Logic-based Program Verification

Decidability of Propositional and First-Order Logic.
First-Order Theories. Theory of Equality

Madalina Erascu Tudor Jebelean

Research Institute for Symbolic Computation,
Johannes Kepler University, Linz, Austria

{merascu,tjebelea}@risc.jku.at
November 20, 2013

OM.E.
N

QOutline

Preliminaries

Decidability of PL and FOL

First-Order Theories
Theory of Equality (Teyr). Congruence Closure Algorithm for Torcur

Outline

Preliminaries

The Decision Problem of Formulas

The decision problem for a given formula ¢ is to determine whether ¢ is
valid/satisfiable.

The Decision Problem of Formulas

The decision problem for a given formula ¢ is to determine whether ¢ is
valid/satisfiable.

A procedure for the decision problem is sound if when it returns
“Valid" / "Satisfiable”, the input formula is indeed valid/satisfiable.

The Decision Problem of Formulas

The decision problem for a given formula ¢ is to determine whether ¢ is
valid/satisfiable.

A procedure for the decision problem is sound if when it returns
“Valid" / "Satisfiable”, the input formula is indeed valid/satisfiable.

A procedure for the decision problem is complete if
1. it always terminates, and

2. it returns “Valid" / “Satisfiable” when the input formula is indeed
valid/satisfiable.

The Decision Problem of Formulas

The decision problem for a given formula ¢ is to determine whether ¢ is
valid/satisfiable.

A procedure for the decision problem is sound if when it returns
“Valid" / "Satisfiable”, the input formula is indeed valid/satisfiable.

A procedure for the decision problem is complete if
1. it always terminates, and
2. it returns “Valid" / “Satisfiable” when the input formula is indeed
valid/satisfiable.

A procedure is called a decision procedure for the theory T (e.g.
propositional logic, first-order logic, other theories to be discussed later)
if it is sound and complete with respect to every formula of T.

The Decision Problem of Formulas

The decision problem for a given formula ¢ is to determine whether ¢ is
valid/satisfiable.

A procedure for the decision problem is sound if when it returns
“Valid" / "Satisfiable”, the input formula is indeed valid/satisfiable.

A procedure for the decision problem is complete if
1. it always terminates, and
2. it returns “Valid" / “Satisfiable” when the input formula is indeed
valid/satisfiable.

A procedure is called a decision procedure for the theory T (e.g.
propositional logic, first-order logic, other theories to be discussed later)
if it is sound and complete with respect to every formula of T.

A theory is decidable iff there is a decision procedure for it.

Outline

Decidability of PL and FOL

Decidability of PL and FOL

Questions

Decidability of PL and FOL

Questions

» Is propositional logic (PL) decidable? If so, give example of decision
procedures

Decidability of PL and FOL

Questions

» Is propositional logic (PL) decidable? If so, give example of decision
procedures

> Yes! (truth table, resolution, DPLL)

Decidability of PL and FOL

Questions

» Is propositional logic (PL) decidable? If so, give example of decision
procedures

> Yes! (truth table, resolution, DPLL)

> Is first-order logic (FOL) decidable? If so, give example of decision
procedures.

Decidability of PL and FOL

Questions

» Is propositional logic (PL) decidable? If so, give example of decision
procedures

> Yes! (truth table, resolution, DPLL)

> Is first-order logic (FOL) decidable? If so, give example of decision
procedures.

» FOL is undecidable (Church & Turing): there does not exist a
decision procedure/algorithm for deciding if a FOL formula F is
valid/satisfiable.

Decidability of PL and FOL

Questions

>

Is propositional logic (PL) decidable? If so, give example of decision
procedures

Yes! (truth table, resolution, DPLL)

Is first-order logic (FOL) decidable? If so, give example of decision
procedures.

FOL is undecidable (Church & Turing): there does not exist a
decision procedure/algorithm for deciding if a FOL formula F is
valid/satisfiable.

FOL is semi-decidable: there is a procedure that halts and says
“yes" if F is indeed valid /satisfiable.

QOutline

First-Order Theories
Theory of Equality (Teyr). Congruence Closure Algorithm for Torcur

First-Order Theories

Motivation:

First-Order Theories

Motivation:

» Reasoning in applications domains, e.g. software, hardware,
necessitates various notions (numbers, lists, arrays, memory, etc.)
which can be formalized using FOL.

First-Order Theories

Motivation:

» Reasoning in applications domains, e.g. software, hardware,
necessitates various notions (numbers, lists, arrays, memory, etc.)
which can be formalized using FOL.

» While FOL is undecidable, validity in particular theories or fragments
of theories interesting for verification is sometimes decidable and
even efficiently decidable.

First-Order Theories
A first-order theory T is defined by:

First-Order Theories

A first-order theory T is defined by:
1. signature X: set of constant, function, predicate symbols

First-Order Theories

A first-order theory T is defined by:
1. signature X: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only
constant, function, and predicate symbols of ¥ appear.

First-Order Theories

A first-order theory T is defined by:
1. signature X: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only
constant, function, and predicate symbols of ¥ appear.
A formula F is closed if it does not contain any free variables.

First-Order Theories

A first-order theory T is defined by:
1. signature X: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only
constant, function, and predicate symbols of ¥ appear.
A formula F is closed if it does not contain any free variables.
A Y-formula F is valid in T (T-valid), if every interpretation / that
satisfies the axioms of T,

| = Aforevery A€ A,
also satisfies F : | = F. We also write T |= F (F is T-valid).

First-Order Theories

A first-order theory T is defined by:
1. signature X: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only
constant, function, and predicate symbols of ¥ appear.
A formula F is closed if it does not contain any free variables.
A Y-formula F is valid in T (T-valid), if every interpretation / that
satisfies the axioms of T,

| = Aforevery A€ A,
also satisfies F : | = F. We also write T |= F (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.

First-Order Theories

A first-order theory T is defined by:
1. signature X: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only
constant, function, and predicate symbols of ¥ appear.
A formula F is closed if it does not contain any free variables.

A Y-formula F is valid in T (T-valid), if every interpretation / that
satisfies the axioms of T,

| = Aforevery A€ A,
also satisfies F : | = F. We also write T |= F (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.
An interpretation satisfying (1) is a T-interpretation.

First-Order Theories

A first-order theory T is defined by:
1. signature X: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only
constant, function, and predicate symbols of ¥ appear.
A formula F is closed if it does not contain any free variables.
A Y-formula F is valid in T (T-valid), if every interpretation / that
satisfies the axioms of T,

| = Aforevery A€ A,
also satisfies F : | = F. We also write T |= F (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.
An interpretation satisfying (1) is a T-interpretation.

A X-formula F is satisfiable in T (T-satisfiable), if there is a
T-interpretation / that satisfies F.

First-Order Theories

A first-order theory T is defined by:
1. signature X: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only
constant, function, and predicate symbols of ¥ appear.
A formula F is closed if it does not contain any free variables.

A Y-formula F is valid in T (T-valid), if every interpretation / that
satisfies the axioms of T,

| = Aforevery A€ A,
also satisfies F : | = F. We also write T |= F (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.
An interpretation satisfying (1) is a T-interpretation.

A X-formula F is satisfiable in T (T-satisfiable), if there is a
T-interpretation / that satisfies F.

A theory T is complete if for every closed X-formula F, T = F or
T E—F.

First-Order Theories

A first-order theory T is defined by:
1. signature X: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only
constant, function, and predicate symbols of ¥ appear.
A formula F is closed if it does not contain any free variables.
A Y-formula F is valid in T (T-valid), if every interpretation / that
satisfies the axioms of T,

| = Aforevery A€ A,
also satisfies F : | = F. We also write T |= F (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.
An interpretation satisfying (1) is a T-interpretation.
A X-formula F is satisfiable in T (T-satisfiable), if there is a
T-interpretation / that satisfies F.
A theory T is complete if for every closed X-formula F, T = F or
T =-F.
A theory is consistent if there is at least one T-interpretation.

First-Order Theories

A first-order theory T is defined by:
1. signature X: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only
constant, function, and predicate symbols of ¥ appear.
A formula F is closed if it does not contain any free variables.
A Y-formula F is valid in T (T-valid), if every interpretation / that
satisfies the axioms of T,

| = Aforevery A€ A,
also satisfies F : | = F. We also write T |= F (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.
An interpretation satisfying (1) is a T-interpretation.
A X-formula F is satisfiable in T (T-satisfiable), if there is a
T-interpretation / that satisfies F.
A theory T is complete if for every closed X-formula F, T = F or
T =-F.
A theory is consistent if there is at least one T-interpretation.

A fragment of a theory is a syntactically-restricted subset of formulas of

the theoryv.

First-Order Theories

A first-order theory T is defined by:
1. signature X: set of constant, function, predicate symbols
2. a set of axioms A: closed set of FOL formulas in which only
constant, function, and predicate symbols of ¥ appear.
A formula F is closed if it does not contain any free variables.
A Y-formula F is valid in T (T-valid), if every interpretation / that
satisfies the axioms of T,

| = Aforevery A€ A,
also satisfies F : | = F. We also write T |= F (F is T-valid).
The theory T consists of all (closed) formulas that are T-valid.
An interpretation satisfying (1) is a T-interpretation.
A X-formula F is satisfiable in T (T-satisfiable), if there is a
T-interpretation / that satisfies F.
A theory T is complete if for every closed X-formula F, T = F or
T =-F.
A theory is consistent if there is at least one T-interpretation.

A fragment of a theory is a syntactically-restricted subset of formulas of

the theoryv.

TEur

This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).

Teur
This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).
Signature: Yg = {=,a,b,¢,....,f, g, h,..,P,Q,R,...}

a, b, c,... — constants, f, g, h,... — function symbols, P,Q,R,... — predicate
symbols

Teur
This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).
Signature: Yg = {=,a,b,¢,....,f, g, h,..,P,Q,R,...}
a, b, c,... — constants, f, g, h,... — function symbols, P,Q,R,... — predicate
symbols
The predicate = is interpreted via the following axioms:

Teur
This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).
Signature: Yg = {=,a,b,¢,....,f, g, h,..,P,Q,R,...}
a, b, c,... — constants, f, g, h,... — function symbols, P,Q,R,... — predicate
symbols
The predicate = is interpreted via the following axioms:
1. Y x=x (reflexivity)

Teur
This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).
Signature: Yg = {=,a,b,¢,....,f, g, h,..,P,Q,R,...}
a, b, c,... — constants, f, g, h,... — function symbols, P,Q,R,... — predicate
symbols
The predicate = is interpreted via the following axioms:
1. Vx=x (reflexivity)
2. :Vy x=y = y=x (symmetry)

Teur
This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).
Signature: Yg = {=,a,b,¢,....,f, g, h,..,P,Q,R,...}
a, b, c,... — constants, f, g, h,... — function symbols, P,Q,R,... — predicate
symbols
The predicate = is interpreted via the following axioms:
1. Vx=x (reflexivity)
2. :V x=y = y=x (symmetry)
3. é x=yANy=z = x=2z (transitivity)

XY,z

TEur

This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).
Signature: Yg = {=,a,b,¢,....,f, g, h,..,P,Q,R,...}
a, b, c,... — constants, f, g, h,... — function symbols, P,Q,R,... — predicate
symbols
The predicate = is interpreted via the following axioms:

1. Vx=x (reflexivity)

2. XV x=y = y=x (symmetry)

3. V x=yAy=z = x=2z (transitivity)
y

4. V /\ X —y,> = f(X)=1f(y) (function congruence),

3—‘<|

er e n is a positive integer and f is an n-ary function symbol

Teur
This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).
Signature: Yg = {=,a,b,¢,....,f, g, h,..,P,Q,R, ...}
a, b, c,... — constants, f, g, h,... — function symbols, P,Q,R,... — predicate
symbols
The predicate = is interpreted via the following axioms:
1. Vx=x (reflexivity)
2. V x=y = y=x (symmetry)
3. V x=yAy=z = x=2z (transitivity)
y
4. vV [A x —y,-> = f(X)=1f(y) (function congruence),
Y \i=1
where n is a positive integer and f is an n-ary function symbol
n
5. V. (/\ X —y,-) = P(X)=P(y) (function congruence),
Xy \i=1
where n is a positive integer and P is an n-ary predicate symbol

Teur
This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).
Signature: Yg = {=,a,b,¢,....,f, g, h,..,P,Q,R, ...}
a, b, c,... — constants, f, g, h,... — function symbols, P,Q,R,... — predicate
symbols
The predicate = is interpreted via the following axioms:
1. Vx=x (reflexivity)
2. V x=y = y=x (symmetry)
3. V x=yAy=z = x=2z (transitivity)
y
4. vV [A x —y,-> = f(X)=1f(y) (function congruence),
XY \i=1
where n is a positive integer and f is an n-ary function symbol

5. V. (/\ X —y,-) = P(X)=P(y) (function congruence),
%7 \i=1

where n is a positive integer and P is an n-ary predicate symbol
We have

S

Teur
This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).
Signature: Yg = {=,a,b,¢,....,f, g, h,..,P,Q,R, ...}
a, b, c,... — constants, f, g, h,... — function symbols, P,Q,R,... — predicate
symbols
The predicate = is interpreted via the following axioms:
1. Vx=x (reflexivity)
2. V x=y = y=x (symmetry)
3. V x=yAy=z = x=2z (transitivity)
y
4. vV [A x —y,-> = f(X)=1f(y) (function congruence),
XY \i=1
where n is a positive integer and f is an n-ary function symbol
n
5. V. (/\ X —y,-) = P(X)=P(y) (function congruence),
Xy \i=1
where n is a positive integer and P is an n-ary predicate symbol
We have
1. = is an equivalence relation

Teur
This theory is sometimes referred to as the theory of equality with
uninterpreted functions (EUF).
Signature: Yg = {=,a,b,¢,....,f, g, h,..,P,Q,R,...}
a, b, c,... — constants, f, g, h,... — function symbols, P,Q,R,... — predicate
symbols
The predicate = is interpreted via the following axioms:
1. Vx=x (reflexivity)
2. XV x=y = y=x (symmetry)

3. V x=yAy=z = x=2z (transitivity)
y

4. vV [A x —y,-> = f(X)=1f(y) (function congruence),
XY \i=1
where n is a positive integer and f is an n-ary function symbol
n
5. V. (/\ X —y,-) = P(X)=P(y) (function congruence),
Xy \i=1
where n is a positive integer and P is an n-ary predicate symbol
We have
1. = is an equivalence relation
2. = is a congruence relation

TEuF (COI’It’d)

Is T¢ decidable?

TEuF (COI’It’d)

Is T¢ decidable?

Is quantifier-free Tg decidable?

TEuF (COI’It’d)

Is T¢ decidable?
Is quantifier-free Tg decidable?

Without quantifiers, free variables and constants play the same role.

TEuF (COI’It’d)

Is T¢ decidable?
Is quantifier-free Tg decidable?
Without quantifiers, free variables and constants play the same role.

Example:
Prove that F is Tg valid where

F <= a=b A b=c = g[fla],b] =gl[f[c],]

TEuF (COI’It’d)

Is T¢ decidable?
Is quantifier-free Tg decidable?
Without quantifiers, free variables and constants play the same role.

Example:
Prove that F is Tg valid where

F <= a=b A b=c = g[fla],b] =gl[f[c],]

Goal: decision procedure for satisfiability of quantifier - free theory of
equality (QFEUF)

Relations

Let S be a set and R a binary relation over S.

Relations

Let S be a set and R a binary relation over S.

For two elements s;, s, € S, either s1Rs; or =(s1Rs,).

Relations

Let S be a set and R a binary relation over S.

For two elements s;, s, € S, either s1Rs; or =(s1Rs,).

The relation R is an equivalence relation if it is

Relations

Let S be a set and R a binary relation over S.

For two elements s;, s, € S, either s1Rs; or =(s1Rs,).
The relation R is an equivalence relation if it is

1. reflexive: V sRs
seS

Relations

Let S be a set and R a binary relation over S.

For two elements s;, s, € S, either s1Rs; or =(s1Rs,).
The relation R is an equivalence relation if it is
1. reflexive: V sRs
seS

2. symmetric: V s51Rs, = 55Rs;

51,5€S

Relations

Let S be a set and R a binary relation over S.
For two elements s;, s, € S, either s1Rs; or =(s1Rs,).
The relation R is an equivalence relation if it is

1. reflexive: V sRs
seS
2. symmetric: V s51Rs, = 55Rs;
51,5265

3. transitive: A 51Rss A s5Rs3 —> s1Rs3

51,9,53€S

Relations

Let S be a set and R a binary relation over S.

For two elements s;, s, € S, either s1Rs; or =(s1Rs,).
The relation R is an equivalence relation if it is

1. reflexive: V sRs
seS
2. symmetric: V s51Rs, = 55Rs;
51,5265

3. transitive: A 51Rss A s5Rs3 —> s1Rs3

51,9,53€S

The relation R is a congruence relation if

Relations

Let S be a set and R a binary relation over S.

For two elements s;, s, € S, either s1Rs; or =(s1Rs,).
The relation R is an equivalence relation if it is

1. reflexive: V sRs
seS

2. symmetric: V s51Rs, = 55Rs;

51,5265

3. transitive: A 51Rss A s5Rs3 —> s1Rs3

51,9,53€S

The relation R is a congruence relation if

1. 1 -3 hold

Relations

Let S be a set and R a binary relation over S.
For two elements s;, s, € S, either s1Rs; or =(s1Rs,).
The relation R is an equivalence relation if it is

1. reflexive: V sRs
seS

2. symmetric: V s51Rs, = 55Rs;

sl,sz€$

3. transitive: A 51Rss A s5Rs3 —> s1Rs3

51,5,53€S

The relation R is a congruence relation if

1. 1 -3 hold
2. for any n-ary function f,

VE (/n\ S,'Rt,'> — f(§)Rf(t')

i=1

Relations (cont’d)

Let R be a equivalence relation over the set S.

Relations (cont’d)

Let R be a equivalence relation over the set S.

The equivalence class of s € S under R is the set

[slk & {s' € S:sRs'}

Relations (cont’d)

Let R be a equivalence relation over the set S.

The equivalence class of s € S under R is the set
[slk & {s' € S:sRs'}

If R is a congruence relation over S, then [s]g is the congruence class of s.

Relations (cont’d)

Let R be a equivalence relation over the set S.

The equivalence class of s € S under R is the set
[slk & {s' € S:sRs'}

If R is a congruence relation over S, then [s]g is the congruence class of s.
A partition P of S is a set of subsets of S that is

Relations (cont’d)

Let R be a equivalence relation over the set S.

The equivalence class of s € S under R is the set
[slk & {s' € S:sRs'}

If R is a congruence relation over S, then [s]g is the congruence class of s.
A partition P of S is a set of subsets of S that is

1. total: (U 5’) =S5

S'ep

Relations (cont’d)

Let R be a equivalence relation over the set S.

The equivalence class of s € S under R is the set
[slk & {s' € S:sRs'}

If R is a congruence relation over S, then [s]g is the congruence class of s.
A partition P of S is a set of subsets of S that is

1. total: (U 5’) =S5
S'ep
2. disjoint: 51,Sv2€P $1#4S% = S5NS=0

Relations (cont’d)

Let R be a equivalence relation over the set S.

The equivalence class of s € S under R is the set
[slk & {s' € S:sRs'}

If R is a congruence relation over S, then [s]g is the congruence class of s.
A partition P of S is a set of subsets of S that is

1. total: (U 5’) =S5

S'ep
2. disjoint: 51,Sv2€P $1#4S% = S5NS=0

The quotient S/R of S by the equivalence (congruence) relation R is a
partition of S: it is a set of equivalence (congruence) classes

S/R={[s]r : s € S}.

Relations (cont’d)

Let Ry and R, be two binary relations over set S.

Relations (cont’d)

Let Ry and R, be two binary relations over set S.
Ry is a refinement of Ry, ofr Ry < Ro, if V' s1R1s5 — s1Rss.

s51,2€S

Relations (cont’d)

Let Ry and R, be two binary relations over set S.
Ry is a refinement of Ry, ofr Ry < Ro, if V' s1R1s5 — s1Rss.

s51,2€S

In other words, R; refines R».

Relations (cont’d)

Let Ry and R, be two binary relations over set S.
Ry is a refinement of Ry, ofr Ry < Ro, if V' s1R1s5 — s1Rss.

51,5€S
In other words, R; refines R».

Viewing the relations as sets of pairs, Ry < Ry iff Ry C R».

Relations (cont’d)

Let Ry and R, be two binary relations over set S.
Ry is a refinement of Ry, ofr Ry < Ro, if V' s1R1s5 — s1Rss.

51,5€S
In other words, R; refines R».
Viewing the relations as sets of pairs, Ry < Ry iff Ry C R».

Examples

Relations (cont’d)

Let Ry and R, be two binary relations over set S.
Ry is a refinement of Ry, ofr Ry < Ro, if V' s1R1s5 — s1Rss.

51,5€S
In other words, R; refines R».
Viewing the relations as sets of pairs, Ry < Ry iff Ry C R».

Examples

» Let S=a,b, Ry : aRi1b, Ry : aRxb, bRob. Then Ry < R».

Relations (cont’d)

Let Ry and R, be two binary relations over set S.
Ry is a refinement of Ry, ofr Ry < Ro, if V' s1R1s5 — s1Rss.

$1,5€S
In other words, R; refines R».
Viewing the relations as sets of pairs, Ry < Ry iff Ry C R».
Examples
» Let S=a,b, Ry : aRi1b, Ry : aRxb, bRob. Then Ry < R».

> Let S be a set.
Relation Ry : sRys: s € S induced by the partition P; :s:s € S;
Relation R, : sRyt : s, t € S induced by the partition P, : S.
Then Ry < R».

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

> R refines RE: R < Rg;

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

> R refines RE: R < Rg;

» for all other equivalence relations R’ such that R < R’, either
R'=RFor RE<R

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

> R refines RE: R < Rg;
» for all other equivalence relations R’ such that R < R’, either
R'=RFor RE<R

In other words, RE is the “smallest” equivalence relation that “covers” R.

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

> R refines RE: R < Rg;
» for all other equivalence relations R’ such that R < R’, either
R = RE or RE < R’
In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

> R refines RE: R < Rg;
» for all other equivalence relations R’ such that R < R’, either
R = RE or RE < R’
In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b,c,d} and R = {aRb, bRc, dRd}, then

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

> R refines RE: R < Rg;
» for all other equivalence relations R’ such that R < R’, either
R = RE or RE < R’
In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b,c,d} and R = {aRb, bRc, dRd}, then
» aRb, bRc, dRd € RE since R C RE

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

> R refines RE: R < Rg;
» for all other equivalence relations R’ such that R < R’, either
R = RE or RE < R’
In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b,c,d} and R = {aRb, bRc, dRd}, then
» aRb, bRc, dRd € RE since R C RE
» aRa, bRb, cRc € RE by reflexivity

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

> R refines RE: R < Rg;
» for all other equivalence relations R’ such that R < R’, either
R = RE or RE < R’
In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b,c,d} and R = {aRb, bRc, dRd}, then
» aRb, bRc, dRd € RE since R C RE
» aRa, bRb, cRc € RE by reflexivity
» bRa,cRb € RE by symmetry;

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

> R refines RE: R < Rg;
» for all other equivalence relations R’ such that R < R’, either
R = RE or RE < R’
In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b,c,d} and R = {aRb, bRc, dRd}, then
aRb, bRc, dRd € RF since R C RE

» aRa, bRb, cRc € RE by reflexivity

» bRa,cRb € RE by symmetry;

» aRc € RE by transitivity;

v

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

> R refines RE: R < Rg;
» for all other equivalence relations R’ such that R < R’, either
R = RE or RE < R’
In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b,c,d} and R = {aRb, bRc, dRd}, then
» aRb, bRc, dRd € RE since R C RE
» aRa, bRb, cRc € RE by reflexivity
» bRa,cRb € RE by symmetry;
» aRc € RE by transitivity;
» cRa € Rf by symmetry

Relations (cont’d)

The equivalence closure RE of the binary relation R over S is the
equivalence relation such that

> R refines RE: R < Rg;
» for all other equivalence relations R’ such that R < R’, either
R = RE or RE < R’
In other words, RE is the “smallest” equivalence relation that “covers” R.

The congruence closure RC of R is the “smallest” congruence relation
that “covers” R.

Examples If S = {a, b,c,d} and R = {aRb, bRc, dRd}, then
» aRb, bRc, dRd € RE since R C RE
» aRa, bRb, cRc € RE by reflexivity
» bRa,cRb € RE by symmetry;
» aRc € RE by transitivity;
» cRa € Rf by symmetry
Hence, RE = {aRb, bRa, aRa, bRb, bRc, cRb, cRc, aRc, cRa, dRd}.

Relations (cont’d)

The subterm set S of X-formula F is the set that contains precisely the
subterms of F.

Relations (cont’d)

The subterm set S of X-formula F is the set that contains precisely the
subterms of F.

Example: Let
F <= fla, bl =aAf[fla,b],b] # a.

Then
Sk ={a, b, f[a, b],f[f[a, b], b]}.

Congruence Closure Algorithm for Tgrryr

Given X g - formula F
F <= ss=tHAN..ASp=1tnASm1 # t',-n_~_1/\.../\5n7é tn

with subterm set Sr. F is Tg - satisfiable iff there exists a congruence
relation over S¢ such that

Congruence Closure Algorithm for Tgrryr
Given X g - formula F
F <<= si=ti]AN...ANsp, = tm A\ Sm+1 # t',-n_~_1/\.../\5n7é th

with subterm set Sr. F is Tg - satisfiable iff there exists a congruence
relation over S¢ such that

» foreach i€ {1,...m}, s; ~ t;;

Congruence Closure Algorithm for Tgrryr
Given X g - formula F
F <<= si=ti]AN...ANsp, = tm A\ Sm+1 # t',-n_~_1/\.../\5n7é th

with subterm set Sr. F is Tg - satisfiable iff there exists a congruence
relation over S¢ such that

» foreach i€ {1,...m}, s; ~ t;;
> foreachie {m+1,..,n}, s #t.

Congruence Closure Algorithm for Tgrryr

Given X g - formula F
F <= si=tAN...ANs,= tm A\ Sm+1 # t',-n_~_1/\.../\5n7é th

with subterm set Sr. F is Tg - satisfiable iff there exists a congruence
relation over S¢ such that

» foreach i€ {1,...m}, s; ~ t;;
> foreachie {m+1,..,n}, s #t.
Congruence Closure Algorithm (Naive Version)

Congruence Closure Algorithm for Tgrryr
Given X g - formula F
F <<= si=ti]AN...ANsp, = tm A\ Sm+1 # t',-n_~_1/\.../\5n7é th

with subterm set Sr. F is Tg - satisfiable iff there exists a congruence
relation over S¢ such that

» foreach i€ {1,...m}, s; ~ t;;
> foreachie {m+1,..,n}, s #t.
Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure ~ of
{51 =t1,....5m = tm}
over the subterm set Sg. Then

~ESS=tH A ASy =ty

Congruence Closure Algorithm for Tgrryr
Given X g - formula F
F <<= si=ti]AN...ANsp, = tm A\ Sm+1 # t',-n_~_1/\.../\5n7é th

with subterm set Sr. F is Tg - satisfiable iff there exists a congruence
relation over S¢ such that

» foreach i€ {1,...m}, s; ~ t;;
> foreachie {m+1,..,n}, s #t.
Congruence Closure Algorithm (Naive Version)
1. Construct the congruence closure ~ of
{51 =t1,....5m = tm}
over the subterm set Sg. Then

~ESS=tH A ASy =ty

2. If s; ~ t; forany i € {m+ 1, ..., n}, return unsatisfiable.

Congruence Closure Algorithm for Tgrryr
Given X g - formula F
F <<= si=ti]AN...ANsp, = tm A\ Sm+1 # t',-n_~_1/\.../\5n7é th

with subterm set Sr. F is Tg - satisfiable iff there exists a congruence
relation over S¢ such that

» foreach i€ {1,...m}, s; ~ t;;
> foreachie {m+1,..,n}, s #t.
Congruence Closure Algorithm (Naive Version)

1. Construct the congruence closure ~ of
{s1=1t,. s Sm = tm}
over the subterm set Sg. Then
~ESS=tH A ASy =ty

2. If s; ~ t; forany i € {m+ 1, ..., n}, return unsatisfiable.
3. Otherwise, ~= F, so return satisfiable.

Congruence Closure Algorithm for Tgreyr (cont’d)

Examples: Determine if the following formulas are satisfiable or not
1. F, 1< fla,bl=aAf][f[ab],b] #a
2. i, = flx]=Ffly]Ax#y

	Preliminaries
	Decidability of PL and FOL
	First-Order Theories
	Theory of Equality (TEUF). Congruence Closure Algorithm for TQFEUF

