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The decision problem for a given formula ¢ is to determine whether ¢ is
valid/satisfiable.

A procedure for the decision problem is sound if when it returns
“Valid" / "Satisfiable”, the input formula is indeed valid/satisfiable.

A procedure for the decision problem is complete if
1. it always terminates, and
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A procedure is called a decision procedure for the theory T (e.g.
propositional logic, first-order logic, other theories to be discussed later)
if it is sound and complete with respect to every formula of T.

A theory is decidable iff there is a decision procedure for it.
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Decidability of PL and FOL

Questions

>

Is propositional logic (PL) decidable? If so, give example of decision
procedures

Yes! (truth table, resolution, DPLL)

Is first-order logic (FOL) decidable? If so, give example of decision
procedures.

FOL is undecidable (Church & Turing): there does not exist a
decision procedure/algorithm for deciding if a FOL formula F is
valid/satisfiable.

FOL is semi-decidable: there is a procedure that halts and says
“yes" if F is indeed valid /satisfiable.
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First-Order Theories

Motivation:

» Reasoning in applications domains, e.g. software, hardware,
necessitates various notions (numbers, lists, arrays, memory, etc.)
which can be formalized using FOL.

» While FOL is undecidable, validity in particular theories or fragments
of theories interesting for verification is sometimes decidable and
even efficiently decidable.
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Is T¢ decidable?
Is quantifier-free Tg decidable?
Without quantifiers, free variables and constants play the same role.

Example:
Prove that F is Tg valid where

F <= a=b A b=c = g[fla],b] =gl[f[c], ]

Goal: decision procedure for satisfiability of quantifier - free theory of
equality (QFEUF)
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Relations

Let S be a set and R a binary relation over S.
For two elements s;, s, € S, either s1Rs; or =(s1Rs,).
The relation R is an equivalence relation if it is

1. reflexive: V sRs
seS

2. symmetric: V s51Rs, = 55Rs;

sl,sz€$

3. transitive: A 51Rss A s5Rs3 —> s1Rs3

51,5,53€S

The relation R is a congruence relation if

1. 1 -3 hold
2. for any n-ary function f,

_VE (/n\ S,'Rt,'> — f(§)Rf(t_')

i=1
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Relations (cont’d)

Let R be a equivalence relation over the set S.

The equivalence class of s € S under R is the set
[slk & {s' € S:sRs'}

If R is a congruence relation over S, then [s]g is the congruence class of s.
A partition P of S is a set of subsets of S that is

1. total: ( U 5’) =S5

S'ep
2. disjoint: 51,Sv2€P $1#4S% = S5NS=0

The quotient S/R of S by the equivalence (congruence) relation R is a
partition of S: it is a set of equivalence (congruence) classes

S/R={[s]r : s € S}.
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Relations (cont’d)

Let Ry and R, be two binary relations over set S.
Ry is a refinement of Ry, ofr Ry < Ro, if V'  s1R1s5 — s1Rss.

$1,5€S
In other words, R; refines R».
Viewing the relations as sets of pairs, Ry < Ry iff Ry C R».
Examples
» Let S=a,b, Ry : aRi1b, Ry : aRxb, bRob. Then Ry < R».

> Let S be a set.
Relation Ry : sRys: s € S induced by the partition P; :s:s € S;
Relation R, : sRyt : s, t € S induced by the partition P, : S.
Then Ry < R».
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The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

> R refines RE: R < Rg;
» for all other equivalence relations R’ such that R < R’, either
R = RE or RE < R’
In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b,c,d} and R = {aRb, bRc, dRd}, then
aRb, bRc, dRd € RF since R C RE

» aRa, bRb, cRc € RE by reflexivity

» bRa,cRb € RE by symmetry;

» aRc € RE by transitivity;
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The equivalence closure RE of the binary relation R over S is the
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Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

> R refines RE: R < Rg;
» for all other equivalence relations R’ such that R < R’, either
R = RE or RE < R’
In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b,c,d} and R = {aRb, bRc, dRd}, then
» aRb, bRc, dRd € RE since R C RE
» aRa, bRb, cRc € RE by reflexivity
» bRa,cRb € RE by symmetry;
» aRc € RE by transitivity;
» cRa € Rf by symmetry
Hence, RE = {aRb, bRa, aRa, bRb, bRc, cRb, cRc, aRc, cRa, dRd}.
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The subterm set S of X-formula F is the set that contains precisely the
subterms of F.



Relations (cont’d)

The subterm set S of X-formula F is the set that contains precisely the
subterms of F.

Example: Let
F <= fla, bl =aAf[fla,b],b] # a.

Then
Sk ={a, b, f[a, b],f[f[a, b], b]}.
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with subterm set Sr. F is Tg - satisfiable iff there exists a congruence
relation over S¢ such that
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Congruence Closure Algorithm for Tgrryr
Given X g - formula F
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Congruence Closure Algorithm (Naive Version)
1. Construct the congruence closure ~ of
{51 =t1,....5m = tm}
over the subterm set Sg. Then

~ESS=tH A ASy =ty

2. If s; ~ t; forany i € {m+ 1, ..., n}, return unsatisfiable.



Congruence Closure Algorithm for Tgrryr
Given X g - formula F
F <<= si=ti]AN...ANsp, = tm A\ Sm+1 # t',-n_~_1/\.../\5n7é th

with subterm set Sr. F is Tg - satisfiable iff there exists a congruence
relation over S¢ such that

» foreach i€ {1,...m}, s; ~ t;;
> foreachie {m+1,..,n}, s #t.
Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure ~ of
{s1=1t,. s Sm = tm}
over the subterm set Sg. Then
~ESS=tH A ASy =ty

2. If s; ~ t; forany i € {m+ 1, ..., n}, return unsatisfiable.
3. Otherwise, ~= F, so return satisfiable.



Congruence Closure Algorithm for Tgreyr (cont’d)

Examples: Determine if the following formulas are satisfiable or not
1. F, 1< fla,bl=aAf][f[ab],b] #a
2. i, = flx]=Ffly]Ax#y
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