Logic-based Program Verification First-Order Logic

Mădălina Eraşcu and Tudor Jebelean
Research Institute for Symbolic Computation,
Johannes Kepler University, Linz, Austria
\{merascu, tjebelea\}@risc.jku.at

October 30 \& November 6, 2013

Example 1 (Clausification) Transform the formulas $F_{1}, F_{2}, F_{3}, F_{4}$, and $\neg G$ into a set of clauses, where

$$
\begin{aligned}
F_{1}: & \underset{x, y}{\forall} \underset{z}{\exists} P[x, y, z] \\
& \underset{x, y, z, u, v, w}{\forall}(P[x, y, u] \wedge P[y, z, v] \wedge P[u, z, w] \Rightarrow P[x, v, w]) \\
F_{2}: & \wedge \underset{x, y, z, u, v, w}{\forall}(P[x, y, u] \wedge P[y, z, v] \wedge P[x, v, w] \Rightarrow P[u, z, w]) \\
F_{3}: & \underset{x}{\forall} P[x, e, x] \wedge \underset{x}{\forall} P[e, x, x] \\
F_{4}: & \underset{x}{\forall} P[x, i[x], e] \wedge \underset{x}{\forall} P[i[x], x, e] \\
G: & (\underset{x}{\forall} P[x, x, e]) \Rightarrow(\underset{u, v, w}{\forall}(P[u, v, w] \Rightarrow P[v, u, w]))
\end{aligned}
$$

Solution. $F_{1}, F_{2}, F_{3}, F_{4}$ can almost immediately transformed into clauses. We have

$$
\begin{aligned}
& P[x, y, f[x, y]] \\
& \neg P[x, y, u] \vee \neg P[y, z, v] \vee \neg P[u, z, w] \vee P[x, v, w] \\
& \neg P[x, y, u] \vee \neg P[y, z, v] \vee \neg P[x, v, w] \vee P[u, z, w] \\
& P[x, e, x] \\
& P[e, x, x] \\
& P[x, i[x], e] \\
& P[i[x], x, e]
\end{aligned}
$$

We transform $\neg G$ into standard form

$$
\begin{aligned}
& \neg((\underset{x}{\forall} P[x, x, e]) \Rightarrow(\underset{u, v, w}{\forall}(P[u, v, w] \Rightarrow P[v, u, w]))) \\
\Longleftrightarrow & \neg(\neg(\underset{x}{\forall} P[x, x, e]) \vee(\underset{u, v, w}{\forall}(\neg P[u, v, w] \vee P[v, u, w]))) \\
\Longleftrightarrow & (\underset{x}{\forall} P[x, x, e]) \wedge(\underset{u, v, w}{\exists}(P[u, v, w] \wedge \neg P[v, u, w])) \\
\rightsquigarrow & \forall P[x, x, e] \wedge P[a, b, c] \wedge \neg P[b, a, c]
\end{aligned}
$$

which gives the following clauses

$$
\begin{aligned}
& P[x, x, e] \\
& P[a, b, c] \\
& \neg P[b, a, c]
\end{aligned}
$$

Example 2 (Most General Unifier) Find a most general unifier for

$$
W=\{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}
$$

Solution. Let $\sigma_{0}=\varepsilon$ and $W_{0}=W$. Since W_{0} is not a singleton, σ_{0} is not a mgu of W.
$D_{0}=\{a, z\}$.
Let $\sigma_{1}=\varepsilon \circ\{z \rightarrow a\}, W_{1}=W_{0} \sigma_{1}=\{P[a, x, f[g[y]]], P[a, f[a], f[u]]\}$.
W_{1} is not a singleton. $D_{1}=\{x, f[a]\}$.
Let $\sigma_{2}=\{z \rightarrow a\}\{x \rightarrow f[a]\}=\{z \rightarrow a, x \rightarrow f[a]\} . W_{2}=W_{1} \sigma_{2}=\{P[a, f[a], f[g[y]]], P[a, f[a], f[u]]\}$.
W_{2} is not a singleton. $D_{2}=\{g[y], u\}$.
Let $\sigma_{3}=\sigma_{2}\{u \rightarrow g[y]\}=\{z \rightarrow a, x \rightarrow f[a], u \rightarrow g[y]\}$.
$W_{3}=W_{2} \sigma_{2}=\{P[a, f[a], f[g[y]]], P[a, f[a], f[g[y]]]\}=\{P[a, f[a], f[g[y]]]\}$.
Since W_{3} is a singleton. $\sigma_{3}=\{z \rightarrow a, x \rightarrow f[a], u \rightarrow g[y]\}$ is a mgu for W.
Example 3 (Most General Unifier) Find a most general unifier for

$$
W=\{Q[a], Q[b]\}
$$

Solution. Let $\sigma_{0}=\varepsilon$ and $W_{0}=W$. Since W_{0} is not a singleton, σ_{0} is not a mgu of W.
$D_{0}=\{a, b\}$. Since none of the elements of D_{0} is a variable we conclude that W is not unifiable.

Example 4 (Resolution 1) Prove by resolution the following

$$
\underset{x}{\forall} F[x] \vee \underset{x}{\forall} H[x] \quad \not \equiv \quad \underset{x}{\forall}(F[x] \vee H[x])
$$

Solution. Direction " \Rightarrow ". Let

$$
\begin{array}{rll}
F & : \Longleftrightarrow & {\underset{x}{x}}_{\forall F[x] \vee}^{\vee} \underset{x}{\forall} H[x] \\
G & : \Longleftrightarrow & { }_{x}^{\forall}(F[x] \vee H[x])
\end{array}
$$

We prove that G is a logical consequence of F by resolution. We have

$$
\begin{aligned}
F & : \Longleftrightarrow{\underset{x}{\forall} F[x] \vee \underset{x}{\forall} H[x]}^{\forall} \\
& \Longleftrightarrow \underset{x, y}{\forall} F[x] \vee H[y] \\
\neg G & : \Longleftrightarrow \neg(\underset{x}{\forall}(F[x] \vee H[x])) \\
& \Longleftrightarrow{\underset{x}{\exists}(\neg F[x] \wedge \neg H[x])} \rightsquigarrow \neg F[a] \wedge \neg H[a]
\end{aligned}
$$

By transforming them into a set of clauses we have

$$
\begin{array}{ll}
\text { (1) } & F[x] \vee H[y] \\
\text { (2) } & \neg F[a] \\
\text { (3) } & \neg H[a]
\end{array}
$$

By applying resolution we obtain the following clauses
(4) $H[a] \quad$ (1) $\wedge(2),\{x \rightarrow a, y \rightarrow a\}$
(5) \emptyset
$(3) \wedge(4)$

Direction " \Leftarrow ". Let

$$
\begin{array}{rll}
F & : \Longleftrightarrow & { }_{x}^{\forall}(F[x] \vee H[x]) \\
G & : \Longleftrightarrow & { }_{x}^{\forall} F[x] \vee \underset{x}{\forall} H[x]
\end{array}
$$

We prove that G is a logical consequence of F by resolution. We have

$$
\begin{aligned}
F & : \Longleftrightarrow{\underset{x}{*}(F[x] \vee H[x])}_{\neg G}: \Longleftrightarrow{ }^{\forall}(\underset{x}{\forall} F[x] \vee \underset{x}{\forall} H[x]) \\
& \Longleftrightarrow{\underset{x}{\exists} \neg F[x] \wedge \underset{x}{\exists} \neg H[x]} \nsupseteq \neg F[a] \wedge \neg H[b]
\end{aligned}
$$

By transforming them into a set of clauses we have
(1) $F[x] \vee H[x]$
(2) $\neg F[a]$
(3) $\neg H[b]$

By applying resolution we obtain the following clauses
(4) $H[a] \quad$ (1) $\wedge(2),\{x \rightarrow a\}$
(5) $F[b] \quad(1) \wedge(3),\{x \rightarrow b\}$

Example 5 (Resolution 2) Prove by resolution that G is a logical consequence of F_{1} and F_{2} where

$$
\begin{array}{ll}
F_{1}: & { }_{x}(C[x] \Rightarrow(W[x] \wedge R[x])) \\
F_{2}: & { }_{x}^{\exists}(C[x] \wedge O[x]) \\
G: & { }_{x}^{\exists}(O[x] \wedge R[x])
\end{array}
$$

Solution. We show that $F_{1} \wedge F_{2} \wedge \neg G$ is unsatisfiable by resolution. We transform $F_{1}, F_{2}, \neg G$ into Skolem standard form. We have

$$
\begin{aligned}
& F_{1}: \underset{x}{\forall}(C[x] \Rightarrow(W[x] \wedge R[x])) \\
& \Longleftrightarrow \underset{x}{\forall}(\neg C[x] \vee(W[x] \wedge R[x])) \\
& \Longleftrightarrow{ }_{x}^{\forall}(\neg C[x] \vee W[x]) \wedge(\neg C[x] \vee R[x]) \\
& F_{2}:{\underset{x}{\exists}}_{\exists}(C[x] \wedge O[x]) \\
& \rightsquigarrow C[a] \wedge O[a] \\
& \neg G: \neg(\underset{x}{\exists}(O[x] \wedge R[x])) \\
& \Longleftrightarrow{ }_{x}^{\forall}(\neg O[x] \vee \neg R[x])
\end{aligned}
$$

We have the following set of clauses
(1) $\neg C[x] \vee W[x]$
(2) $\neg C[x] \vee R[x]$
(3) $C[a]$
(4) $O[a]$
(5) $\neg O[x] \vee \neg R[x]$

By resolution we obtain also the following clauses
(6) $\neg R[a]$
(4) $\wedge(5),\{x \rightarrow a\}$
(7) $\neg C[a]$
(6) $\wedge(2),\{x \rightarrow a\}$
(8) \emptyset
$(7) \wedge(3)$

Example 6 (Resolution 3) Prove by resolution that G is a logical consequence of F_{1} and F_{2} where

$$
\begin{array}{ll}
F_{1}: & \underset{x}{\exists}(P[x] \wedge \underset{y}{\forall}(D[y] \Rightarrow L[x, y])) \\
F_{2}: & \underset{x}{\forall}(P[x] \Rightarrow \underset{y}{\forall}(Q[y] \Rightarrow \neg L[x, y])) \\
G: & \underset{x}{\forall}(D[x] \Rightarrow \neg Q[x])
\end{array}
$$

Solution. We show that $F_{1} \wedge F_{2} \wedge \neg G$ is unsatisfiable by resolution. We transform $F_{1}, F_{2}, \neg G$ into Skolem standard form. We have

$$
\begin{aligned}
& F_{1}: \underset{x}{\exists}(P[x] \wedge \underset{y}{\forall}(D[y] \Rightarrow L[x, y])) \\
& \Longleftrightarrow \underset{x}{\exists}(P[x] \wedge \underset{y}{\forall}(\neg D[y] \vee L[x, y])) \\
& \Longleftrightarrow \underset{x y}{\exists \forall}(P[x] \wedge(\neg D[y] \vee L[x, y])) \\
& \rightsquigarrow \underset{y}{\forall}(P[a] \wedge(\neg D[y] \vee L[a, y])) \\
& F_{2}: \underset{x}{\forall}(P[x] \Rightarrow \underset{y}{\forall}(Q[y] \Rightarrow \neg L[x, y])) \\
& \Longleftrightarrow \underset{x}{\forall}(P[x] \Rightarrow \underset{y}{\forall}(\neg Q[y] \vee \neg L[x, y])) \\
& \Longleftrightarrow \underset{x}{\forall}(\neg P[x] \vee \underset{y}{\forall}(\neg Q[y] \vee \neg L[x, y])) \\
& \Longleftrightarrow \underset{x y}{\forall \forall}(\neg P[x] \vee \neg Q[y] \vee \neg L[x, y]) \\
& \neg G: \quad \neg(\underset{x}{\forall}(D[x] \Rightarrow \neg Q[x])) \\
& \Longleftrightarrow \neg(\underset{x}{\forall}(\neg D[x] \vee \neg Q[x])) \\
& \Longleftrightarrow \underset{x}{\exists}(D[x] \wedge Q[x]) \\
& \rightsquigarrow D[a] \wedge Q[a]
\end{aligned}
$$

We have the following set of clauses
(1) $P[a]$
(2) $\neg D[y] \vee L[a, y]$
(3) $\neg P[x] \vee \neg Q[y] \vee \neg L[x, y]$
(4) $D[a]$
(5) $Q[a]$

By resolution we obtain also the following clauses
(6) $L[a, a]$
(2) $\wedge(4),\{y \rightarrow a\}$
(7) $\neg P[a] \vee \neg Q[a]$
$(3) \wedge(6),\{x \rightarrow a, y \rightarrow a\}$
(8) $\neg Q[a]$
$(1) \wedge(7)$
(9) Ø
$(5) \wedge(8)$

Example 7 (Resolution 4) Prove by resolution that G is a logical consequence of F where

$$
\begin{array}{ll}
F: & \forall \exists \exists(S[x, y] \wedge M[y]) \Rightarrow \underset{y}{\exists}(I[y] \wedge E[x, y]) \\
G: & \neg_{x}^{\exists} I[x] \Rightarrow \underset{x, y}{\forall}(S[x, y] \Rightarrow \neg M[y])
\end{array}
$$

Solution. We show that $F \wedge \neg G$ is unsatisfiable. First we transform the formulas into standard form. We have

$$
\begin{aligned}
& F: \underset{x}{\forall}(\underset{y}{\exists}(S[x, y] \wedge M[y])) \Rightarrow \underset{y}{\exists}(I[y] \wedge E[x, y]) \\
& \Longleftrightarrow \underset{x}{\forall \neg}(\underset{y}{\exists}(S[x, y] \wedge M[y])) \vee \underset{y}{\exists}(I[y] \wedge E[x, y]) \\
& \Longleftrightarrow \underset{x}{\forall}(\underset{y}{\forall}(\neg S[x, y] \vee \neg M[y])) \vee \underset{y}{\exists}(I[y] \wedge E[x, y]) \\
& \Longleftrightarrow \underset{x}{\forall}(\underset{y}{\forall}(\neg S[x, y] \vee \neg M[y])) \vee(I[f[x]] \wedge E[x, f[x]]) \\
& \Longleftrightarrow \quad \underset{x y}{\forall \forall}(\neg S[x, y] \vee \neg M[y]) \vee(I[f[x]] \wedge E[x, f[x]]) \\
& \Longleftrightarrow \quad \underset{x y}{\forall}((\neg S[x, y] \vee \neg M[y] \vee I[f[x]]) \wedge(\neg S[x, y] \vee \neg M[y] \vee E[x, f[x]])) \\
& \neg G: \neg(\neg \exists I[x] \Rightarrow \underset{x, y}{\forall}(S[x, y] \Rightarrow \neg M[y])) \\
& \Longleftrightarrow \neg(\neg \exists I[x] \Rightarrow \underset{x, y}{\forall}(\neg S[x, y] \vee \neg M[y])) \\
& \Longleftrightarrow \neg\left({ }_{x}^{\exists} I[x] \quad \vee \underset{x, y}{\forall}(\neg S[x, y] \vee \neg M[y])\right) \\
& \Longleftrightarrow(\underset{x}{\forall} \neg I[x] \wedge \underset{x, y}{\exists}(S[x, y] \wedge M[y])) \\
& \Longleftrightarrow \quad \underset{z}{\forall} \neg I[z] \quad \wedge \underset{x, y}{\exists}(S[x, y] \wedge M[y]) \\
& \rightsquigarrow \underset{z}{\forall} \neg I[z] \wedge S[a, b] \wedge M[b]
\end{aligned}
$$

We have the following set of clauses
(1) $\neg S[x, y] \vee \neg M[y] \vee I[f[x]]$
(2) $\neg S[x, y] \vee \neg M[y] \vee E[x, f[x]]$
(3) $\neg I[z]$
(4) $S[a, b]$
(5) $M[b]$

By resolution we obtain also the following clauses
(6) $\neg S[x, y] \vee \neg M[y]$
(1) $\wedge(3),\{z \rightarrow f[x]\}$
(7) $\neg M[b]$
(4) $\wedge(6),\{x \rightarrow a, y \rightarrow b\}$
(8) \emptyset
(5) $\wedge(7)$

Example 8 (Resolution 5) Prove by resolution that G is a logical consequence of F_{1}, F_{2}, and F_{3} where

$$
\begin{array}{ll}
F_{1}: & \underset{x}{\forall}(Q[x] \Rightarrow \neg P[x]) \\
F_{2}: & \underset{x}{\forall}((R[x] \wedge \neg Q[x]) \Rightarrow \underset{y}{\exists}(T[x, y] \wedge S[y])) \\
F_{3}: & \underset{x}{\exists}(P[x] \wedge \underset{y}{\forall}(T[x, y] \Rightarrow P[y]) \wedge R[x]) \\
G: & \underset{x}{\exists}(S[x] \wedge P[x])
\end{array}
$$

Solution. We show that $F_{1} \wedge F_{2} \wedge F_{3} \wedge \neg G$ is unsatisfiable. First we transform the formulas into standard form.

$$
\begin{aligned}
& F_{1}: \underset{x}{\forall}(Q[x] \Rightarrow \neg P[x]) \quad \Longleftrightarrow \quad \underset{x}{\forall}(\neg Q[x] \vee \neg P[x]) \\
& F_{2}: \underset{x}{\forall}((R[x] \wedge \neg Q[x]) \Rightarrow \underset{y}{\exists}(T[x, y] \wedge S[y])) \\
& \Longleftrightarrow \underset{x}{\forall}(\neg(R[x] \wedge \neg Q[x]) \quad \vee \underset{y}{\exists}(T[x, y] \wedge S[y])) \\
& \Longleftrightarrow \underset{x}{\forall}(\neg R[x] \vee Q[x] \vee \underset{y}{\exists}(T[x, y] \wedge S[y])) \\
& \Longleftrightarrow \quad \underset{x y}{\forall} \exists(\neg R[x] \vee Q[x] \vee(T[x, y] \wedge S[y])) \\
& \Longleftrightarrow \underset{x y}{\forall} \exists((\neg R[x] \vee Q[x] \vee T[x, y]) \wedge(\neg R[x] \vee Q[x] \vee S[y])) \\
& \leadsto \underset{x}{\forall}((\neg R[x] \vee Q[x] \vee T[x, f[x]]) \wedge(\neg R[x] \vee Q[x] \vee S[f[x]])) \\
& F_{3}: \underset{x}{\exists}(P[x] \wedge \underset{y}{\forall}(T[x, y] \Rightarrow P[y]) \wedge R[x]) \\
& \Longleftrightarrow \underset{x}{\exists}(P[x] \wedge \underset{y}{\forall}(\neg T[x, y] \vee P[y]) \wedge R[x]) \\
& \Longleftrightarrow \underset{x y}{\exists \forall}(P[x] \wedge(\neg T[x, y] \vee P[y]) \wedge R[x]) \\
& \rightsquigarrow \underset{y}{\forall}(P[a] \wedge(\neg T[a, y] \vee P[y]) \wedge R[a]) \\
& \neg G: \neg(\underset{x}{\exists}(S[x] \wedge P[x])) \\
& \Longleftrightarrow \quad \underset{x}{\forall}(\neg S[x] \vee \neg P[x])
\end{aligned}
$$

We have the following set of clauses
(1) $\neg Q[x] \vee \neg P[x]$
(2) $\neg R[x] \vee Q[x] \vee T[x, f[x]]$
(3) $\neg R[x] \vee Q[x] \vee S[f[x]]$
(4) $P[a]$
(5) $\neg T[a, y] \vee P[y]$
(6) $\quad R[a]$
(7) $\neg S[x] \vee \neg P[x]$
(8) $\neg Q[a]$
(1) $\wedge(4),\{x \rightarrow a\}$
(9) $\neg R[a] \vee T[a, f[a]]$
(8) $\wedge(2),\{x \rightarrow a\}$
(10) $\neg R[a] \vee P[f[a]]$
(9) $\wedge(5),\{y \rightarrow f[a]\}$
(11) $P[f[a]]$
(10) $\wedge(6)$
(12) $\neg S[f[a]]$
(11) $\wedge(7)$
(13) $\neg R[a] \vee Q[a]$
(12) $\wedge(3)$
(14) $Q[a]$
(13) $\wedge(6)$
(15) Ø
$(14) \wedge(8)$

