in R^E$ since $R \subseteq R^I$

- $aRa, bRb, cRc \in R^E$ by reflexivity
- $bRa, cRb \in R^E$ by symmetry;
- aRc ∈ R^E by transitivity;
- $cRa \in R^E$ by symmetry

The equivalence closure R^E of the binary relation R over S is the equivalence relation such that

- *R* refines R^E : $R \prec R_E$;
- ▶ for all other equivalence relations R' such that $R \prec R'$, either $R' = R^E$ or $R^E \prec R'$

In other words, R^E is the "smallest" equivalence relation that "covers" R. The congruence closure R^C of R is the "smallest" congruence relation that "covers" R.

Examples If $S = \{a, b, c, d\}$ and $R = \{aRb, bRc, dRd\}$, then

- ▶ $aRb, bRc, dRd \in R^E$ since $R \subseteq R^E$
- $aRa, bRb, cRc \in R^E$ by reflexivity
- ▶ $bRa, cRb \in R^E$ by symmetry;
- $aRc \in R^E$ by transitivity;
- $cRa \in R^E$ by symmetry

The equivalence closure R^E of the binary relation R over S is the equivalence relation such that

- *R* refines R^E : $R \prec R_E$;
- ▶ for all other equivalence relations R' such that $R \prec R'$, either $R' = R^E$ or $R^E \prec R'$

In other words, R^E is the "smallest" equivalence relation that "covers" R. The congruence closure R^C of R is the "smallest" congruence relation that "covers" R.

Examples If $S = \{a, b, c, d\}$ and $R = \{aRb, bRc, dRd\}$, then

- *aRb*, *bRc*, *dRd* $\in R^E$ since $R \subseteq R^E$
- $aRa, bRb, cRc \in R^E$ by reflexivity
- ▶ $bRa, cRb \in R^E$ by symmetry;
- $aRc \in R^E$ by transitivity;
- ▶ $cRa \in R^E$ by symmetry

The equivalence closure R^E of the binary relation R over S is the equivalence relation such that

- *R* refines R^E : $R \prec R_E$;
- ▶ for all other equivalence relations R' such that $R \prec R'$, either $R' = R^E$ or $R^E \prec R'$

In other words, R^E is the "smallest" equivalence relation that "covers" R. The congruence closure R^C of R is the "smallest" congruence relation that "covers" R.

Examples If $S = \{a, b, c, d\}$ and $R = \{aRb, bRc, dRd\}$, then

- $aRb, bRc, dRd \in R^E$ since $R \subseteq R^E$
- $aRa, bRb, cRc \in R^E$ by reflexivity
- ▶ $bRa, cRb \in R^E$ by symmetry;
- $aRc \in R^E$ by transitivity;
- $cRa \in R^E$ by symmetry

The equivalence closure R^E of the binary relation R over S is the equivalence relation such that

- *R* refines R^E : $R \prec R_E$;
- ▶ for all other equivalence relations R' such that $R \prec R'$, either $R' = R^E$ or $R^E \prec R'$

In other words, R^E is the "smallest" equivalence relation that "covers" R. The congruence closure R^C of R is the "smallest" congruence relation that "covers" R.

Examples If $S = \{a, b, c, d\}$ and $R = \{aRb, bRc, dRd\}$, then

- $aRb, bRc, dRd \in R^E$ since $R \subseteq R^E$
- $aRa, bRb, cRc \in R^E$ by reflexivity
- ▶ $bRa, cRb \in R^E$ by symmetry;
- $aRc \in R^E$ by transitivity;
- $cRa \in R^E$ by symmetry

The equivalence closure R^E of the binary relation R over S is the equivalence relation such that

- *R* refines R^E : $R \prec R_E$;
- ▶ for all other equivalence relations R' such that $R \prec R'$, either $R' = R^E$ or $R^E \prec R'$

In other words, R^E is the "smallest" equivalence relation that "covers" R. The congruence closure R^C of R is the "smallest" congruence relation that "covers" R.

Examples If $S = \{a, b, c, d\}$ and $R = \{aRb, bRc, dRd\}$, then

- $aRb, bRc, dRd \in R^E$ since $R \subseteq R^E$
- $aRa, bRb, cRc \in R^E$ by reflexivity
- ▶ $bRa, cRb \in R^E$ by symmetry;
- $aRc \in R^E$ by transitivity;
- $cRa \in R^E$ by symmetry

The equivalence closure R^E of the binary relation R over S is the equivalence relation such that

- *R* refines R^E : $R \prec R_E$;
- ▶ for all other equivalence relations R' such that $R \prec R'$, either $R' = R^E$ or $R^E \prec R'$

In other words, R^E is the "smallest" equivalence relation that "covers" R. The congruence closure R^C of R is the "smallest" congruence relation that "covers" R.

Examples If $S = \{a, b, c, d\}$ and $R = \{aRb, bRc, dRd\}$, then

- $aRb, bRc, dRd \in R^E$ since $R \subseteq R^E$
- $aRa, bRb, cRc \in R^E$ by reflexivity
- ▶ $bRa, cRb \in R^E$ by symmetry;
- $aRc \in R^E$ by transitivity;
- $cRa \in R^E$ by symmetry

The equivalence closure R^E of the binary relation R over S is the equivalence relation such that

- *R* refines R^E : $R \prec R_E$;
- ▶ for all other equivalence relations R' such that $R \prec R'$, either $R' = R^E$ or $R^E \prec R'$

In other words, R^E is the "smallest" equivalence relation that "covers" R. The congruence closure R^C of R is the "smallest" congruence relation that "covers" R.

Examples If $S = \{a, b, c, d\}$ and $R = \{aRb, bRc, dRd\}$, then

- *aRb*, *bRc*, *dRd* $\in R^E$ since $R \subseteq R^E$
- $aRa, bRb, cRc \in R^E$ by reflexivity
- ▶ $bRa, cRb \in R^E$ by symmetry;
- $aRc \in R^E$ by transitivity;
- $cRa \in R^E$ by symmetry

The subterm set S_F of Σ -formula F is the set that contains precisely the subterms of F.

Example: Let

$$F : \iff f[a, b] = a \wedge f[f[a, b], b] \neq a.$$

Then

$$S_F = \{a, b, f[a, b], f[f[a, b], b]\}.$$

The subterm set S_F of Σ -formula F is the set that contains precisely the subterms of F. Example: Let

 $F : \iff f[a, b] = a \wedge f[f[a, b], b] \neq a.$

Then

$$S_F = \{a, b, f[a, b], f[f[a, b], b]\}.$$

Given Σ_E - formula F

$$F :\iff s_1 = t_1 \land ... \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land ... \land s_n \neq t_n$$

with subterm set S_F . F is T_E - satisfiable iff there exists a congruence relation over S_F such that

- for each $i \in \{1, ..., m\}$, $s_i \sim t_i$;
- ▶ for each $i \in \{m+1, ..., n\}$, $s_i \not\sim t_i$.

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure \sim of

$$\{s_1 = t_1, ..., s_m = t_m\}$$

over the subterm set S_F . Then

$$\sim \models s_1 = t_1 \land \ldots \land s_m = t_m$$

2. If $s_i \sim t_i$ for any $i \in \{m + 1, ..., n\}$, return unsatisfiable.

Given Σ_E - formula F

$$F :\iff s_1 = t_1 \land ... \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land ... \land s_n \neq t_n$$

with subterm set S_F . F is T_E - satisfiable iff there exists a congruence relation over S_F such that

- for each $i \in \{1, ..., m\}$, $s_i \sim t_i$;
- ▶ for each $i \in \{m + 1, ..., n\}$, $s_i \not\sim t_i$.

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure \sim of

$$\{s_1 = t_1, ..., s_m = t_m\}$$

over the subterm set S_F . Then

$$\sim = s_1 = t_1 \wedge \ldots \wedge s_m = t_m$$

2. If $s_i \sim t_i$ for any $i \in \{m + 1, ..., n\}$, return unsatisfiable.

Given Σ_E - formula F

$$F : \iff s_1 = t_1 \land \ldots \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land \ldots \land s_n \neq t_n$$

with subterm set S_F . F is T_E - satisfiable iff there exists a congruence relation over S_F such that

- for each $i \in \{1, ..., m\}$, $s_i \sim t_i$;
- for each $i \in \{m+1, ..., n\}$, $s_i \not\sim t_i$.

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure \sim of

 $\{s_1 = t_1, ..., s_m = t_m\}$

over the subterm set S_F . Then

$$\sim = s_1 = t_1 \wedge \ldots \wedge s_m = t_m$$

2. If $s_i \sim t_i$ for any $i \in \{m + 1, ..., n\}$, return unsatisfiable.

Given Σ_E - formula F

$$F : \iff s_1 = t_1 \land \ldots \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land \ldots \land s_n \neq t_n$$

with subterm set S_F . F is T_E - satisfiable iff there exists a congruence relation over S_F such that

- for each $i \in \{1, ..., m\}$, $s_i \sim t_i$;
- for each $i \in \{m+1, ..., n\}$, $s_i \not\sim t_i$.

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure \sim of

$$\{s_1 = t_1, ..., s_m = t_m\}$$

over the subterm set S_F . Then

$$\sim \models s_1 = t_1 \land ... \land s_m = t_m$$

2. If $s_i \sim t_i$ for any $i \in \{m + 1, ..., n\}$, return unsatisfiable.

Given Σ_E - formula F

$$F :\iff s_1 = t_1 \land ... \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land ... \land s_n \neq t_n$$

with subterm set S_F . F is T_E - satisfiable iff there exists a congruence relation over S_F such that

- for each $i \in \{1, ..., m\}$, $s_i \sim t_i$;
- for each $i \in \{m+1, ..., n\}$, $s_i \not\sim t_i$.

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure \sim of

$$\{s_1 = t_1, ..., s_m = t_m\}$$

over the subterm set S_F . Then

$$\sim \models s_1 = t_1 \land ... \land s_m = t_m$$

2. If $s_i \sim t_i$ for any $i \in \{m + 1, ..., n\}$, return unsatisfiable.

Given Σ_E - formula F

$$F :\iff s_1 = t_1 \land ... \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land ... \land s_n \neq t_n$$

with subterm set S_F . F is T_E - satisfiable iff there exists a congruence relation over S_F such that

- for each $i \in \{1, ..., m\}$, $s_i \sim t_i$;
- for each $i \in \{m+1,...,n\}$, $s_i \not\sim t_i$.

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure \sim of

$$\{s_1 = t_1, ..., s_m = t_m\}$$

over the subterm set S_F . Then

$$\sim \models s_1 = t_1 \land ... \land s_m = t_m$$

If s_i ~ t_i for any i ∈ {m + 1, ..., n}, return unsatisfiable.
 Otherwise, ~⊨ F, so return satisfiable.

Given Σ_E - formula F

$$F :\iff s_1 = t_1 \land ... \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land ... \land s_n \neq t_n$$

with subterm set S_F . F is T_E - satisfiable iff there exists a congruence relation over S_F such that

- for each $i \in \{1, ..., m\}$, $s_i \sim t_i$;
- for each $i \in \{m+1,...,n\}$, $s_i \not\sim t_i$.

Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure \sim of

$$\{s_1 = t_1, ..., s_m = t_m\}$$

over the subterm set S_F . Then

$$\sim \models s_1 = t_1 \land ... \land s_m = t_m$$

2. If $s_i \sim t_i$ for any $i \in \{m + 1, ..., n\}$, return unsatisfiable.

Examples: Determine if the following formulas are satisfiable or not

1.
$$F_1 : \iff f[a, b] = a \land f[f[a, b], b] \neq a$$

2. $F_2 : \iff f[x] = f[y] \land x \neq y$