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The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and ty, ..., t, are terms then
flty, ..., ta] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t, ..., t, are terms then
P[ty, ..., t,] is an atom.

An atom is T, [F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.
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Formulas are defined as follows:

1. An atom is a formula.

2. If F and G are formulas then =F, FV G, FA G, F = G, and
F <= G are formulas.

3. If Fis a formula and x is a free variable, then YF[X] and §|F[X] are
formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable is bound in formula F[x] if there is an occurrence of x in the
scope of a binding quantifier ¥ or 3.

X X
A variable is free in formula F[x] if there is an occurrence of x that is not
bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. Vx+1>x

2. = (3 ED0, fx]])
3. 3 (Ely. ] A Y (Elz ] = Ely.2]))
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Semantics

An interpretation | of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:

> to each constant we assign an element in D
» to each function symbol we assign a mapping from D" to D

> to each predicate symbol we assign a mapping from D" to {T,F}.

Then the semantics of the formula F is a function f : Z — {T,F}, where
| € T and 7 is the set of all interpretations of the formula F.



Semantics (cont’d)

Example: Find the truth value of the formula F: <= V 3 x+y > c,
xy

where
D = {0,1}
/- C = 0
' +1 = +z

> — >y
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Equivalences of Formulas
Two formulas F and G are equivalent iff the truth values of F and G are
the same under any interpretation.
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F—< G = (F=G)A(G=F)
F=G = —-FVG

FvG = GVF

(FVG)VH = FV(GVH)
FV(GAH) = (FVG)A(FVH)
FvT = T

FVF = F

Fv-F = T

-(FVG) = —-FA-G
(RX)F[x]VG = (Qx)(F[x]V G)
ﬁYF[X] = éﬁF[x]

VI v YGR # Y(FI v Gl)

)E(”‘_[X] Vv )E(lG[X] = g(F[X] V G[x])

FAG = GAF

(FAGYAH = FA(GAH)
FA(GVH) = (FAG)V(FAH)
FAT = F

FAF = F

FA-F = F

-(FAG) = —=FV-G
(AX)FIX]NG = (Qx)(F[x] A G)
“G)FI = ¥-FI]
YF[X]/\YG[X] = Y(F[X]/\G[X])

SFI A 361 2 3(FIX A Gl



Equivalences of Formulas

F—< G = (F=G)A(G=F)
F=G = —-FVG
FVG = GVF FAG = GAF
(FVG)VH = FV(GVH) (FAGYAH = FA(GAH)
FV(GAH) = (FVG)A(FVH) FA(GVH) = (FAG)V(FAH)
FvT = T FAT = F
FVF = F FAF = F
Fv-F = T FA-F = F
—\(—|F) = F
-(FVG) = =FA-G -(FAG) = —~FV-G
(RX)F[x]VG = (Qx)(F[x]V G) (R)FIX]NG = (Qx)(F[x]AG)
ﬁYF[X] = EIﬁF[x] ﬁ()E(Ix)F[x] = YﬁF[X]
VFIx] v VGIx] # V(FIX] v GIx]) || VFIXIAVGIX] = V(F[x]AGIX])
SFVIGH = 3(FXVGRD) || 3 A 36K £ 3(FIX A Gl
Note that

YF[X]\/YG[X] = YF[X]\/YG[)/] = XVyF[X]\/G[y]

SFx A 361 = 3FASGD] = vxﬂyF[x]/\G[y]
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Normal Forms

Normal forms:
1. CNF
DNF
negation normal form (NNF)

prenex normal form (PNF)

LA

Skolem standard form

Negation normal form (NNF) requires that =, A, and V to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Qix1)...(Qnxs) M, where Q; € {V,3} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form V M,

X1yee+5Xn

where M is a quantifier-free formula in CNF.
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Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal
form

(YP[X]) =Q = 3(PK= Q).

2. Bring the following formulas into Skolem standard form

>

¥ 3 ((<Pley] A Qlxz)) v Rlxy.2)

Y (3P[x,z]/\P[y,z]) = 3Q[x,y, u]
X,y \z u
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A formula F is satisfiable iff there exists an interpretation / such that
I EF.

A formula F is valid iff for all interpretations /, | = F.

Note that validity and satisfiability applies to closed formulas.
Examples: Prove that

» VP[x] A 3-P[y] is inconsistent.
x y

» VYP[x] = 3P[y] is valid.
x y
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