Logic-based Program Verification First-Order Logic

Mădălina Erașcu Tudor Jebelean

Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria

{merascu,tjebelea}@risc.jku.at

October 30 & November 6, 2013

Outline

Formula Clausification

Substitution & Unification

Resolution Principle for FOL

Outline

Formula Clausification

Substitution & Unification

Resolution Principle for FOL

A clause is a disjunction of literals.

Examples: $\neg P[x] \lor Q[y, f[x]], P[x]$

A set of clauses S is regarded as a conjunction of all clauses in S, where every variable in S is considered governed by a universal quantifier.

$$\forall \exists_{x \ y,z} \left(\left(\neg P[x,y] \land Q[x,z] \right) \lor R[x,y,z] \right)$$

The standard form of the formula above, that is

 $\forall_{x} ((\neg P[x, f[x]] \lor R[x, f[x], g[x]]) \land (Q(x, g[x]) \lor R[x, f[x], g[x]]))$

can be represented by the following set of clauses

 $\{\neg P[x, f[x]] \lor R[x, f[x], g[x]], Q(x, g[x]) \lor R[x, f[x], g[x]]\}$ Note that, if S is a set of clauses that represents a standard form of a formula F, then F is inconsistent iff S is inconsistent.

A clause is a disjunction of literals.

Examples: $\neg P[x] \lor Q[y, f[x]], P[x]$

A set of clauses *S* is regarded as a conjunction of all clauses in *S*, where every variable in *S* is considered governed by a universal quantifier. Example: Let

$$\forall \exists_{x \ y,z} ((\neg P[x,y] \land Q[x,z]) \lor R[x,y,z])$$

The standard form of the formula above, that is

 $\forall_{x} ((\neg P[x, f[x]] \lor R[x, f[x], g[x]]) \land (Q(x, g[x]) \lor R[x, f[x], g[x]]))$

can be represented by the following set of clauses

 $\{\neg P[x, f[x]] \lor R[x, f[x], g[x]], Q(x, g[x]) \lor R[x, f[x], g[x]]\}$ Note that, if S is a set of clauses that represents a standard form of a formula F, then F is inconsistent iff S is inconsistent.

A clause is a disjunction of literals. Examples: $\neg P[x] \lor Q[y, f[x]], P[x]$ A set of clauses S is regarded as a conjunction of all clauses in S, where every variable in S is considered governed by a universal quantifier.

Example: Let

 $\forall \underset{x \ y,z}{\exists} ((\neg P[x,y] \land Q[x,z]) \lor R[x,y,z])$

The standard form of the formula above, that is

 $\forall_{x} ((\neg P[x, f[x]] \lor R[x, f[x], g[x]]) \land (Q(x, g[x]) \lor R[x, f[x], g[x]]))$

can be represented by the following set of clauses

 $\{\neg P[x, f[x]] \lor R[x, f[x], g[x]], Q(x, g[x]) \lor R[x, f[x], g[x]]\}$ Note that, if S is a set of clauses that represents a standard form of a formula F, then F is inconsistent iff S is inconsistent.

A clause is a disjunction of literals.

Examples: $\neg P[x] \lor Q[y, f[x]], P[x]$

A set of clauses S is regarded as a conjunction of all clauses in S, where every variable in S is considered governed by a universal quantifier.

Example: Let

$$\forall \exists_{x \ y,z} ((\neg P[x,y] \land Q[x,z]) \lor R[x,y,z])$$

The standard form of the formula above, that is

 $\forall ((\neg P[x, f[x]] \lor R[x, f[x], g[x]]) \land (Q(x, g[x]) \lor R[x, f[x], g[x]]))$

can be represented by the following set of clauses

$\{\neg P[x, f[x]] \lor R[x, f[x], g[x]], Q(x, g[x]) \lor R[x, f[x], g[x]]\}$

Note that, if S is a set of clauses that represents a standard form of a formula F, then F is inconsistent iff S is inconsistent.

A clause is a disjunction of literals.

Examples: $\neg P[x] \lor Q[y, f[x]], P[x]$

A set of clauses S is regarded as a conjunction of all clauses in S, where every variable in S is considered governed by a universal quantifier.

Example: Let

$$\forall \exists_{x \ y,z} ((\neg P[x,y] \land Q[x,z]) \lor R[x,y,z])$$

The standard form of the formula above, that is

 $\forall_{x} ((\neg P[x, f[x]] \lor R[x, f[x], g[x]]) \land (Q(x, g[x]) \lor R[x, f[x], g[x]]))$

can be represented by the following set of clauses

 $\{\neg P[x, f[x]] \lor R[x, f[x], g[x]], Q(x, g[x]) \lor R[x, f[x], g[x]]\}$

Note that, if S is a set of clauses that represents a standard form of a formula F, then F is inconsistent iff S is inconsistent.

Formulas Clausification (cont'd)

Example :

Transform the formulas F_1 , F_2 , F_3 , F_4 , and $\neg G$ into a set of clauses, where

 $F_4: \quad rac{\forall}{x} P[x, i[x], e] \land rac{\forall}{x} P[i[x], x, e]$

$$G: \quad \mathop{\forall}_{x} P[x, x, e] \; \Rightarrow \; \mathop{\forall}_{u, v, w} (P[u, v, w] \; \Rightarrow \; P[v, u, w])$$

Outline

Formula Clausification

Substitution & Unification

Resolution Principle for FOL

Motivation: apply resolution principle to FOL formulas.

Example: Let

 $C_1: \qquad P[x] \lor Q[x] \\ C_2: \qquad \neg P[f[x]] \lor R[x]$

Motivation: apply resolution principle to FOL formulas. Example: Let

$$C_1: \qquad P[x] \lor Q[x] \\ C_2: \qquad \neg P[f[x]] \lor R[x]$$

Motivation: apply resolution principle to FOL formulas. Example: Let

$$C_1: \qquad P[x] \lor Q[x] \\ C_2: \qquad \neg P[f[x]] \lor R[x]$$

Let $x \to f[a]$ in $C_1, x \to a$ in C_2 .

Motivation: apply resolution principle to FOL formulas. Example: Let

$$C_1: \qquad P[x] \lor Q[x] \\ C_2: \qquad \neg P[f[x]] \lor R[x]$$

Let $x \to f[a]$ in $C_1, x \to a$ in C_2 .

We have

$$\begin{array}{ll} C_1': & P[f[a]] \lor Q[f[a]] \\ C_2': & \neg P[f[a]] \lor R[a] \end{array}$$

Motivation: apply resolution principle to FOL formulas. Example: Let

$$\begin{array}{ll} C_1: & P[x] \lor Q[x] \\ C_2: & \neg P[f[x]] \lor R[x] \end{array}$$

Let $x \to f[a]$ in $C_1, x \to a$ in C_2 .

We have

$$\begin{array}{lll} C_1': & P[f[a]] \lor Q[f[a]] \\ C_2': & \neg P[f[a]] \lor R[a] \end{array}$$

 C'_1 and C'_2 are ground instances.

Motivation: apply resolution principle to FOL formulas. Example: Let

$$C_1: \qquad P[x] \lor Q[x] \\ C_2: \qquad \neg P[f[x]] \lor R[x]$$

Let $x \to f[a]$ in $C_1, x \to a$ in C_2 .

We have

$$\begin{array}{ll} C_1': & P[f[a]] \lor Q[f[a]] \\ C_2': & \neg P[f[a]] \lor R[a] \end{array}$$

 C'_1 and C'_2 are ground instances.

A resolvent of C'_1 and C'_2 is

 C'_3 : $Q[f[a]] \lor R[a]$

Motivation: apply resolution principle to FOL formulas. Example: Let

Let $x \to f[x]$ in C_1 . We have

 $C_1^*: \qquad P[f[x]] \lor Q[f[x]]$

 C_1^* is an instance of C_1 .

A resolvent of

$$\begin{array}{ll} C_2: & \neg P[f[x]] \lor R[x] \\ C_1^*: & P[f[x]] \lor Q[f[x]] \end{array}$$

İS

 $C_3: \qquad Q[f[x]] \vee R[x]$

Motivation: apply resolution principle to FOL formulas. Example: Let

Let $x \to f[x]$ in C_1 . We have

 $C_1^*: \qquad P[f[x]] \lor Q[f[x]]$

C_1^* is an instance of C_1 .

A resolvent of

C_2 :	$\neg P[f[x]] \lor R[x]$
C_{1}^{*} :	$P[f[x]] \vee Q[f[x]]$

is

 $C_3: \qquad Q[f[x]] \vee R[x]$

Motivation: apply resolution principle to FOL formulas. Example: Let

$$C_1: \qquad P[x] \lor Q[x] \\ C_2: \qquad \neg P[f[x]] \lor R[x]$$

Let $x \to f[x]$ in C_1 . We have

$$C_1^*: \qquad P[f[x]] \lor Q[f[x]]$$

 C_1^* is an instance of C_1 .

A resolvent of

$$\begin{array}{ll} C_2: & \neg P[f[x]] \lor R[x] \\ C_1^*: & P[f[x]] \lor Q[f[x]] \end{array}$$

is

 $C_3: \qquad Q[f[x]] \vee R[x]$

Motivation: apply resolution principle to FOL formulas. Example: Let

$$C_1: \qquad P[x] \lor Q[x] \\ C_2: \qquad \neg P[f[x]] \lor R[x]$$

Let $x \to f[x]$ in C_1 . We have

$$C_1^*: \qquad P[f[x]] \lor Q[f[x]]$$

 C_1^* is an instance of C_1 .

A resolvent of

$$\begin{array}{ll} C_2: & \neg P[f[x]] \lor R[x] \\ C_1^*: & P[f[x]] \lor Q[f[x]] \end{array}$$

is

$$C_3: \qquad Q[f[x]] \vee R[x]$$

Motivation: apply resolution principle to FOL formulas. Example: Let

$$C_1: \qquad P[x] \lor Q[x] \\ C_2: \qquad \neg P[f[x]] \lor R[x]$$

Let $x \to f[x]$ in C_1 . We have

$$C_1^*: \qquad P[f[x]] \lor Q[f[x]]$$

 C_1^* is an instance of C_1 .

A resolvent of

$$\begin{array}{ll} C_2: & \neg P[f[x]] \lor R[x] \\ C_1^*: & P[f[x]] \lor Q[f[x]] \end{array}$$

is

$$C_3: \qquad Q[f[x]] \vee R[x]$$

A substitution σ is a finite set of the form $\{v_1 \rightarrow t_1, ..., v_n \rightarrow t_n\}$ where every t_i is a term different from v_i and no two elements in the set have the same variable v_i .

Let σ be defined as above and E be an expression. Then $E\sigma$ is an expression obtained from E by replacing simultaneously each occurrence of v_i in E by the term t_i

Example: Let $\sigma = \{x \rightarrow z, z \rightarrow h[a, y]\}$ and E = f[z, a, g[x], y]. Then $E\sigma = f[h[a, y], a, g[z], y]$.

A substitution σ is a finite set of the form $\{v_1 \rightarrow t_1, ..., v_n \rightarrow t_n\}$ where every t_i is a term different from v_i and no two elements in the set have the same variable v_i .

Let σ be defined as above and E be an expression. Then $E\sigma$ is an expression obtained from E by replacing simultaneously each occurrence of v_i in E by the term t_i

Example: Let $\sigma = \{x \rightarrow z, z \rightarrow h[a, y]\}$ and E = f[z, a, g[x], y]. Then $E\sigma = f[h[a, y], a, g[z], y]$.

A substitution σ is a finite set of the form $\{v_1 \rightarrow t_1, ..., v_n \rightarrow t_n\}$ where every t_i is a term different from v_i and no two elements in the set have the same variable v_i .

Let σ be defined as above and E be an expression. Then $E\sigma$ is an expression obtained from E by replacing simultaneously each occurrence of v_i in E by the term t_i

Example: Let $\sigma = \{x \rightarrow z, z \rightarrow h[a, y]\}$ and E = f[z, a, g[x], y]. Then $E\sigma = f[h[a, y], a, g[z], y]$.

Let

$$\theta = \{x_1 \to t_1, \dots, x_n \to t_n\}$$
$$\lambda = \{y_1 \to u_1, \dots, y_n \to u_n\}$$

Then the composition of θ and λ ($\theta \circ \lambda$) is obtained from the set

$$\{x_1 \rightarrow t_1 \lambda, ..., x_n \rightarrow t_n \lambda, y_1 \rightarrow u_1, ..., y_n \rightarrow u_n\}$$

by deleting any element $x_j \to t_j \lambda$ for which $x_j = t_j \lambda$ and any element $y_i \to u_i$ such that y_i is among $\{x_1, ..., x_n\}$.

Example 1:

$$\theta = \{x \to f[y], y \to z\}$$

 $\lambda = \{x \to a, y \to b, z \to y\}$

Then

$$\theta \circ \lambda = \{ x \to f[b], y \to y, x \to a, y \to b, z \to y \}$$
$$= \{ x \to f[b], z \to y \}$$

Example 2:

$$\theta_1 = \{x \to a, y \to f[z], z \to y\}$$

$$\theta_2 = \{x \to b, y \to z, z \to g[x]\}$$

$$\theta_1 \circ \theta_2 = \{ x \to a, y \to f[g[x]], z \to z, x \to b, y \to z, z \to g[x] \}$$
$$= \{ x \to a, y \to f[g[x]] \}$$

Example 1:

$$\theta = \{x \to f[y], y \to z\}$$
$$\lambda = \{x \to a, y \to b, z \to y\}$$

Then

$$\theta \circ \lambda = \{x \to f[b], y \to y, x \to a, y \to b, z \to y\}$$
$$= \{x \to f[b], z \to y\}$$

Example 2:

$$\theta_1 = \{x \to a, y \to f[z], z \to y\}$$

$$\theta_2 = \{x \to b, y \to z, z \to g[x]\}$$

$$\theta_1 \circ \theta_2 = \{ x \to a, y \to f[g[x]], z \to z, x \to b, y \to z, z \to g[x] \}$$
$$= \{ x \to a, y \to f[g[x]] \}$$

Example 1:

$$\theta = \{x \to f[y], y \to z\}$$
$$\lambda = \{x \to a, y \to b, z \to y\}$$

Then

$$\theta \circ \lambda = \{x \to f[b], y \to y, x \to a, y \to b, z \to y\}$$
$$= \{x \to f[b], z \to y\}$$

Example 2:

$$\theta_1 = \{x \to a, y \to f[z], z \to y\}$$

$$\theta_2 = \{x \to b, y \to z, z \to g[x]\}$$

$$\theta_1 \circ \theta_2 = \{ x \to a, y \to f[g[x]], z \to z, x \to b, y \to z, z \to g[x] \}$$
$$= \{ x \to a, y \to f[g[x]] \}$$

Example 1:

$$\theta = \{x \to f[y], y \to z\}$$
$$\lambda = \{x \to a, y \to b, z \to y\}$$

Then

$$\theta \circ \lambda = \{x \to f[b], y \to y, x \to a, y \to b, z \to y\}$$
$$= \{x \to f[b], z \to y\}$$

Example 2:

$$\theta_1 = \{x \to a, y \to f[z], z \to y\}$$

$$\theta_2 = \{x \to b, y \to z, z \to g[x]\}$$

$$\begin{aligned} \theta_1 \circ \theta_2 &= \{ x \to a, y \to f[g[x]], z \to z, x \to b, y \to z, z \to g[x] \} \\ &= \{ x \to a, y \to f[g[x]] \} \end{aligned}$$

Unification

A substitution θ is called a unifier for a set $\{E_1, ..., E_k\}$ iff $E_1\theta = ... = E_k\theta$. The set $\{E_1, ..., E_k\}$ is said to be unifiable iff there exists an unifier for it.

A unifier σ for a set $\{E_1, ..., E_k\}$ of expressions is a most general unifier iff for each unifier θ for the set there is a substitution λ such that $\theta = \sigma \circ \lambda$. Example: The set $\{P[a, y], P[x, f[b]]\}$ is unifiable since $\sigma = \{x \to a, y \to f[b]\}$ is a unifier for the set.

Unification

A substitution θ is called a unifier for a set $\{E_1, ..., E_k\}$ iff $E_1\theta = ... = E_k\theta$. The set $\{E_1, ..., E_k\}$ is said to be unifiable iff there exists an unifier for it.

A unifier σ for a set $\{E_1, ..., E_k\}$ of expressions is a most general unifier iff for each unifier θ for the set there is a substitution λ such that $\theta = \sigma \circ \lambda$.

Example: The set $\{P[a, y], P[x, f[b]]\}$ is unifiable since $\sigma = \{x \rightarrow a, y \rightarrow f[b]\}$ is a unifier for the set.

Unification

A substitution θ is called a unifier for a set $\{E_1, ..., E_k\}$ iff $E_1\theta = ... = E_k\theta$. The set $\{E_1, ..., E_k\}$ is said to be unifiable iff there exists an unifier for it.

A unifier σ for a set $\{E_1, ..., E_k\}$ of expressions is a most general unifier iff for each unifier θ for the set there is a substitution λ such that $\theta = \sigma \circ \lambda$. Example: The set $\{P[a, y], P[x, f[b]]\}$ is unifiable since $\sigma = \{x \to a, y \to f[b]\}$ is a unifier for the set.

Unification algorithm for finding a most general unifier (mgu), or its nonexistence, for a finite set of nonempty expressions.

The disagreement set of a nonempty set W of expressions is obtained by

- Iocating the first symbol (starting from the left) at which not all the expressions in W have exactly the same symbol and then
- extracting from each expression in W the subexpression that begins with the symbol occupying that position.

Unification algorithm for finding a most general unifier (mgu), or its nonexistence, for a finite set of nonempty expressions.

The disagreement set of a nonempty set W of expressions is obtained by

- Iocating the first symbol (starting from the left) at which not all the expressions in W have exactly the same symbol and then
- extracting from each expression in W the subexpression that begins with the symbol occupying that position.

Unification algorithm for finding a most general unifier (mgu), or its nonexistence, for a finite set of nonempty expressions.

The disagreement set of a nonempty set W of expressions is obtained by

- Iocating the first symbol (starting from the left) at which not all the expressions in W have exactly the same symbol and then
- extracting from each expression in W the subexpression that begins with the symbol occupying that position.

Unification algorithm for finding a most general unifier (mgu), or its nonexistence, for a finite set of nonempty expressions.

The disagreement set of a nonempty set W of expressions is obtained by

- Iocating the first symbol (starting from the left) at which not all the expressions in W have exactly the same symbol and then
- extracting from each expression in W the subexpression that begins with the symbol occupying that position.

Unification Algorithm

Unification algorithm for finding a most general unifier (mgu), or its nonexistence, for a finite set of nonempty expressions.

The disagreement set of a nonempty set W of expressions is obtained by

- Iocating the first symbol (starting from the left) at which not all the expressions in W have exactly the same symbol and then
- extracting from each expression in W the subexpression that begins with the symbol occupying that position.

Example: The disagreement set of $\{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$ is $\{a, z\}$.

Unification Algorithm

1. $k := 0, W_k := W, \sigma_k := \varepsilon$

- **2.** If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- **3.** If there exists v_k , $t_k \in D_k$ s.t. v_k is a variable which does not occur in t_k , go to 4. Otherwise, stop; W is not unifiable.

4. Let
$$\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$$
 and $W_{k+1} = W_k \{v_k \to t_k\}$.

5. k = k + 1 and go to 2.

- 1. $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- **2.** $W = \{Q[a], Q[b]\}$
- **3.** $W = \{P[x], P[f[x]]\}$
- **4.** $W = \{P[x], Q[y]\}$

Unification Algorithm

1. k := 0, $W_k := W$, $\sigma_k := \varepsilon$

- **2.** If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- **3.** If there exists v_k , $t_k \in D_k$ s.t. v_k is a variable which does not occur in t_k , go to 4. Otherwise, stop; W is not unifiable.
- **4.** Let $\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$ and $W_{k+1} = W_k \{v_k \to t_k\}$.
- **5.** k = k + 1 and go to 2.

- 1. $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- **2.** $W = \{Q[a], Q[b]\}$
- **3.** $W = \{P[x], P[f[x]]\}$
- **4.** $W = \{P[x], Q[y]\}$

Unification Algorithm

- **1.** k := 0, $W_k := W$, $\sigma_k := \varepsilon$
- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- **3.** If there exists v_k , $t_k \in D_k$ s.t. v_k is a variable which does not occur in t_k , go to 4. Otherwise, stop; W is not unifiable.
- **4.** Let $\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$ and $W_{k+1} = W_k \{v_k \to t_k\}$.
- **5.** k = k + 1 and go to 2.

- 1. $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- **2.** $W = \{Q[a], Q[b]\}$
- **3.** $W = \{P[x], P[f[x]]\}$
- **4.** $W = \{P[x], Q[y]\}$

Unification Algorithm

- **1.** k := 0, $W_k := W$, $\sigma_k := \varepsilon$
- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- **3.** If there exists v_k , $t_k \in D_k$ s.t. v_k is a variable which does not occur in t_k , go to 4. Otherwise, stop; W is not unifiable.
- **4.** Let $\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$ and $W_{k+1} = W_k \{v_k \to t_k\}$.
- **5.** k = k + 1 and go to 2.

- 1. $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- **2.** $W = \{Q[a], Q[b]\}$
- **3.** $W = \{P[x], P[f[x]]\}$
- **4.** $W = \{P[x], Q[y]\}$

Unification Algorithm

1.
$$k := 0$$
, $W_k := W$, $\sigma_k := \varepsilon$

- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- **3.** If there exists v_k , $t_k \in D_k$ s.t. v_k is a variable which does not occur in t_k , go to 4. Otherwise, stop; W is not unifiable.

4. Let
$$\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$$
 and $W_{k+1} = W_k \{v_k \to t_k\}$.

5. k = k + 1 and go to 2.

- **1.** $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- **2.** $W = \{Q[a], Q[b]\}$
- **3.** $W = \{P[x], P[f[x]]\}$
- **4.** $W = \{P[x], Q[y]\}$

Unification Algorithm

1.
$$k := 0$$
, $W_k := W$, $\sigma_k := \varepsilon$

- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- **3.** If there exists v_k , $t_k \in D_k$ s.t. v_k is a variable which does not occur in t_k , go to 4. Otherwise, stop; W is not unifiable.

4. Let
$$\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$$
 and $W_{k+1} = W_k \{v_k \to t_k\}$.

5.
$$k = k + 1$$
 and go to 2.

- **1.** $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- **2.** $W = \{Q[a], Q[b]\}$
- **3.** $W = \{P[x], P[f[x]]\}$
- **4.** $W = \{P[x], Q[y]\}$

Unification Algorithm

1.
$$k := 0$$
, $W_k := W$, $\sigma_k := \varepsilon$

- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- **3.** If there exists v_k , $t_k \in D_k$ s.t. v_k is a variable which does not occur in t_k , go to 4. Otherwise, stop; W is not unifiable.

4. Let
$$\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$$
 and $W_{k+1} = W_k \{v_k \to t_k\}$.

5. k = k + 1 and go to 2.

Example: Find a most general unifier for

W = {P[a,x,f[g[y]]], P[z,f[z],f[u]]}
 W = {Q[a], Q[b]}
 W = {P[x], P[f[x]]}
 W = {P[x], Q[y]}

Unification Algorithm

1.
$$k := 0$$
, $W_k := W$, $\sigma_k := \varepsilon$

- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- **3.** If there exists v_k , $t_k \in D_k$ s.t. v_k is a variable which does not occur in t_k , go to 4. Otherwise, stop; W is not unifiable.

4. Let
$$\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$$
 and $W_{k+1} = W_k \{v_k \to t_k\}$.

5.
$$k = k + 1$$
 and go to 2.

Example: Find a most general unifier for

4. $W = \{P[x], Q[y]\}$

Unification Algorithm

1.
$$k := 0$$
, $W_k := W$, $\sigma_k := \varepsilon$

- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- **3.** If there exists v_k , $t_k \in D_k$ s.t. v_k is a variable which does not occur in t_k , go to 4. Otherwise, stop; W is not unifiable.

4. Let
$$\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$$
 and $W_{k+1} = W_k \{v_k \to t_k\}$.

5.
$$k = k + 1$$
 and go to 2.

Example: Find a most general unifier for

- **1.** $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- **2.** $W = \{Q[a], Q[b]\}$
- **3.** $W = \{P[x], P[f[x]]\}$

4. $W = \{P[x], Q[y]\}$

Unification Algorithm

1.
$$k := 0$$
, $W_k := W$, $\sigma_k := \varepsilon$

- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- **3.** If there exists v_k , $t_k \in D_k$ s.t. v_k is a variable which does not occur in t_k , go to 4. Otherwise, stop; W is not unifiable.

4. Let
$$\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$$
 and $W_{k+1} = W_k \{v_k \to t_k\}$.

5.
$$k = k + 1$$
 and go to 2.

Example: Find a most general unifier for

- **1.** $W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$
- **2.** $W = \{Q[a], Q[b]\}$
- **3.** $W = \{P[x], P[f[x]]\}$

4. $W = \{P[x], Q[y]\}$

Unification Algorithm

1.
$$k := 0$$
, $W_k := W$, $\sigma_k := \varepsilon$

- 2. If W_k is singleton then stop; σ_k is mgu of W. Otherwise find the disagreement set D_k of W_k .
- **3.** If there exists v_k , $t_k \in D_k$ s.t. v_k is a variable which does not occur in t_k , go to 4. Otherwise, stop; W is not unifiable.

4. Let
$$\sigma_{k+1} = \sigma_k \circ \{v_k \to t_k\}$$
 and $W_{k+1} = W_k \{v_k \to t_k\}$.

5.
$$k = k + 1$$
 and go to 2.

1.
$$W = \{P[a, x, f[g[y]]], P[z, f[z], f[u]]\}$$

2. $W = \{Q[a], Q[b]\}$
3. $W = \{P[x], P[f[x]]\}$
4. $W = \{P[x], Q[y]\}$

Outline

Formula Clausification

Substitution & Unification

Resolution Principle for FOL

If two or more literals (with the same sign) of a clause C have σ the mgu, then $C\sigma$ is called a factor of C.

Example: Let $C : P[x] \lor P[a] \lor Q[f[x]] \lor Q[f[a]]$ be a clause. Then the mgu is $\sigma = \{x \to a\}$ and $C\sigma : P[a] \lor Q[f[a]]$ is a factor of C.

Let C_1 and C_2 be two clauses with *no variables in common*. Let L_1 and L_2 be two literals in C_1 and C_2 , respectively. If L_1 and $\neg L_2$ have mgu σ , then the clause $C_1\sigma \lor C_2\sigma$ is called a binary resolvent of C_1 and C_2 . Example: Let

 $C_1: P[x] \lor Q[x]$ $C_2: \neg P[a] \lor R[x]$

By renaming x with y in C_2 , we have

$$C_2: \quad \neg P[a] \lor R[y]$$

If two or more literals (with the same sign) of a clause C have σ the mgu, then $C\sigma$ is called a factor of C.

Example: Let $C : P[x] \lor P[a] \lor Q[f[x]] \lor Q[f[a]]$ be a clause. Then the mgu is $\sigma = \{x \to a\}$ and $C\sigma : P[a] \lor Q[f[a]]$ is a factor of C.

Let C_1 and C_2 be two clauses with *no variables in common*. Let L_1 and L_2 be two literals in C_1 and C_2 , respectively. If L_1 and $\neg L_2$ have mgu σ , then the clause $C_1\sigma \lor C_2\sigma$ is called a binary resolvent of C_1 and C_2 . Example: Let

 $C_1: P[x] \lor Q[x]$ $C_2: \neg P[a] \lor R[x]$

By renaming x with y in C_2 , we have

$$C_2: \quad \neg P[a] \lor R[y]$$

If two or more literals (with the same sign) of a clause C have σ the mgu, then $C\sigma$ is called a factor of C.

Example: Let $C : P[x] \lor P[a] \lor Q[f[x]] \lor Q[f[a]]$ be a clause. Then the mgu is $\sigma = \{x \to a\}$ and $C\sigma : P[a] \lor Q[f[a]]$ is a factor of C.

Let C_1 and C_2 be two clauses with *no variables in common*. Let L_1 and L_2 be two literals in C_1 and C_2 , respectively. If L_1 and $\neg L_2$ have mgu σ , then the clause $C_1\sigma \lor C_2\sigma$ is called a binary resolvent of C_1 and C_2 . Example: Let

 $C_1: P[x] \lor Q[x]$ $C_2: \neg P[a] \lor R[x]$

By renaming x with y in C_2 , we have

 $C_2: \quad \neg P[a] \lor R[y]$

If two or more literals (with the same sign) of a clause C have σ the mgu, then $C\sigma$ is called a factor of C.

Example: Let $C: P[x] \lor P[a] \lor Q[f[x]] \lor Q[f[a]]$ be a clause. Then the mgu is $\sigma = \{x \to a\}$ and $C\sigma: P[a] \lor Q[f[a]]$ is a factor of C.

Let C_1 and C_2 be two clauses with *no variables in common*. Let L_1 and L_2 be two literals in C_1 and C_2 , respectively. If L_1 and $\neg L_2$ have mgu σ , then the clause $C_1\sigma \lor C_2\sigma$ is called a binary resolvent of C_1 and C_2 . Example: Let

 $C_1: P[x] \lor Q[x]$ $C_2: \neg P[a] \lor R[x]$

By renaming x with y in C_2 , we have

 $C_2: \qquad \neg P[a] \lor R[y]$

If two or more literals (with the same sign) of a clause C have σ the mgu, then $C\sigma$ is called a factor of C.

Example: Let $C: P[x] \lor P[a] \lor Q[f[x]] \lor Q[f[a]]$ be a clause. Then the mgu is $\sigma = \{x \to a\}$ and $C\sigma: P[a] \lor Q[f[a]]$ is a factor of C.

Let C_1 and C_2 be two clauses with *no variables in common*. Let L_1 and L_2 be two literals in C_1 and C_2 , respectively. If L_1 and $\neg L_2$ have mgu σ , then the clause $C_1\sigma \lor C_2\sigma$ is called a binary resolvent of C_1 and C_2 . Example: Let

 $C_1: P[x] \lor Q[x]$ $C_2: \neg P[a] \lor R[x]$

By renaming x with y in C_2 , we have

 $C_2: \quad \neg P[a] \lor R[y]$

If two or more literals (with the same sign) of a clause C have σ the mgu, then $C\sigma$ is called a factor of C.

Example: Let $C: P[x] \lor P[a] \lor Q[f[x]] \lor Q[f[a]]$ be a clause. Then the mgu is $\sigma = \{x \to a\}$ and $C\sigma: P[a] \lor Q[f[a]]$ is a factor of C.

Let C_1 and C_2 be two clauses with *no variables in common*. Let L_1 and L_2 be two literals in C_1 and C_2 , respectively. If L_1 and $\neg L_2$ have mgu σ , then the clause $C_1\sigma \lor C_2\sigma$ is called a binary resolvent of C_1 and C_2 . Example: Let

 $C_1: P[x] \lor Q[x]$ $C_2: \neg P[a] \lor R[x]$

By renaming x with y in C_2 , we have

$$C_2: \qquad \neg P[a] \lor R[y]$$

Resolution Principle for FOL (cont'd) Resolution: (Robinson, 1965)

- ▶ is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

- **1.** Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are obtained
- **2.** Start derivation and try to obtain the empty clause from the set *C* of clauses.
- **3.** In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to *C*.
- 4. If the empty clause appears, stop: Contradiction found, G is proved.
- 5. If no step can be made and the empty clause is not found, then *H* can not be proved.

Resolution: (Robinson, 1965)

- ▶ is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

- **1.** Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are obtained
- **2.** Start derivation and try to obtain the empty clause from the set *C* of clauses.
- **3.** In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to *C*.
- 4. If the empty clause appears, stop: Contradiction found, G is proved.
- 5. If no step can be made and the empty clause is not found, then *H* can not be proved.

Resolution: (Robinson, 1965)

- ▶ is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

- **1.** Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are obtained
- **2.** Start derivation and try to obtain the empty clause from the set *C* of clauses.
- **3.** In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to *C*.
- 4. If the empty clause appears, stop: Contradiction found, G is proved.
- 5. If no step can be made and the empty clause is not found, then *H* can not be proved.

Resolution: (Robinson, 1965)

- ▶ is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

- **1.** Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are obtained
- **2.** Start derivation and try to obtain the empty clause from the set *C* of clauses.
- **3.** In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to *C*.
- 4. If the empty clause appears, stop: Contradiction found, G is proved.
- 5. If no step can be made and the empty clause is not found, then *H* can not be proved.

Resolution: (Robinson, 1965)

- ▶ is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

- **1.** Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are obtained
- **2.** Start derivation and try to obtain the empty clause from the set *C* of clauses.
- **3.** In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to *C*.
- 4. If the empty clause appears, stop: Contradiction found, G is proved.
- 5. If no step can be made and the empty clause is not found, then *H* can not be proved.

Resolution: (Robinson, 1965)

- ▶ is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

- 1. Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are obtained
- **2.** Start derivation and try to obtain the empty clause from the set *C* of clauses.
- **3.** In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
- 4. If the empty clause appears, stop: Contradiction found, G is proved.
- **5.** If no step can be made and the empty clause is not found, then *H* can not be proved.

Resolution: (Robinson, 1965)

- ▶ is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

How does resolution work? Given: formulas $F_1, ..., F_n$

Prove: *G* by resolution.

- 1. Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are obtained
- **2.** Start derivation and try to obtain the empty clause from the set *C* of clauses.
- **3.** In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
- 4. If the empty clause appears, stop: Contradiction found, G is proved.
- 5. If no step can be made and the empty clause is not found, then *H* can not be proved.

Resolution: (Robinson, 1965)

- ▶ is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

How does resolution work? Given: formulas $F_1, ..., F_n$

Prove: *G* by resolution.

- 1. Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are obtained
- **2.** Start derivation and try to obtain the empty clause from the set *C* of clauses.
- 3. In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
- 4. If the empty clause appears, stop: Contradiction found, G is proved.
- 5. If no step can be made and the empty clause is not found, then *H* can not be proved.

Resolution: (Robinson, 1965)

- ▶ is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

How does resolution work? Given: formulas $F_1, ..., F_n$

Prove: *G* by resolution.

- 1. Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are obtained
- **2.** Start derivation and try to obtain the empty clause from the set *C* of clauses.
- 3. In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
- 4. If the empty clause appears, stop: Contradiction found, G is proved.
- **5.** If no step can be made and the empty clause is not found, then *H* can not be proved.

Resolution: (Robinson, 1965)

- ▶ is an inference rule which generates resolvents from a set of clauses
- is a refutation proof procedure: empty clause is tried to be derived from a set of clauses
- is refutationally complete: a set of clauses is unsatisfiable iff the empty clause can be derived

How does resolution work?

Given: formulas F_1 , ..., F_n Prove: *G* by resolution.

- 1. Bring $F_1, ..., F_n, ..., \neg G$ into standard form and write the clauses which are obtained
- **2.** Start derivation and try to obtain the empty clause from the set *C* of clauses.
- 3. In the derivation use resolution inference rule and factoring rules to derive new clauses; these new clauses are added to C.
- 4. If the empty clause appears, stop: Contradiction found, G is proved.
- 5. If no step can be made and the empty clause is not found, then H can not be proved.

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.

 $" \Longrightarrow "$ (Completeness)

"⇐=" (Correctness)

- Assume S is satisfiable and derive a contradiction.
- Since there exists a deduction from S, we have the resolvents R₁,...R_n obtained in this deduction.
- Since S is satisfiable there exists an interpretation satisfying each clause in S.
- ▶ Any resolvent of any two clauses in *S* is also satisfied by *I*, since these resolvents are logical consequences of the two clauses.
- Hence I satisfies R₁,...R_n which is impossible since one of R_i is the empty clause.

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.

- \implies " (Completeness)
- " \Leftarrow " (Correctness)
 - ▶ Assume S is satisfiable and derive a contradiction.
 - Since there exists a deduction from S, we have the resolvents R₁,...R_n obtained in this deduction.
 - Since S is satisfiable there exists an interpretation satisfying each clause in S.
 - ▶ Any resolvent of any two clauses in *S* is also satisfied by *I*, since these resolvents are logical consequences of the two clauses.
 - Hence I satisfies R₁,...R_n which is impossible since one of R_i is the empty clause.

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.

- " \implies " (Completeness)
- "⇐=" (Correctness)
 - Assume S is satisfiable and derive a contradiction.
 - Since there exists a deduction from S, we have the resolvents R₁,...R_n obtained in this deduction.
 - Since S is satisfiable there exists an interpretation satisfying each clause in S.
 - ▶ Any resolvent of any two clauses in *S* is also satisfied by *I*, since these resolvents are logical consequences of the two clauses.
 - Hence I satisfies R₁,...R_n which is impossible since one of R_i is the empty clause.

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.

- " \implies " (Completeness)
- •••

" \Leftarrow " (Correctness)

- Assume S is satisfiable and derive a contradiction.
- Since there exists a deduction from S, we have the resolvents R₁,...R_n obtained in this deduction.
- Since S is satisfiable there exists an interpretation satisfying each clause in S.
- ▶ Any resolvent of any two clauses in *S* is also satisfied by *I*, since these resolvents are logical consequences of the two clauses.
- Hence I satisfies R₁,...R_n which is impossible since one of R_i is the empty clause.

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.

- " \Longrightarrow " (Completeness)
-

"⇐=" (Correctness)

► Assume *S* is satisfiable and derive a contradiction.

- Since there exists a deduction from S, we have the resolvents R_1, \dots, R_n obtained in this deduction.
- ▶ Since *S* is satisfiable there exists an interpretation satisfying each clause in *S*.
- ► Any resolvent of any two clauses in *S* is also satisfied by *I*, since these resolvents are logical consequences of the two clauses.
- ▶ Hence *I* satisfies *R*₁,...*R*_n which is impossible since one of *R*_i is the empty clause.

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.

" \Longrightarrow " (Completeness)

•••

" \Leftarrow " (Correctness)

- Assume *S* is satisfiable and derive a contradiction.
- Since there exists a deduction from S, we have the resolvents R_1, \dots, R_n obtained in this deduction.
- ▶ Since *S* is satisfiable there exists an interpretation satisfying each clause in *S*.
- ► Any resolvent of any two clauses in *S* is also satisfied by *I*, since these resolvents are logical consequences of the two clauses.
- ▶ Hence *I* satisfies *R*₁,...*R*_n which is impossible since one of *R*_i is the empty clause.

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.

" \Longrightarrow " (Completeness)

•••

"⇐=" (Correctness)

- Assume *S* is satisfiable and derive a contradiction.
- Since there exists a deduction from S, we have the resolvents $R_1, \dots R_n$ obtained in this deduction.
- ► Since *S* is satisfiable there exists an interpretation satisfying each clause in *S*.
- ► Any resolvent of any two clauses in *S* is also satisfied by *I*, since these resolvents are logical consequences of the two clauses.
- ▶ Hence *I* satisfies *R*₁,...*R*_n which is impossible since one of *R*_i is the empty clause.

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.

" \Longrightarrow " (Completeness)

•••

"⇐=" (Correctness)

- Assume *S* is satisfiable and derive a contradiction.
- Since there exists a deduction from S, we have the resolvents $R_1, \dots R_n$ obtained in this deduction.
- ► Since *S* is satisfiable there exists an interpretation satisfying each clause in *S*.
- ► Any resolvent of any two clauses in *S* is also satisfied by *I*, since these resolvents are logical consequences of the two clauses.
- ▶ Hence *I* satisfies *R*₁,...*R*_n which is impossible since one of *R*_i is the empty clause.

Theorem

A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S.

Proof.

" \Longrightarrow " (Completeness)

•••

"⇐=" (Correctness)

- Assume *S* is satisfiable and derive a contradiction.
- Since there exists a deduction from S, we have the resolvents $R_1, \dots R_n$ obtained in this deduction.
- ► Since *S* is satisfiable there exists an interpretation satisfying each clause in *S*.
- Any resolvent of any two clauses in S is also satisfied by I, since these resolvents are logical consequences of the two clauses.
- ► Hence I satisfies R₁,...R_n which is impossible since one of R_i is the empty clause.

Lemma

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

Proof.

Let

We have to prove that

$$L \vee C'_1, \ \neg L \vee C'_2 \models C'_1 \vee C'_2$$

that is, for any interpretation I if $\langle L \lor C'_1 \rangle_I = \langle \neg L \lor C'_2 \rangle_I = \mathbb{T}$ then $\langle C'_1 \lor C'_2 \rangle_I = \mathbb{T}$.

• Case
$$\langle L \rangle_I = \mathbb{T}$$
. Then $\langle C'_2 \rangle_I = \mathbb{T}$. Hence $\langle C'_1 \vee C'_2 \rangle_I = \mathbb{T}$.

Lemma

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

Proof.

Let

$$C_1: \qquad L \lor C'_1 \\ C_2: \qquad \neg L \lor C'_2$$

We have to prove that

$$L \lor C'_1, \ \neg L \lor C'_2 \models C'_1 \lor C'_2$$

that is, for any interpretation I if $\langle L \lor C'_1 \rangle_I = \langle \neg L \lor C'_2 \rangle_I = \mathbb{T}$ then $\langle C'_1 \lor C'_2 \rangle_I = \mathbb{T}$.

• Case
$$\langle L \rangle_I = \mathbb{T}$$
. Then $\langle C'_2 \rangle_I = \mathbb{T}$. Hence $\langle C'_1 \vee C'_2 \rangle_I = \mathbb{T}$.

Lemma

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

Proof.

Let

We have to prove that

$$L \lor C'_1, \ \neg L \lor C'_2 \models C'_1 \lor C'_2$$

that is, for any interpretation I if $\langle L \lor C'_1 \rangle_I = \langle \neg L \lor C'_2 \rangle_I = \mathbb{T}$ then $\langle C'_1 \lor C'_2 \rangle_I = \mathbb{T}$.

• Case
$$\langle L \rangle_I = \mathbb{T}$$
. Then $\langle C'_2 \rangle_I = \mathbb{T}$. Hence $\langle C'_1 \vee C'_2 \rangle_I = \mathbb{T}$.

Lemma

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

Proof.

Let

We have to prove that

$$L \lor C_1', \ \neg L \lor C_2' \models C_1' \lor C_2'$$

that is, for any interpretation I if $\langle L \lor C'_1 \rangle_I = \langle \neg L \lor C'_2 \rangle_I = \mathbb{T}$ then $\langle C'_1 \lor C'_2 \rangle_I = \mathbb{T}$.

• Case
$$\langle L \rangle_I = \mathbb{T}$$
. Then $\langle C'_2 \rangle_I = \mathbb{T}$. Hence $\langle C'_1 \vee C'_2 \rangle_I = \mathbb{T}$.

• Case
$$\langle L \rangle_I = \mathbb{F}$$
. Then $\langle C'_1 \rangle_I = \mathbb{T}$. Hence $\langle C'_1 \vee C'_2 \rangle_I = \mathbb{T}$.

Lemma

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

Proof.

Let

We have to prove that

$$L \lor C'_1, \ \neg L \lor C'_2 \models C'_1 \lor C'_2$$

that is, for any interpretation I if $\langle L \vee C'_1 \rangle_I = \langle \neg L \vee C'_2 \rangle_I = \mathbb{T}$ then $\langle C'_1 \vee C'_2 \rangle_I = \mathbb{T}$.

▶ Case
$$\langle L \rangle_I = \mathbb{T}$$
. Then $\langle C'_2 \rangle_I = \mathbb{T}$. Hence $\langle C'_1 \lor C'_2 \rangle_I = \mathbb{T}$.

Lemma

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

Proof.

Let

We have to prove that

$$L \lor C'_1, \ \neg L \lor C'_2 \models C'_1 \lor C'_2$$

that is, for any interpretation I if $\langle L \vee C'_1 \rangle_I = \langle \neg L \vee C'_2 \rangle_I = \mathbb{T}$ then $\langle C'_1 \vee C'_2 \rangle_I = \mathbb{T}$.

• Case
$$\langle L \rangle_I = \mathbb{T}$$
. Then $\langle C'_2 \rangle_I = \mathbb{T}$. Hence $\langle C'_1 \vee C'_2 \rangle_I = \mathbb{T}$.

Lemma

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

Proof.

Let

We have to prove that

$$L \lor C'_1, \ \neg L \lor C'_2 \models C'_1 \lor C'_2$$

that is, for any interpretation I if $\langle L \vee C'_1 \rangle_I = \langle \neg L \vee C'_2 \rangle_I = \mathbb{T}$ then $\langle C'_1 \vee C'_2 \rangle_I = \mathbb{T}$.

► Case
$$\langle L \rangle_I = \mathbb{T}$$
. Then $\langle C'_2 \rangle_I = \mathbb{T}$. Hence $\langle C'_1 \vee C'_2 \rangle_I = \mathbb{T}$.

Resolution Principle for FOL. Examples

Example 0: Let

$$\begin{array}{ll} C_1: & P[x] \lor Q[x] \\ C_2: & \neg P[a] \lor R[x] \end{array}$$

Apply resolution.

Example 1: Prove by resolution the following

$$\bigvee_{x} F[x] \lor \bigvee_{x} H[x] \neq \bigvee_{x} (F[x] \lor H[x])$$

Example 2: Prove by resolution that G is a logical consequence of F_1 and F_2 where

$$F_{1}: \quad \forall (C[x] \Rightarrow (W[x] \land R[x]))$$

$$F_{2}: \quad \exists (C[x] \land O[x])$$

$$G: \quad \exists (O[x] \land R[x])$$

Resolution Principle for FOL. Examples

Example 0: Let

$$C_1: \qquad P[x] \lor Q[x] \\ C_2: \qquad \neg P[a] \lor R[x]$$

Apply resolution.

Example 1: Prove by resolution the following

$$\bigvee_{x} F[x] \lor \bigvee_{x} H[x] \quad \neq \quad \bigvee_{x} (F[x] \lor H[x])$$

Example 2: Prove by resolution that G is a logical consequence of F_1 and F_2 where

$$F_{1}: \quad \forall (C[x] \Rightarrow (W[x] \land R[x]))$$

$$F_{2}: \quad \exists (C[x] \land O[x])$$

$$G: \quad \exists (O[x] \land R[x])$$

Resolution Principle for FOL. Examples

Example 0: Let

$$C_1: \qquad P[x] \lor Q[x] \\ C_2: \qquad \neg P[a] \lor R[x]$$

Apply resolution.

Example 1: Prove by resolution the following

$$\bigvee_{x} F[x] \lor \bigvee_{x} H[x] \quad \neq \quad \bigvee_{x} (F[x] \lor H[x])$$

Example 2: Prove by resolution that G is a logical consequence of F_1 and F_2 where

$$F_1: \quad \forall (C[x] \Rightarrow (W[x] \land R[x])) \\ F_2: \quad \exists (C[x] \land O[x]) \\ G: \quad \exists (O[x] \land R[x]) \end{cases}$$

Resolution Principle for FOL. Examples (cont'd)

Example 3: Prove by resolution that G is a logical consequence of F_1 and F_2 where

$$F_{1}: \quad \exists \left(P[x] \land \forall y(D[y] \Rightarrow L[x,y]) \right)$$

$$F_{2}: \quad \forall \left(P[x] \Rightarrow \forall y(Q[y] \Rightarrow \neg L[x,y]) \right)$$

$$G: \quad \forall x(D[x] \Rightarrow \neg Q[x])$$

Example 4: Prove by resolution that *G* is a logical consequence of *F* where

$$F: \quad \begin{array}{l} \forall \exists \left(S[x,y] \land M[y] \right) \Rightarrow \quad \exists \left(I[y] \land E[x,y] \right) \\ G: \quad \neg \exists I[x] \quad \Rightarrow \quad \forall \\ x,y \quad \left(S[x,y] \Rightarrow \neg M[y] \right) \end{array}$$

Resolution Principle for FOL. Examples (cont'd)

Example 3: Prove by resolution that G is a logical consequence of F_1 and F_2 where

$$F_{1}: \quad \exists \left(P[x] \land \forall y(D[y] \Rightarrow L[x,y]) \right)$$

$$F_{2}: \quad \forall \left(P[x] \Rightarrow \forall y(Q[y] \Rightarrow \neg L[x,y]) \right)$$

$$G: \quad \forall x(D[x] \Rightarrow \neg Q[x])$$

Example 4: Prove by resolution that G is a logical consequence of F where

$$\begin{array}{lll} F: & \forall \exists \left(S[x,y] \land M[y] \right) \Rightarrow & \exists \left(I[y] \land E[x,y] \right) \\ G: & \neg \exists I[x] \Rightarrow & \forall \\ _{x,y} \left(S[x,y] \Rightarrow \neg M[y] \right) \end{array}$$

Resolution Principle for FOL. Examples (cont'd)

Example 5: Prove by resolution that G is a logical consequence of F_1, F_2 , and F_3 where

$$F_{1}: \quad \forall (Q[x] \Rightarrow \neg P[x])$$

$$F_{2}: \quad \forall \left((R[x] \land \neg Q[x]) \Rightarrow \exists_{y} (T[x,y] \land S[y]) \right)$$

$$F_{3}: \quad \exists_{x} \left(P[x] \land \forall_{y} (T[x,y] \Rightarrow P[y]) \land R[x] \right)$$

$$G: \quad \exists_{x} (S[x] \land P[x])$$