Logic-based Program Verification

First-Order Logic

Mădălina Erașcu Tudor Jebelean
Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria
\{merascu, tjebelea\}@risc.jku.at

October 30 \& November 6, 2013

Outline

Formula Clausification

Substitution \& Unification

Resolution Principle for FOL

Outline

Formula Clausification

Substitution \& Unification

Resolution Principle for FOL

Formula Clausification

A clause is a disjunction of literals.
Examples: $\neg P[x] \vee Q[y, f[x]], P[x]$
A set of clauses S is regarded as a conjunction of all clauses in S, where every variable in S is considered governed by a universal quantifier.
Example: Let

$$
\underset{x}{\forall} \underset{y, z}{\exists}((\neg P[x, y] \wedge Q[x, z]) \vee R[x, y, z])
$$

The standard form of the formula above, that is
$\underset{x}{\forall}((\neg P[x, f[x]] \vee R[x, f[x], g[x]]) \wedge(Q(x, g[x]) \vee R[x, f[x], g[x]]))$
can be represented by the following set of clauses

$$
\{\neg P[x, f[x]] \vee R[x, f[x], g[x]], Q(x, g[x]) \vee R[x, f[x], g[x]]\}
$$

Note that, if S is a set of clauses that represents a standard form of a formula F, then F is inconsistent iff S is inconsistent.

Formula Clausification

A clause is a disjunction of literals.
Examples: $\neg P[x] \vee Q[y, f[x]], P[x]$
A set of clauses S is regarded as a conjunction of all clauses in S, where every variable in S is considered governed by a universal quantifier.
Example: Let

$$
\underset{x y, z}{\forall} \underset{y, z}{\exists}((\neg P[x, y] \wedge Q[x, z]) \vee R[x, y, z])
$$

The standard form of the formula above, that is
$\underset{x}{\forall}((\neg P[x, f[x]] \vee R[x, f[x], g[x]]) \wedge(Q(x, g[x]) \vee R[x, f[x], g[x]]))$
can be represented by the following set of clauses

$$
\{\neg P[x, f[x]] \vee R[x, f[x], g[x]], Q(x, g[x]) \vee R[x, f[x], g[x]]\}
$$

Note that, if S is a set of clauses that represents a standard form of a formula F, then F is inconsistent iff S is inconsistent.

Formula Clausification

A clause is a disjunction of literals.
Examples: $\neg P[x] \vee Q[y, f[x]], P[x]$
A set of clauses S is regarded as a conjunction of all clauses in S, where every variable in S is considered governed by a universal quantifier.
Example: Let

The standard form of the formula above, that is

can be represented by the following set of clauses

$$
\{\neg P[x, f[x]] \vee R[x, f[x], g[x]], Q(x, g[x]) \vee R[x, f[x], g[x]]\}
$$

Note that, if S is a set of clauses that represents a standard form of a
formula F, then F is inconsistent iff S is inconsistent.

Formula Clausification

A clause is a disjunction of literals.
Examples: $\neg P[x] \vee Q[y, f[x]], P[x]$
A set of clauses S is regarded as a conjunction of all clauses in S, where every variable in S is considered governed by a universal quantifier.
Example: Let

$$
\underset{x}{\forall} \underset{y, z}{\exists}((\neg P[x, y] \wedge Q[x, z]) \vee R[x, y, z])
$$

The standard form of the formula above, that is

$$
\underset{x}{\forall}((\neg P[x, f[x]] \vee R[x, f[x], g[x]]) \wedge(Q(x, g[x]) \vee R[x, f[x], g[x]]))
$$

can be represented by the following set of clauses

$$
\{\neg P[x, f[x]] \vee R[x, f[x], g[x]], Q(x, g[x]) \vee R[x, f[x], g[x]]\}
$$

Formula Clausification

A clause is a disjunction of literals.
Examples: $\neg P[x] \vee Q[y, f[x]], P[x]$
A set of clauses S is regarded as a conjunction of all clauses in S, where every variable in S is considered governed by a universal quantifier.
Example: Let

$$
\underset{x}{\forall} \underset{y, z}{\exists}((\neg P[x, y] \wedge Q[x, z]) \vee R[x, y, z])
$$

The standard form of the formula above, that is

$$
\underset{x}{\forall}((\neg P[x, f[x]] \vee R[x, f[x], g[x]]) \wedge(Q(x, g[x]) \vee R[x, f[x], g[x]]))
$$

can be represented by the following set of clauses

$$
\{\neg P[x, f[x]] \vee R[x, f[x], g[x]], Q(x, g[x]) \vee R[x, f[x], g[x]]\}
$$

Note that, if S is a set of clauses that represents a standard form of a formula F, then F is inconsistent iff S is inconsistent.

Formulas Clausification (cont'd)

Example:

Transform the formulas $F_{1}, F_{2}, F_{3}, F_{4}$, and $\neg G$ into a set of clauses, where
$F_{1}: \underset{x, y}{\forall} \underset{z}{\exists} P[x, y, z]$

$$
\underset{x, y, z, u, v, w}{\forall}(P[x, y, u] \wedge P[y, z, v] \wedge P[u, z, w] \Rightarrow P[x, v, w])
$$

$F_{2}: \wedge$

$$
\underset{x, y, z, u, v, w}{\forall}(P[x, y, u] \wedge P[y, z, v] \wedge P[x, v, w] \Rightarrow P[u, z, w])
$$

$F_{3}: \underset{x}{\forall} P[x, e, x] \wedge \underset{x}{\forall} P[e, x, x]$
$F_{4}: \underset{x}{\forall} P[x, i[x], e] \wedge \underset{x}{\forall} P[i[x], x, e]$
$G: \underset{x}{\forall} P[x, x, e] \Rightarrow \underset{u, v, w}{\forall}(P[u, v, w] \Rightarrow P[v, u, w])$

Outline

Formula Clausification

Substitution \& Unification

Resolution Principle for FOL

Substitution \& Unification

Motivation: apply resolution principle to FOL formulas.
Example: Let

Substitution \& Unification

Motivation: apply resolution principle to FOL formulas.

Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Substitution \& Unification

Motivation: apply resolution principle to FOL formulas.
Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[a]$ in $C_{1}, x \rightarrow a$ in C_{2}.

Substitution \& Unification

Motivation: apply resolution principle to FOL formulas.
Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[a]$ in $C_{1}, x \rightarrow a$ in C_{2}.
We have

$$
\begin{array}{ll}
C_{1}^{\prime}: & P[f[a]] \vee Q[f[a]] \\
C_{2}^{\prime}: & \neg P[f[a]] \vee R[a]
\end{array}
$$

Substitution \& Unification

Motivation: apply resolution principle to FOL formulas.
Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[a]$ in $C_{1}, x \rightarrow a$ in C_{2}.
We have

$$
\begin{array}{ll}
C_{1}^{\prime}: & P[f[a]] \vee Q[f[a]] \\
C_{2}^{\prime}: & \neg P[f[a]] \vee R[a]
\end{array}
$$

C_{1}^{\prime} and C_{2}^{\prime} are ground instances.

Substitution \& Unification

Motivation: apply resolution principle to FOL formulas.
Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[a]$ in $C_{1}, x \rightarrow a$ in C_{2}.
We have

$$
\begin{array}{ll}
C_{1}^{\prime}: & P[f[a]] \vee Q[f[a]] \\
C_{2}^{\prime}: & \neg P[f[a]] \vee R[a]
\end{array}
$$

C_{1}^{\prime} and C_{2}^{\prime} are ground instances.
A resolvent of C_{1}^{\prime} and C_{2}^{\prime} is

$$
C_{3}^{\prime}: \quad Q[f[a]] \vee R[a]
$$

Substitution \& Unification

Motivation: apply resolution principle to FOL formulas.
Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[x]$ in C_{1}. We have

C_{1}^{*} is an instance of C_{1}.
A resolvent of

is

C_{3}^{\prime} is an instance of $C_{3} . C_{3}$ is the most general clause.

Substitution \& Unification

Motivation: apply resolution principle to FOL formulas.
Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[x]$ in C_{1}. We have

$$
C_{1}^{*}: \quad P[f[x]] \vee Q[f[x]]
$$

C_{1}^{*} is an instance of C_{1}.

A resolvent of

is

Substitution \& Unification

Motivation: apply resolution principle to FOL formulas.
Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[x]$ in C_{1}. We have

$$
C_{1}^{*}: \quad P[f[x]] \vee Q[f[x]]
$$

C_{1}^{*} is an instance of C_{1}.
A resolvent of

$$
\begin{array}{ll}
C_{2}: & \neg P[f[x]] \vee R[x] \\
C_{1}^{*}: & P[f[x]] \vee Q[f[x]]
\end{array}
$$

is

Substitution \& Unification

Motivation: apply resolution principle to FOL formulas.
Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[x]$ in C_{1}. We have

$$
C_{1}^{*}: \quad P[f[x]] \vee Q[f[x]]
$$

C_{1}^{*} is an instance of C_{1}.
A resolvent of

$$
\begin{array}{ll}
C_{2}: & \neg P[f[x]] \vee R[x] \\
C_{1}^{*}: & P[f[x]] \vee Q[f[x]]
\end{array}
$$

is

$$
C_{3}: \quad Q[f[x]] \vee R[x]
$$

Substitution \& Unification

Motivation: apply resolution principle to FOL formulas.
Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[x]$ in C_{1}. We have

$$
C_{1}^{*}: \quad P[f[x]] \vee Q[f[x]]
$$

C_{1}^{*} is an instance of C_{1}.
A resolvent of

$$
\begin{array}{ll}
C_{2}: & \neg P[f[x]] \vee R[x] \\
C_{1}^{*}: & P[f[x]] \vee Q[f[x]]
\end{array}
$$

is

$$
C_{3}: \quad Q[f[x]] \vee R[x]
$$

C_{3}^{\prime} is an instance of $C_{3} . C_{3}$ is the most general clause.

Substitution (cont'd)

A substitution σ is a finite set of the form $\left\{v_{1} \rightarrow t_{1}, \ldots, v_{n} \rightarrow t_{n}\right\}$ where every t_{i} is a term different from v_{i} and no two elements in the set have the same variable v_{i}.

Let σ be defined as above and E be an expression. Then $E \sigma$ is an expression obtained from E by replacing simultaneously each occurrence of v_{i} in E by the term t_{i}

Example: Let $\sigma=\{x \rightarrow z, z \rightarrow h[a, y]\}$ and $E=f[z, a, g[x], y]$. Then $E \sigma=f[h[a, y], a, g[z], y]$.

Substitution (cont'd)

A substitution σ is a finite set of the form $\left\{v_{1} \rightarrow t_{1}, \ldots, v_{n} \rightarrow t_{n}\right\}$ where every t_{i} is a term different from v_{i} and no two elements in the set have the same variable v_{i}.

Let σ be defined as above and E be an expression. Then $E \sigma$ is an expression obtained from E by replacing simultaneously each occurrence of v_{i} in E by the term t_{i}

Example: Let $\sigma=\{x \rightarrow z, z \rightarrow h[a, y]\}$ and $E=f[z, a, g[x], y]$. Then $E \sigma=f[h[a, y], a, g[z], y]$.

Substitution (cont'd)

A substitution σ is a finite set of the form $\left\{v_{1} \rightarrow t_{1}, \ldots, v_{n} \rightarrow t_{n}\right\}$ where every t_{i} is a term different from v_{i} and no two elements in the set have the same variable v_{i}.

Let σ be defined as above and E be an expression. Then $E \sigma$ is an expression obtained from E by replacing simultaneously each occurrence of v_{i} in E by the term t_{i}
Example: Let $\sigma=\{x \rightarrow z, z \rightarrow h[a, y]\}$ and $E=f[z, a, g[x], y]$. Then $E \sigma=f[h[a, y], a, g[z], y]$.

Substitution (cont'd)

Let

$$
\begin{aligned}
\theta & =\left\{x_{1} \rightarrow t_{1}, \ldots, x_{n} \rightarrow t_{n}\right\} \\
\lambda & =\left\{y_{1} \rightarrow u_{1}, \ldots, y_{n} \rightarrow u_{n}\right\}
\end{aligned}
$$

Then the composition of θ and $\lambda(\theta \circ \lambda)$ is obtained from the set

$$
\left\{x_{1} \rightarrow t_{1} \lambda, \ldots, x_{n} \rightarrow t_{n} \lambda, y_{1} \rightarrow u_{1}, \ldots, y_{n} \rightarrow u_{n}\right\}
$$

by deleting any element $x_{j} \rightarrow t_{j} \lambda$ for which $x_{j}=t_{j} \lambda$ and any element $y_{i} \rightarrow u_{i}$ such that y_{i} is among $\left\{x_{1}, \ldots, x_{n}\right\}$.

Substitution (cont'd)

Example 1:

$$
\begin{aligned}
\theta & =\{x \rightarrow f[y], y \rightarrow z\} \\
\lambda & =\{x \rightarrow a, y \rightarrow b, z \rightarrow y\}
\end{aligned}
$$

Then

$$
\begin{aligned}
\theta \circ \lambda & =\{x \rightarrow f[b], y \rightarrow y, x \rightarrow a, y \rightarrow b, z \rightarrow y\} \\
& =\{x \rightarrow f[b], z \rightarrow y\}
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& \theta_{1}=\{x \rightarrow a, y \rightarrow f[z], z \rightarrow y\} \\
& \theta_{2}=\{x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\}
\end{aligned}
$$

Then
$n_{1} \circ \theta_{2}=\{x \rightarrow a, y \rightarrow f[g[x]], z \rightarrow z, x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\}$ $=\{x \rightarrow a, y \rightarrow f[g[x]]\}$

Substitution (cont'd)

Example 1:

$$
\begin{aligned}
\theta & =\{x \rightarrow f[y], y \rightarrow z\} \\
\lambda & =\{x \rightarrow a, y \rightarrow b, z \rightarrow y\}
\end{aligned}
$$

Then

$$
\begin{aligned}
\theta \circ \lambda & =\{x \rightarrow f[b], y \rightarrow y, x \rightarrow a, y \rightarrow b, z \rightarrow y\} \\
& =\{x \rightarrow f[b], z \rightarrow y\}
\end{aligned}
$$

Example 2:
$\theta_{1}=\{x \rightarrow a, y \rightarrow f[z], z \rightarrow y\}$
$\theta_{2}=\{x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\}$

Then
$\theta_{1} \circ \theta_{2}=\{x \rightarrow a, y \rightarrow f[g[x]], z \rightarrow z, x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\}$ $=\{x \rightarrow a, y \rightarrow f[g[x]]\}$

Substitution (cont'd)

Example 1:

$$
\begin{aligned}
\theta & =\{x \rightarrow f[y], y \rightarrow z\} \\
\lambda & =\{x \rightarrow a, y \rightarrow b, z \rightarrow y\}
\end{aligned}
$$

Then

$$
\begin{aligned}
\theta \circ \lambda & =\{x \rightarrow f[b], y \rightarrow y, x \rightarrow a, y \rightarrow b, z \rightarrow y\} \\
& =\{x \rightarrow f[b], z \rightarrow y\}
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& \theta_{1}=\{x \rightarrow a, y \rightarrow f[z], z \rightarrow y\} \\
& \theta_{2}=\{x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\}
\end{aligned}
$$

Then
$\theta_{1} \circ \theta_{2}=\{x \rightarrow a, y \rightarrow f[g[x]], z \rightarrow z, x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\}$ $=\{x \rightarrow a, y \rightarrow f[g[x]]\}$

Substitution (cont'd)

Example 1:

$$
\begin{aligned}
\theta & =\{x \rightarrow f[y], y \rightarrow z\} \\
\lambda & =\{x \rightarrow a, y \rightarrow b, z \rightarrow y\}
\end{aligned}
$$

Then

$$
\begin{aligned}
\theta \circ \lambda & =\{x \rightarrow f[b], y \rightarrow y, x \rightarrow a, y \rightarrow b, z \rightarrow y\} \\
& =\{x \rightarrow f[b], z \rightarrow y\}
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& \theta_{1}=\{x \rightarrow a, y \rightarrow f[z], z \rightarrow y\} \\
& \theta_{2}=\{x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\}
\end{aligned}
$$

Then

$$
\begin{aligned}
\theta_{1} \circ \theta_{2} & =\{x \rightarrow a, y \rightarrow f[g[x]], z \rightarrow z, x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\} \\
& =\{x \rightarrow a, y \rightarrow f[g[x]]\}
\end{aligned}
$$

Unification

A substitution θ is called a unifier for a set $\left\{E_{1}, \ldots, E_{k}\right\}$ iff $E_{1} \theta=\ldots=E_{k} \theta$. The set $\left\{E_{1}, \ldots, E_{k}\right\}$ is said to be unifiable iff there exists an unifier for it.

Unification

A substitution θ is called a unifier for a set $\left\{E_{1}, \ldots, E_{k}\right\}$ iff $E_{1} \theta=\ldots=E_{k} \theta$. The set $\left\{E_{1}, \ldots, E_{k}\right\}$ is said to be unifiable iff there exists an unifier for it.
A unifier σ for a set $\left\{E_{1}, \ldots, E_{k}\right\}$ of expressions is a most general unifier iff for each unifier θ for the set there is a substitution λ such that $\theta=\sigma \circ \lambda$.

Unification

A substitution θ is called a unifier for a set $\left\{E_{1}, \ldots, E_{k}\right\}$ iff $E_{1} \theta=\ldots=E_{k} \theta$. The set $\left\{E_{1}, \ldots, E_{k}\right\}$ is said to be unifiable iff there exists an unifier for it.
A unifier σ for a set $\left\{E_{1}, \ldots, E_{k}\right\}$ of expressions is a most general unifier iff for each unifier θ for the set there is a substitution λ such that $\theta=\sigma \circ \lambda$.
Example: The set $\{P[a, y], P[x, f[b]]\}$ is unifiable since $\sigma=\{x \rightarrow a, y \rightarrow f[b]\}$ is a unifier for the set.

Unification Algorithm

Unification algorithm for finding a most general unifier (mgu), or its nonexistence, for a finite set of nonempty expressions.
The disagreement set of a nonempty set W of expressions is obtained by

Example: The disagreement set of $\{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$ is $\{a, z\}$.

Unification Algorithm

Unification algorithm for finding a most general unifier (mgu), or its nonexistence, for a finite set of nonempty expressions.
The disagreement set of a nonempty set W of expressions is obtained by

- locating the first symbol (starting from the left) at which not all the expressions in W have exactly the same symbol and then
- extracting from each expression in W the subexpression that begins with the symbol occupying that position.

Example: The disagreement set of $\{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$ is $\{a, z\}$

Unification Algorithm

Unification algorithm for finding a most general unifier (mgu), or its nonexistence, for a finite set of nonempty expressions.
The disagreement set of a nonempty set W of expressions is obtained by

- locating the first symbol (starting from the left) at which not all the expressions in W have exactly the same symbol and then
- extracting from each expression in W the subexpression that begins with the symbol occupying that position.

Example: The disagreement set of $\{P[a \times f[g[y]]], P[z, f[z], f[u]]\}$ is $\{a, z\}$.

Unification Algorithm

Unification algorithm for finding a most general unifier (mgu), or its nonexistence, for a finite set of nonempty expressions.
The disagreement set of a nonempty set W of expressions is obtained by

- locating the first symbol (starting from the left) at which not all the expressions in W have exactly the same symbol and then
- extracting from each expression in W the subexpression that begins with the symbol occupying that position.

Unification Algorithm

Unification algorithm for finding a most general unifier (mgu), or its nonexistence, for a finite set of nonempty expressions.
The disagreement set of a nonempty set W of expressions is obtained by

- locating the first symbol (starting from the left) at which not all the expressions in W have exactly the same symbol and then
- extracting from each expression in W the subexpression that begins with the symbol occupying that position.
Example: The disagreement set of $\{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$ is $\{a, z\}$.

Unification Algorithm (cont'd)

Unification Algorithm

1. $k:=0, W_{k}:=W, \sigma_{k}:=\varepsilon$
2. If W_{k} is singleton then stop; σ_{k} is mgu of W. Otherwise find the disagreement set D_{k} of W_{k}.
3. If there exists $v_{k}, t_{k} \in D_{k}$ s.t. v_{k} is a variable which does not occur in t_{k}, go to 4. Otherwise, stop; W is not unifiable.
4. Let $\sigma_{k+1}=\sigma_{k} \circ\left\{v_{k} \rightarrow t_{k}\right\}$ and $W_{k+1}=W_{k}\left\{v_{k} \rightarrow t_{k}\right\}$.
5. $k=k+1$ and go to 2 .

Example: Find a most general unifier for

Unification Algorithm (cont'd)

Unification Algorithm

1. $k:=0, W_{k}:=W, \sigma_{k}:=\varepsilon$
2. If W_{k} is singleton then stop; σ_{k} is mgu of W. Otherwise find the disagreement set D_{k} of W_{k}
3. If there exists $v_{k}, t_{k} \in D_{k}$ s.t. v_{k} is a variable which does not occur in t_{k}, go to 4. Otherwise, stop; W is not unifiable.
4. Let $\sigma_{k+1}=\sigma_{k} \circ\left\{v_{k} \rightarrow t_{k}\right\}$ and $W_{k+1}=W_{k}\left\{v_{k} \rightarrow t_{k}\right\}$.
5. $k=k+1$ and go to 2 .

Example: Find a most general unifier for

Unification Algorithm (cont'd)

Unification Algorithm

1. $k:=0, W_{k}:=W, \sigma_{k}:=\varepsilon$
2. If W_{k} is singleton then stop; σ_{k} is mgu of W. Otherwise find the disagreement set D_{k} of W_{k}.
3. If there exists $v_{k}, t_{k} \in D_{k}$ s.t. v_{k} is a variable which does not occur
in t_{k}, go to 4. Otherwise, stop; W is not unifiable.
4. Let $\sigma_{k+1}=\sigma_{k} \circ\left\{v_{k} \rightarrow t_{k}\right\}$ and $W_{k+1}=W_{k}\left\{v_{k} \rightarrow t_{k}\right\}$
5. $k=k+1$ and go to 2 .

Example: Find a most general unifier for

Unification Algorithm (cont'd)

Unification Algorithm

1. $k:=0, W_{k}:=W, \sigma_{k}:=\varepsilon$
2. If W_{k} is singleton then stop; σ_{k} is mgu of W. Otherwise find the disagreement set D_{k} of W_{k}.
3. If there exists $v_{k}, t_{k} \in D_{k}$ s.t. v_{k} is a variable which does not occur in t_{k}, go to 4. Otherwise, stop; W is not unifiable.
4. $k=k+1$ and go to 2 .

Example: Find a most general unifier for

Unification Algorithm (cont'd)

Unification Algorithm

1. $k:=0, W_{k}:=W, \sigma_{k}:=\varepsilon$
2. If W_{k} is singleton then stop; σ_{k} is mgu of W. Otherwise find the disagreement set D_{k} of W_{k}.
3. If there exists $v_{k}, t_{k} \in D_{k}$ s.t. v_{k} is a variable which does not occur in t_{k}, go to 4. Otherwise, stop; W is not unifiable.
4. Let $\sigma_{k+1}=\sigma_{k} \circ\left\{v_{k} \rightarrow t_{k}\right\}$ and $W_{k+1}=W_{k}\left\{v_{k} \rightarrow t_{k}\right\}$.

Example: Find a most general unifier for

Unification Algorithm (cont'd)

Unification Algorithm

1. $k:=0, W_{k}:=W, \sigma_{k}:=\varepsilon$
2. If W_{k} is singleton then stop; σ_{k} is mgu of W. Otherwise find the disagreement set D_{k} of W_{k}.
3. If there exists $v_{k}, t_{k} \in D_{k}$ s.t. v_{k} is a variable which does not occur in t_{k}, go to 4. Otherwise, stop; W is not unifiable.
4. Let $\sigma_{k+1}=\sigma_{k} \circ\left\{v_{k} \rightarrow t_{k}\right\}$ and $W_{k+1}=W_{k}\left\{v_{k} \rightarrow t_{k}\right\}$.
5. $k=k+1$ and go to 2 .

Example: Find a most general unifier for

Unification Algorithm (cont'd)

Unification Algorithm

1. $k:=0, W_{k}:=W, \sigma_{k}:=\varepsilon$
2. If W_{k} is singleton then stop; σ_{k} is mgu of W. Otherwise find the disagreement set D_{k} of W_{k}.
3. If there exists $v_{k}, t_{k} \in D_{k}$ s.t. v_{k} is a variable which does not occur in t_{k}, go to 4. Otherwise, stop; W is not unifiable.
4. Let $\sigma_{k+1}=\sigma_{k} \circ\left\{v_{k} \rightarrow t_{k}\right\}$ and $W_{k+1}=W_{k}\left\{v_{k} \rightarrow t_{k}\right\}$.
5. $k=k+1$ and go to 2 .

Example: Find a most general unifier for

Unification Algorithm (cont'd)

Unification Algorithm

1. $k:=0, W_{k}:=W, \sigma_{k}:=\varepsilon$
2. If W_{k} is singleton then stop; σ_{k} is mgu of W. Otherwise find the disagreement set D_{k} of W_{k}.
3. If there exists $v_{k}, t_{k} \in D_{k}$ s.t. v_{k} is a variable which does not occur in t_{k}, go to 4. Otherwise, stop; W is not unifiable.
4. Let $\sigma_{k+1}=\sigma_{k} \circ\left\{v_{k} \rightarrow t_{k}\right\}$ and $W_{k+1}=W_{k}\left\{v_{k} \rightarrow t_{k}\right\}$.
5. $k=k+1$ and go to 2 .

Example: Find a most general unifier for

1. $W=\{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
2. $W=\{P[x], P[f[x]]\}$
3. $W=\{P[x], Q[y]\}$

Unification Algorithm (cont'd)

Unification Algorithm

1. $k:=0, W_{k}:=W, \sigma_{k}:=\varepsilon$
2. If W_{k} is singleton then stop; σ_{k} is mgu of W. Otherwise find the disagreement set D_{k} of W_{k}.
3. If there exists $v_{k}, t_{k} \in D_{k}$ s.t. v_{k} is a variable which does not occur in t_{k}, go to 4. Otherwise, stop; W is not unifiable.
4. Let $\sigma_{k+1}=\sigma_{k} \circ\left\{v_{k} \rightarrow t_{k}\right\}$ and $W_{k+1}=W_{k}\left\{v_{k} \rightarrow t_{k}\right\}$.
5. $k=k+1$ and go to 2 .

Example: Find a most general unifier for

1. $W=\{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
2. $W=\{Q[a], Q[b]\}$
3. $W=\{P[x], Q[y]\}$

Unification Algorithm (cont'd)

Unification Algorithm

1. $k:=0, W_{k}:=W, \sigma_{k}:=\varepsilon$
2. If W_{k} is singleton then stop; σ_{k} is mgu of W. Otherwise find the disagreement set D_{k} of W_{k}.
3. If there exists $v_{k}, t_{k} \in D_{k}$ s.t. v_{k} is a variable which does not occur in t_{k}, go to 4. Otherwise, stop; W is not unifiable.
4. Let $\sigma_{k+1}=\sigma_{k} \circ\left\{v_{k} \rightarrow t_{k}\right\}$ and $W_{k+1}=W_{k}\left\{v_{k} \rightarrow t_{k}\right\}$.
5. $k=k+1$ and go to 2 .

Example: Find a most general unifier for

1. $W=\{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
2. $W=\{Q[a], Q[b]\}$
3. $W=\{P[x], P[f[x]]\}$

Unification Algorithm (cont'd)

Unification Algorithm

1. $k:=0, W_{k}:=W, \sigma_{k}:=\varepsilon$
2. If W_{k} is singleton then stop; σ_{k} is mgu of W. Otherwise find the disagreement set D_{k} of W_{k}.
3. If there exists $v_{k}, t_{k} \in D_{k}$ s.t. v_{k} is a variable which does not occur in t_{k}, go to 4. Otherwise, stop; W is not unifiable.
4. Let $\sigma_{k+1}=\sigma_{k} \circ\left\{v_{k} \rightarrow t_{k}\right\}$ and $W_{k+1}=W_{k}\left\{v_{k} \rightarrow t_{k}\right\}$.
5. $k=k+1$ and go to 2 .

Example: Find a most general unifier for

1. $W=\{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
2. $W=\{Q[a], Q[b]\}$
3. $W=\{P[x], P[f[x]]\}$
4. $W=\{P[x], Q[y]\}$

Outline

Formula Clausification

Substitution \& Unification

Resolution Principle for FOL

Resolution Principle for FOL

If two or more literals (with the same sign) of a clause C have σ the mgu , then $C \sigma$ is called a factor of C.

By renaming x with y in C_{2}, we have

Let $\sigma=\{x \rightarrow a\}$ a mgu of the literals $P[x]$ and $\neg P[a]$. Then a binary resolvent of C_{1} and C_{2} is $Q[a] \vee R[y]$.

Resolution Principle for FOL

If two or more literals (with the same sign) of a clause C have σ the mgu, then $C \sigma$ is called a factor of C.
Example: Let $C: P[x] \vee P[a] \vee Q[f[x]] \vee Q[f[a]]$ be a clause. Then the mgu is $\sigma=\{x \rightarrow a\}$ and $C \sigma: P[a] \vee Q[f[a]]$ is a factor of C.

By renaming x with y in C_{2}, we have

Resolution Principle for FOL

If two or more literals (with the same sign) of a clause C have σ the mgu, then $C \sigma$ is called a factor of C.
Example: Let $C: P[x] \vee P[a] \vee Q[f[x]] \vee Q[f[a]]$ be a clause. Then the mgu is $\sigma=\{x \rightarrow a\}$ and $C \sigma: P[a] \vee Q[f[a]]$ is a factor of C. Let C_{1} and C_{2} be two clauses with no variables in common. Let L_{1} and L_{2} be two literals in C_{1} and C_{2}, respectively. If L_{1} and $\neg L_{2}$ have mgu σ, then the clause $C_{1} \sigma \vee C_{2} \sigma$ is called a binary resolvent of C_{1} and C_{2}.
Example: Let

By renaming x with y in C_{2}, we have

$$
-P[a] \vee R[y]
$$

Resolution Principle for FOL

If two or more literals (with the same sign) of a clause C have σ the mgu, then $C \sigma$ is called a factor of C.
Example: Let $C: P[x] \vee P[a] \vee Q[f[x]] \vee Q[f[a]]$ be a clause. Then the mgu is $\sigma=\{x \rightarrow a\}$ and $C \sigma: P[a] \vee Q[f[a]]$ is a factor of C. Let C_{1} and C_{2} be two clauses with no variables in common. Let L_{1} and L_{2} be two literals in C_{1} and C_{2}, respectively. If L_{1} and $\neg L_{2}$ have mgu σ, then the clause $C_{1} \sigma \vee C_{2} \sigma$ is called a binary resolvent of C_{1} and C_{2}.
Example: Let

$$
\begin{array}{rr}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[a] \vee R[x]
\end{array}
$$

By renaming x with y in C_{2}, we have

Resolution Principle for FOL

If two or more literals (with the same sign) of a clause C have σ the mgu, then $C \sigma$ is called a factor of C.
Example: Let $C: P[x] \vee P[a] \vee Q[f[x]] \vee Q[f[a]]$ be a clause. Then the mgu is $\sigma=\{x \rightarrow a\}$ and $C \sigma: P[a] \vee Q[f[a]]$ is a factor of C. Let C_{1} and C_{2} be two clauses with no variables in common. Let L_{1} and L_{2} be two literals in C_{1} and C_{2}, respectively. If L_{1} and $\neg L_{2}$ have mgu σ, then the clause $C_{1} \sigma \vee C_{2} \sigma$ is called a binary resolvent of C_{1} and C_{2}.
Example: Let

$$
\begin{aligned}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \Rightarrow P[a] \vee R[x]
\end{aligned}
$$

By renaming x with y in C_{2}, we have

$$
C_{2}: \quad \neg P[a] \vee R[y]
$$

Let $\sigma=\{x \rightarrow a\}$ a mgu of the literals $P[x]$ and $\neg P[a]$. Then a binary resolvent of C_{1} and C_{2} is $Q[a] \vee R[y]$.

Resolution Principle for FOL

If two or more literals (with the same sign) of a clause C have σ the mgu, then $C \sigma$ is called a factor of C.
Example: Let $C: P[x] \vee P[a] \vee Q[f[x]] \vee Q[f[a]]$ be a clause. Then the mgu is $\sigma=\{x \rightarrow a\}$ and $C \sigma: P[a] \vee Q[f[a]]$ is a factor of C. Let C_{1} and C_{2} be two clauses with no variables in common. Let L_{1} and L_{2} be two literals in C_{1} and C_{2}, respectively. If L_{1} and $\neg L_{2}$ have mgu σ, then the clause $C_{1} \sigma \vee C_{2} \sigma$ is called a binary resolvent of C_{1} and C_{2}.
Example: Let

$$
\begin{aligned}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \Rightarrow P[a] \vee R[x]
\end{aligned}
$$

By renaming x with y in C_{2}, we have

$$
C_{2}: \quad \neg P[a] \vee R[y]
$$

Let $\sigma=\{x \rightarrow a\}$ a mgu of the literals $P[x]$ and $\neg P[a]$. Then a binary resolvent of C_{1} and C_{2} is $Q[a] \vee R[y]$.

Resolution Principle for FOL (cont'd)

Resolution: (Robinson, 1965)

- is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

How does resolution work?
Given: formulas F_{1}, \ldots, F_{n}
Prove: G by resolution.

Resolution Principle for FOL (cont'd)

Resolution: (Robinson, 1965)

- is an inference rule which generates resolvents from a set of clauses
\rightarrow is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
l is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

How does resolution work?
Given: formulas F_{1}, \ldots, F_{n}
Prove: G by resolution

Resolution Principle for FOL (cont'd)

Resolution: (Robinson, 1965)

- is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
> is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

How does resolution work?
Given: formulas F_{1}, \ldots, F_{n}
Prove: G by resolution.

Resolution Principle for FOL (cont'd)

Resolution: (Robinson, 1965)

- is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

How does resolution work?
Given: formulas F_{1}, \ldots, F_{n}
Prove: G by resolution.

Resolution Principle for FOL (cont'd)

Resolution: (Robinson, 1965)

- is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived
How does resolution work?
Given: formulas F_{1}, \ldots, F_{n}
Prove: G by resolution.

Resolution Principle for FOL (cont'd)

Resolution: (Robinson, 1965)

- is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

How does resolution work?
Given: formulas F_{1}, \ldots, F_{n}
Prove: G by resolution.

1. Bring $F_{1}, \ldots, F_{n}, \ldots, \neg G$ into standard form and write the clauses which are obtained
2. Start derivation and try to obtain the empty clause from the set C of clauses.
3. In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
4. If the empty clause appears, stop: Contradiction found, G is proved
5. If no step can be made and the empty clause is not found, then H can not be proved.

Resolution Principle for FOL (cont'd)

Resolution: (Robinson, 1965)

- is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

How does resolution work?
Given: formulas F_{1}, \ldots, F_{n}
Prove: G by resolution.

1. Bring $F_{1}, \ldots, F_{n}, \ldots, \neg G$ into standard form and write the clauses which are obtained
2. Start derivation and try to obtain the empty clause from the set C of clauses.
3. In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
4. If the empty clause appears, stop: Contradiction found, G is proved
5. If no step can be made and the empty clause is not found, then H can not be proved.

Resolution Principle for FOL (cont'd)

Resolution: (Robinson, 1965)

- is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

How does resolution work?
Given: formulas F_{1}, \ldots, F_{n}
Prove: G by resolution.

1. Bring $F_{1}, \ldots, F_{n}, \ldots, \neg G$ into standard form and write the clauses which are obtained
2. Start derivation and try to obtain the empty clause from the set C of clauses.
3. In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
4. If the empty clause appears, stop: Contradiction found, G is proved
5. If no step can be made and the empty clause is not found, then H can not be proved.

Resolution Principle for FOL (cont'd)

Resolution: (Robinson, 1965)

- is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

How does resolution work?
Given: formulas F_{1}, \ldots, F_{n}
Prove: G by resolution.

1. Bring $F_{1}, \ldots, F_{n}, \ldots, \neg G$ into standard form and write the clauses which are obtained
2. Start derivation and try to obtain the empty clause from the set C of clauses.
3. In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
4. If the empty clause appears, stop: Contradiction found, G is proved.
can not be proved.

Resolution Principle for FOL (cont'd)

Resolution: (Robinson, 1965)

- is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived
How does resolution work?
Given: formulas F_{1}, \ldots, F_{n}
Prove: G by resolution.

1. Bring $F_{1}, \ldots, F_{n}, \ldots, \neg G$ into standard form and write the clauses which are obtained
2. Start derivation and try to obtain the empty clause from the set C of clauses.
3. In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
4. If the empty clause appears, stop: Contradiction found, G is proved.
5. If no step can be made and the empty clause is not found, then H can not be proved.

Resolution Principle for FOL. Correctness \& Completeness

Theorem
A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Resolution Principle for FOL. Correctness \& Completeness

Theorem
A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.
(Completeness)

Resolution Principle for FOL. Correctness \& Completeness

Theorem
A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.
" \qquad (Completeness)
$"$ \qquad " (Correctness)

Resolution Principle for FOL. Correctness \& Completeness

Theorem
A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.
" \qquad (Completeness)
" \qquad " (Correctness)

Resolution Principle for FOL. Correctness \& Completeness

Theorem
A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.
" \qquad (Completeness)
" \qquad " (Correctness)

- Assume S is satisfiable and derive a contradiction.
- Since there exists a deduction from S, we have the resolvents $R_{1}, \ldots R_{n}$ obtained in this deduction.
- Since S is satisfiable there exists an interpretation satisfying each clause in S
- Any resolvent of any two clauses in S is also satisfied by I, since these resolvents are logical consequences of the two clauses.
- Hence I satisfies $R_{1}, \ldots . R_{n}$ which is impossible since one of R_{i} is the empty clause.

Resolution Principle for FOL. Correctness \& Completeness

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.
" \qquad " (Completeness)
" \qquad " (Correctness)

- Assume S is satisfiable and derive a contradiction.
- Since there exists a deduction from S, we have the resolvents $R_{1}, \ldots R_{n}$ obtained in this deduction.
- Since S is satisfiable there exists an interpretation satisfying each clause in S.
- Any resolvent of any two clauses in S is also satisfied by I, since these resolvents are logical consequences of the two clauses.
- Hence / satisfies $R_{1}, \ldots R_{n}$ which is impossible since one of R_{i} is the empty clause.

Resolution Principle for FOL. Correctness \& Completeness

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.
" \qquad " (Completeness)
" \qquad " (Correctness)

- Assume S is satisfiable and derive a contradiction.
- Since there exists a deduction from S, we have the resolvents $R_{1}, \ldots R_{n}$ obtained in this deduction.
- Since S is satisfiable there exists an interpretation satisfying each clause in S.
- Any resolvent of any two clauses in S is also satisfied by I, since these resolvents are logical consequences of the two clauses.
- Hence / satisfies $R_{1}, \ldots R_{n}$ which is impossible since one of R_{i} is the empty clause.

Resolution Principle for FOL. Correctness \& Completeness

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.
" \qquad " (Completeness)
" \qquad " (Correctness)

- Assume S is satisfiable and derive a contradiction.
- Since there exists a deduction from S, we have the resolvents $R_{1}, \ldots R_{n}$ obtained in this deduction.
- Since S is satisfiable there exists an interpretation satisfying each clause in S.
- Any resolvent of any two clauses in S is also satisfied by I, since these resolvents are logical consequences of the two clauses.
- Hence I satisfies $R_{1}, \ldots R_{n}$ which is impossible since one of R_{i} is the empty clause.

Resolution Principle for FOL. Correctness \& Completeness

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.
" \qquad ' (Completeness)
" \qquad " (Correctness)

- Assume S is satisfiable and derive a contradiction.
- Since there exists a deduction from S, we have the resolvents $R_{1}, \ldots R_{n}$ obtained in this deduction.
- Since S is satisfiable there exists an interpretation satisfying each clause in S.
- Any resolvent of any two clauses in S is also satisfied by I, since these resolvents are logical consequences of the two clauses.
- Hence $/$ satisfies $R_{1}, \ldots R_{n}$ which is impossible since one of R_{i} is the empty clause.

Resolution Principle for FOL. Correctness \& Completeness (cont'd)

Lemma
Given two clauses C_{1} and C_{2}, a resolvent C of C_{1} and C_{2} is a logical consequence of C_{1} and C_{2}.

Proof.

We have to prove that
$L \vee C_{1}^{\prime}, \neg L \vee C_{2}^{\prime} \vDash C_{1}^{\prime} \vee C_{2}^{\prime}$
that is, for any interpretation / if $\left\langle L \vee C_{1}^{\prime}\right\rangle_{I}=\left\langle\neg L \vee C_{2}^{\prime}\right\rangle_{।}=\mathbb{T}$ then
\square

Resolution Principle for FOL. Correctness \& Completeness (cont'd)

Lemma
Given two clauses C_{1} and C_{2}, a resolvent C of C_{1} and C_{2} is a logical consequence of C_{1} and C_{2}.

Proof.

We have to prove that
$L \vee C_{1}^{\prime}, \neg L \vee C_{2}^{\prime} \vDash C_{1}^{\prime} \vee C_{2}^{\prime}$
that is, for any interpretation $/$ if $\left\langle L \vee C_{1}^{\prime}\right\rangle_{I}=\left\langle\neg L \vee C_{2}^{\prime}\right\rangle_{I}=\mathbb{T}$ then
\square

Resolution Principle for FOL. Correctness \& Completeness (cont'd)

Lemma
Given two clauses C_{1} and C_{2}, a resolvent C of C_{1} and C_{2} is a logical consequence of C_{1} and C_{2}.
Proof.
Let

$$
\begin{array}{ll}
C_{1}: & L \vee C_{1}^{\prime} \\
C_{2}: & \neg L \vee C_{2}^{\prime}
\end{array}
$$

We have to prove that

$$
L \vee C_{1}^{\prime}, \neg L \vee C_{2}^{\prime} \vDash C_{1}^{\prime} \vee C_{2}^{\prime}
$$

that is, for any interpretation $/$ if $\left\langle L \vee C_{1}^{\prime}\right\rangle_{I}=\left\langle\neg L \vee C_{2}^{\prime}\right\rangle_{I}=\mathbb{T}$ then
\square

\square

Resolution Principle for FOL. Correctness \& Completeness (cont'd)

Lemma
Given two clauses C_{1} and C_{2}, a resolvent C of C_{1} and C_{2} is a logical consequence of C_{1} and C_{2}.
Proof.
Let

$$
\begin{array}{ll}
C_{1}: & L \vee C_{1}^{\prime} \\
C_{2}: & \neg L \vee C_{2}^{\prime}
\end{array}
$$

We have to prove that

$$
L \vee C_{1}^{\prime}, \neg L \vee C_{2}^{\prime} \vDash C_{1}^{\prime} \vee C_{2}^{\prime}
$$

that is, for any interpretation I if $\left\langle L \vee C_{1}^{\prime}\right\rangle_{I}=\left\langle\neg L \vee C_{2}^{\prime}\right\rangle_{I}=\mathbb{T}$ then $\left\langle C_{1}^{\prime} \vee C_{2}^{\prime}\right\rangle_{1}=\mathbb{T}$

$$
\text { Case }\langle L\rangle_{I}=\mathbb{F} \text {. Then }\left\langle C_{1}^{\prime}\right\rangle_{I}=\mathbb{T} \text {. Hence }\left\langle C_{1}^{\prime} \vee C_{2}^{\prime}\right\rangle_{I}=\mathbb{T} \text {. }
$$

Resolution Principle for FOL. Correctness \& Completeness (cont'd)

Lemma
Given two clauses C_{1} and C_{2}, a resolvent C of C_{1} and C_{2} is a logical consequence of C_{1} and C_{2}.
Proof.
Let

$$
\begin{array}{ll}
C_{1}: & L \vee C_{1}^{\prime} \\
C_{2}: & \neg L \vee C_{2}^{\prime}
\end{array}
$$

We have to prove that

$$
L \vee C_{1}^{\prime}, \neg L \vee C_{2}^{\prime} \vDash C_{1}^{\prime} \vee C_{2}^{\prime}
$$

that is, for any interpretation I if $\left\langle L \vee C_{1}^{\prime}\right\rangle_{I}=\left\langle\neg L \vee C_{2}^{\prime}\right\rangle_{I}=\mathbb{T}$ then $\left\langle C_{1}^{\prime} \vee C_{2}^{\prime}\right\rangle_{I}=\mathbb{T}$.

Resolution Principle for FOL. Correctness \& Completeness (cont'd)

Lemma
Given two clauses C_{1} and C_{2}, a resolvent C of C_{1} and C_{2} is a logical consequence of C_{1} and C_{2}.
Proof.
Let

$$
\begin{array}{ll}
C_{1}: & L \vee C_{1}^{\prime} \\
C_{2}: & \neg L \vee C_{2}^{\prime}
\end{array}
$$

We have to prove that

$$
L \vee C_{1}^{\prime}, \neg L \vee C_{2}^{\prime} \vDash C_{1}^{\prime} \vee C_{2}^{\prime}
$$

that is, for any interpretation I if $\left\langle L \vee C_{1}^{\prime}\right\rangle_{I}=\left\langle\neg L \vee C_{2}^{\prime}\right\rangle_{I}=\mathbb{T}$ then $\left\langle C_{1}^{\prime} \vee C_{2}^{\prime}\right\rangle_{I}=\mathbb{T}$.

- Case $\langle L\rangle_{I}=\mathbb{T}$. Then $\left\langle C_{2}^{\prime}\right\rangle_{I}=\mathbb{T}$. Hence $\left\langle C_{1}^{\prime} \vee C_{2}^{\prime}\right\rangle_{I}=\mathbb{T}$.

Resolution Principle for FOL. Correctness \& Completeness (cont'd)

Lemma
Given two clauses C_{1} and C_{2}, a resolvent C of C_{1} and C_{2} is a logical consequence of C_{1} and C_{2}.
Proof.
Let

$$
\begin{array}{ll}
C_{1}: & L \vee C_{1}^{\prime} \\
C_{2}: & \neg L \vee C_{2}^{\prime}
\end{array}
$$

We have to prove that

$$
L \vee C_{1}^{\prime}, \neg L \vee C_{2}^{\prime} \vDash C_{1}^{\prime} \vee C_{2}^{\prime}
$$

that is, for any interpretation I if $\left\langle L \vee C_{1}^{\prime}\right\rangle_{I}=\left\langle\neg L \vee C_{2}^{\prime}\right\rangle_{I}=\mathbb{T}$ then $\left\langle C_{1}^{\prime} \vee C_{2}^{\prime}\right\rangle_{I}=\mathbb{T}$.

- Case $\langle L\rangle_{I}=\mathbb{T}$. Then $\left\langle C_{2}^{\prime}\right\rangle_{I}=\mathbb{T}$. Hence $\left\langle C_{1}^{\prime} \vee C_{2}^{\prime}\right\rangle_{I}=\mathbb{T}$.
- Case $\langle L\rangle_{I}=\mathbb{F}$. Then $\left\langle C_{1}^{\prime}\right\rangle_{I}=\mathbb{T}$. Hence $\left\langle C_{1}^{\prime} \vee C_{2}^{\prime}\right\rangle_{I}=\mathbb{T}$.

Resolution Principle for FOL. Examples

Example 0: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \\
\neg P[a] \vee R[x]
\end{array}
$$

Apply resolution.
Prove by resolution the following

Example 2: Prove by resolution that G is a logical consequence of F_{1} and F_{2} where

Resolution Principle for FOL. Examples

Example 0: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \\
\neg P[a] \vee R[x]
\end{array}
$$

Apply resolution.
Example 1: Prove by resolution the following

$$
\underset{x}{\forall} F[x] \vee \underset{x}{\forall} H[x] \quad \not \equiv \underset{x}{\forall}(F[x] \vee H[x])
$$

Example 2: Prove by resolution that G is a logical consequence of F_{1} and F_{2} where

Resolution Principle for FOL. Examples

Example 0: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[a] \vee R[x]
\end{array}
$$

Apply resolution.
Example 1: Prove by resolution the following

$$
\underset{x}{\forall} F[x] \vee \underset{x}{\forall} H[x] \quad \not \equiv \underset{x}{\forall}(F[x] \vee H[x])
$$

Example 2: Prove by resolution that G is a logical consequence of F_{1} and F_{2} where

$$
\begin{array}{ll}
F_{1}: & \forall(C[x] \Rightarrow(W[x] \wedge R[x])) \\
F_{2}: & \underset{x}{\exists}(C[x] \wedge O[x]) \\
G: & \underset{x}{\exists}(O[x] \wedge R[x])
\end{array}
$$

Resolution Principle for FOL. Examples (cont'd)

Example 3: Prove by resolution that G is a logical consequence of F_{1} and F_{2} where

$$
\begin{aligned}
F_{1}: & \underset{x}{\exists}(P[x] \wedge \underset{y}{\forall}(D[y] \Rightarrow L[x, y])) \\
F_{2}: & \underset{x}{\forall}(P[x] \Rightarrow \underset{y}{\forall}(Q[y] \Rightarrow \neg L[x, y])) \\
G: & \underset{x}{\forall}(D[x] \Rightarrow \neg Q[x])
\end{aligned}
$$

Example 4: Prove by resolution that G is a logical consequence of F where

Resolution Principle for FOL. Examples (cont'd)

Example 3: Prove by resolution that G is a logical consequence of F_{1} and F_{2} where

$$
\begin{array}{ll}
F_{1}: & \underset{x}{\exists}(P[x] \wedge \underset{y}{\forall}(D[y] \Rightarrow L[x, y])) \\
F_{2}: & \underset{x}{\forall}(P[x] \Rightarrow \underset{y}{\forall}(Q[y] \Rightarrow \neg L[x, y])) \\
G: & \underset{x}{\forall}(D[x] \Rightarrow \neg Q[x])
\end{array}
$$

Example 4: Prove by resolution that G is a logical consequence of F where

$$
\begin{array}{ll}
F: & \forall \exists \exists(S[x, y] \wedge M[y]) \Rightarrow \underset{y}{\exists}(I[y] \wedge E[x, y]) \\
G: & \neg \underset{x}{\exists \exists}[x] \Rightarrow \underset{x, y}{\forall}(S[x, y] \Rightarrow \neg M[y])
\end{array}
$$

Resolution Principle for FOL. Examples (cont'd)

Example 5: Prove by resolution that G is a logical consequence of F_{1}, F_{2}, and F_{3} where

$$
\begin{aligned}
& F_{1}: \quad \underset{x}{\forall}(Q[x] \Rightarrow \neg P[x]) \\
& F_{2}: \\
& \underset{x}{\forall}((R[x] \wedge \neg Q[x]) \Rightarrow \underset{y}{\exists}(T[x, y] \wedge S[y])) \\
& F_{3}: \\
& G: \underset{x}{\exists}(P[x] \wedge \underset{y}{\forall}(T[x, y] \Rightarrow P[y]) \wedge R[x]) \\
& G: \\
& \underset{x}{\exists}(S[x] \wedge P[x])
\end{aligned}
$$

