
Logic-based Program Verification
First-Order Logic

Mădălina Eraşcu Tudor Jebelean

Research Institute for Symbolic Computation,
Johannes Kepler University, Linz, Austria

{merascu,tjebelea}@risc.jku.at

October 23, 2013



Outline

Syntax

Semantics

Equivalences of Formulas

Normal Forms

(Un)Satisfiability & (In)Validity



Outline

Syntax

Semantics

Equivalences of Formulas

Normal Forms

(Un)Satisfiability & (In)Validity



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and

F ⇐⇒ G are formulas.
3. If F is a formula and x is a free variable, then ∀

x
F [x ] and ∃

x
F [x ] are

formulas.
4. Formulas are generated only by a finite number of applications of

the above rules.

A variable is bound in formula F [x ] if there is an occurrence of x in the
scope of a binding quantifier ∀

x
or ∃

x
.

A variable is free in formula F [x ] if there is an occurrence of x that is not
bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and

F ⇐⇒ G are formulas.
3. If F is a formula and x is a free variable, then ∀

x
F [x ] and ∃

x
F [x ] are

formulas.
4. Formulas are generated only by a finite number of applications of

the above rules.

A variable is bound in formula F [x ] if there is an occurrence of x in the
scope of a binding quantifier ∀

x
or ∃

x
.

A variable is free in formula F [x ] if there is an occurrence of x that is not
bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and

F ⇐⇒ G are formulas.
3. If F is a formula and x is a free variable, then ∀

x
F [x ] and ∃

x
F [x ] are

formulas.
4. Formulas are generated only by a finite number of applications of

the above rules.

A variable is bound in formula F [x ] if there is an occurrence of x in the
scope of a binding quantifier ∀

x
or ∃

x
.

A variable is free in formula F [x ] if there is an occurrence of x that is not
bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and

F ⇐⇒ G are formulas.
3. If F is a formula and x is a free variable, then ∀

x
F [x ] and ∃

x
F [x ] are

formulas.
4. Formulas are generated only by a finite number of applications of

the above rules.

A variable is bound in formula F [x ] if there is an occurrence of x in the
scope of a binding quantifier ∀

x
or ∃

x
.

A variable is free in formula F [x ] if there is an occurrence of x that is not
bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and

F ⇐⇒ G are formulas.
3. If F is a formula and x is a free variable, then ∀

x
F [x ] and ∃

x
F [x ] are

formulas.
4. Formulas are generated only by a finite number of applications of

the above rules.

A variable is bound in formula F [x ] if there is an occurrence of x in the
scope of a binding quantifier ∀

x
or ∃

x
.

A variable is free in formula F [x ] if there is an occurrence of x that is not
bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and

F ⇐⇒ G are formulas.
3. If F is a formula and x is a free variable, then ∀

x
F [x ] and ∃

x
F [x ] are

formulas.
4. Formulas are generated only by a finite number of applications of

the above rules.

A variable is bound in formula F [x ] if there is an occurrence of x in the
scope of a binding quantifier ∀

x
or ∃

x
.

A variable is free in formula F [x ] if there is an occurrence of x that is not
bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and

F ⇐⇒ G are formulas.
3. If F is a formula and x is a free variable, then ∀

x
F [x ] and ∃

x
F [x ] are

formulas.
4. Formulas are generated only by a finite number of applications of

the above rules.

A variable is bound in formula F [x ] if there is an occurrence of x in the
scope of a binding quantifier ∀

x
or ∃

x
.

A variable is free in formula F [x ] if there is an occurrence of x that is not
bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and

F ⇐⇒ G are formulas.
3. If F is a formula and x is a free variable, then ∀

x
F [x ] and ∃

x
F [x ] are

formulas.
4. Formulas are generated only by a finite number of applications of

the above rules.

A variable is bound in formula F [x ] if there is an occurrence of x in the
scope of a binding quantifier ∀

x
or ∃

x
.

A variable is free in formula F [x ] if there is an occurrence of x that is not
bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and

F ⇐⇒ G are formulas.
3. If F is a formula and x is a free variable, then ∀

x
F [x ] and ∃

x
F [x ] are

formulas.
4. Formulas are generated only by a finite number of applications of

the above rules.

A variable is bound in formula F [x ] if there is an occurrence of x in the
scope of a binding quantifier ∀

x
or ∃

x
.

A variable is free in formula F [x ] if there is an occurrence of x that is not
bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and

F ⇐⇒ G are formulas.
3. If F is a formula and x is a free variable, then ∀

x
F [x ] and ∃

x
F [x ] are

formulas.
4. Formulas are generated only by a finite number of applications of

the above rules.

A variable is bound in formula F [x ] if there is an occurrence of x in the
scope of a binding quantifier ∀

x
or ∃

x
.

A variable is free in formula F [x ] if there is an occurrence of x that is not
bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and

F ⇐⇒ G are formulas.
3. If F is a formula and x is a free variable, then ∀

x
F [x ] and ∃

x
F [x ] are

formulas.
4. Formulas are generated only by a finite number of applications of

the above rules.

A variable is bound in formula F [x ] if there is an occurrence of x in the
scope of a binding quantifier ∀

x
or ∃

x
.

A variable is free in formula F [x ] if there is an occurrence of x that is not
bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Outline

Syntax

Semantics

Equivalences of Formulas

Normal Forms

(Un)Satisfiability & (In)Validity



Semantics

An interpretation I of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:

I to each constant we assign an element in D

I to each function symbol we assign a mapping from Dn to D

I to each predicate symbol we assign a mapping from Dn to {T,F}.

Then the semantics of the formula F is a function f : I → {T,F}, where
I ∈ I and I is the set of all interpretations of the formula F .



Semantics

An interpretation I of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:

I to each constant we assign an element in D

I to each function symbol we assign a mapping from Dn to D

I to each predicate symbol we assign a mapping from Dn to {T,F}.

Then the semantics of the formula F is a function f : I → {T,F}, where
I ∈ I and I is the set of all interpretations of the formula F .



Semantics

An interpretation I of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:

I to each constant we assign an element in D

I to each function symbol we assign a mapping from Dn to D

I to each predicate symbol we assign a mapping from Dn to {T,F}.

Then the semantics of the formula F is a function f : I → {T,F}, where
I ∈ I and I is the set of all interpretations of the formula F .



Semantics

An interpretation I of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:

I to each constant we assign an element in D

I to each function symbol we assign a mapping from Dn to D

I to each predicate symbol we assign a mapping from Dn to {T,F}.

Then the semantics of the formula F is a function f : I → {T,F}, where
I ∈ I and I is the set of all interpretations of the formula F .



Semantics

An interpretation I of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:

I to each constant we assign an element in D

I to each function symbol we assign a mapping from Dn to D

I to each predicate symbol we assign a mapping from Dn to {T,F}.

Then the semantics of the formula F is a function f : I → {T,F}, where
I ∈ I and I is the set of all interpretations of the formula F .



Semantics (cont’d)

Example: Find the truth value of the formula F :⇐⇒ ∀
x
∃
y
x + y > c ,

where

I :


D = {0, 1}
cI = 0
+I → +Z
>I → >Z



Outline

Syntax

Semantics

Equivalences of Formulas

Normal Forms

(Un)Satisfiability & (In)Validity



Equivalences of Formulas
Two formulas F and G are equivalent iff the truth values of F and G are
the same under any interpretation.

F ⇐⇒ G ≡ (F ⇒ G ) ∧ (G ⇒ F )
F ⇒ G ≡ ¬F ∨ G
F ∨ G ≡ G ∨ F F ∧ G ≡ G ∧ F
(F ∨ G ) ∨ H ≡ F ∨ (G ∨ H) (F ∧ G ) ∧ H ≡ F ∧ (G ∧ H)
F ∨ (G ∧ H) ≡ (F ∨ G ) ∧ (F ∨ H) F ∧ (G ∨ H) ≡ (F ∧ G ) ∨ (F ∧ H)
F ∨ T ≡ T F ∧ T ≡ F
F ∨ F ≡ F F ∧ F ≡ F
F ∨ ¬F ≡ T F ∧ ¬F ≡ F
¬ (¬F ) ≡ F
¬ (F ∨ G ) ≡ ¬F ∧ ¬G ¬ (F ∧ G ) ≡ ¬F ∨ ¬G
(Qx)F [x ] ∨ G ≡ (Qx) (F [x ] ∨ G ) (Qx)F [x ] ∧ G ≡ (Qx) (F [x ] ∧ G )
¬∀

x
F [x ] ≡ ∃

x
¬F [x ] ¬(∃

x
x)F [x ] ≡ ∀

x
¬F [x ]

∀
x
F [x ] ∨ ∀

x
G [x ] 6≡ ∀

x
(F [x ] ∨ G [x ]) ∀

x
F [x ] ∧ ∀

x
G [x ] ≡ ∀

x
(F [x ] ∧ G [x ])

∃
x
F [x ] ∨ ∃

x
G [x ] ≡ ∃

x
(F [x ] ∨ G [x ]) ∃

x
F [x ] ∧ ∃

x
G [x ] 6≡ ∃

x
(F [x ] ∧ G [x ])

Note that
∀
x
F [x ] ∨ ∀

x
G [x ] ≡ ∀

x
F [x ] ∨ ∀

y
G [y ] ≡ ∀

x,y
F [x ] ∨ G [y ]

∃
x
F [x ] ∧ ∃

x
G [x ] ≡ ∃

x
F [x ] ∧ ∃

y
G [y ] ≡ ∃

x,y
F [x ] ∧ G [y ]



Equivalences of Formulas

F ⇐⇒ G ≡ (F ⇒ G ) ∧ (G ⇒ F )
F ⇒ G ≡ ¬F ∨ G
F ∨ G ≡ G ∨ F F ∧ G ≡ G ∧ F
(F ∨ G ) ∨ H ≡ F ∨ (G ∨ H) (F ∧ G ) ∧ H ≡ F ∧ (G ∧ H)
F ∨ (G ∧ H) ≡ (F ∨ G ) ∧ (F ∨ H) F ∧ (G ∨ H) ≡ (F ∧ G ) ∨ (F ∧ H)
F ∨ T ≡ T F ∧ T ≡ F
F ∨ F ≡ F F ∧ F ≡ F
F ∨ ¬F ≡ T F ∧ ¬F ≡ F
¬ (¬F ) ≡ F
¬ (F ∨ G ) ≡ ¬F ∧ ¬G ¬ (F ∧ G ) ≡ ¬F ∨ ¬G
(Qx)F [x ] ∨ G ≡ (Qx) (F [x ] ∨ G ) (Qx)F [x ] ∧ G ≡ (Qx) (F [x ] ∧ G )
¬∀

x
F [x ] ≡ ∃

x
¬F [x ] ¬(∃

x
x)F [x ] ≡ ∀

x
¬F [x ]

∀
x
F [x ] ∨ ∀

x
G [x ] 6≡ ∀

x
(F [x ] ∨ G [x ]) ∀

x
F [x ] ∧ ∀

x
G [x ] ≡ ∀

x
(F [x ] ∧ G [x ])

∃
x
F [x ] ∨ ∃

x
G [x ] ≡ ∃

x
(F [x ] ∨ G [x ]) ∃

x
F [x ] ∧ ∃

x
G [x ] 6≡ ∃

x
(F [x ] ∧ G [x ])

Note that
∀
x
F [x ] ∨ ∀

x
G [x ] ≡ ∀

x
F [x ] ∨ ∀

y
G [y ] ≡ ∀

x,y
F [x ] ∨ G [y ]

∃
x
F [x ] ∧ ∃

x
G [x ] ≡ ∃

x
F [x ] ∧ ∃

y
G [y ] ≡ ∃

x,y
F [x ] ∧ G [y ]



Equivalences of Formulas

F ⇐⇒ G ≡ (F ⇒ G ) ∧ (G ⇒ F )
F ⇒ G ≡ ¬F ∨ G
F ∨ G ≡ G ∨ F F ∧ G ≡ G ∧ F
(F ∨ G ) ∨ H ≡ F ∨ (G ∨ H) (F ∧ G ) ∧ H ≡ F ∧ (G ∧ H)
F ∨ (G ∧ H) ≡ (F ∨ G ) ∧ (F ∨ H) F ∧ (G ∨ H) ≡ (F ∧ G ) ∨ (F ∧ H)
F ∨ T ≡ T F ∧ T ≡ F
F ∨ F ≡ F F ∧ F ≡ F
F ∨ ¬F ≡ T F ∧ ¬F ≡ F
¬ (¬F ) ≡ F
¬ (F ∨ G ) ≡ ¬F ∧ ¬G ¬ (F ∧ G ) ≡ ¬F ∨ ¬G
(Qx)F [x ] ∨ G ≡ (Qx) (F [x ] ∨ G ) (Qx)F [x ] ∧ G ≡ (Qx) (F [x ] ∧ G )
¬∀

x
F [x ] ≡ ∃

x
¬F [x ] ¬(∃

x
x)F [x ] ≡ ∀

x
¬F [x ]

∀
x
F [x ] ∨ ∀

x
G [x ] 6≡ ∀

x
(F [x ] ∨ G [x ]) ∀

x
F [x ] ∧ ∀

x
G [x ] ≡ ∀

x
(F [x ] ∧ G [x ])

∃
x
F [x ] ∨ ∃

x
G [x ] ≡ ∃

x
(F [x ] ∨ G [x ]) ∃

x
F [x ] ∧ ∃

x
G [x ] 6≡ ∃

x
(F [x ] ∧ G [x ])

Note that
∀
x
F [x ] ∨ ∀

x
G [x ] ≡ ∀

x
F [x ] ∨ ∀

y
G [y ] ≡ ∀

x,y
F [x ] ∨ G [y ]

∃
x
F [x ] ∧ ∃

x
G [x ] ≡ ∃

x
F [x ] ∧ ∃

y
G [y ] ≡ ∃

x,y
F [x ] ∧ G [y ]



Outline

Syntax

Semantics

Equivalences of Formulas

Normal Forms

(Un)Satisfiability & (In)Validity



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal
form (

∀
x
P[x ]

)
⇒ Q ≡ ∃

x
(P[x ]⇒ Q) .

2. Bring the following formulas into Skolem standard form

I

∀
x

∃
y,z

((¬P[x , y ] ∧ Q[x , z]) ∨ R[x , y , z])

I

∀
x,y

(
∃
z
P[x , z] ∧ P[y , z]

)
⇒ ∃

u
Q[x , y , u]



Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal
form (

∀
x
P[x ]

)
⇒ Q ≡ ∃

x
(P[x ]⇒ Q) .

2. Bring the following formulas into Skolem standard form

I

∀
x

∃
y,z

((¬P[x , y ] ∧ Q[x , z]) ∨ R[x , y , z])

I

∀
x,y

(
∃
z
P[x , z] ∧ P[y , z]

)
⇒ ∃

u
Q[x , y , u]



Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal
form (

∀
x
P[x ]

)
⇒ Q ≡ ∃

x
(P[x ]⇒ Q) .

2. Bring the following formulas into Skolem standard form

I

∀
x

∃
y,z

((¬P[x , y ] ∧ Q[x , z]) ∨ R[x , y , z])

I

∀
x,y

(
∃
z
P[x , z] ∧ P[y , z]

)
⇒ ∃

u
Q[x , y , u]



Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal
form (

∀
x
P[x ]

)
⇒ Q ≡ ∃

x
(P[x ]⇒ Q) .

2. Bring the following formulas into Skolem standard form

I

∀
x

∃
y,z

((¬P[x , y ] ∧ Q[x , z]) ∨ R[x , y , z])

I

∀
x,y

(
∃
z
P[x , z] ∧ P[y , z]

)
⇒ ∃

u
Q[x , y , u]



Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal
form (

∀
x
P[x ]

)
⇒ Q ≡ ∃

x
(P[x ]⇒ Q) .

2. Bring the following formulas into Skolem standard form

I

∀
x

∃
y,z

((¬P[x , y ] ∧ Q[x , z]) ∨ R[x , y , z])

I

∀
x,y

(
∃
z
P[x , z] ∧ P[y , z]

)
⇒ ∃

u
Q[x , y , u]



Outline

Syntax

Semantics

Equivalences of Formulas

Normal Forms

(Un)Satisfiability & (In)Validity



(Un)Satisfiability & (In)Validity

A formula F is satisfiable iff there exists an interpretation I such that
I |= F .

A formula F is valid iff for all interpretations I , I |= F .

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

I ∀
x
P[x ] ∧ ∃

y
¬P[y ] is inconsistent.

I ∀
x
P[x ] ⇒ ∃

y
P[y ] is valid.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable iff there exists an interpretation I such that
I |= F .

A formula F is valid iff for all interpretations I , I |= F .

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

I ∀
x
P[x ] ∧ ∃

y
¬P[y ] is inconsistent.

I ∀
x
P[x ] ⇒ ∃

y
P[y ] is valid.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable iff there exists an interpretation I such that
I |= F .

A formula F is valid iff for all interpretations I , I |= F .

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

I ∀
x
P[x ] ∧ ∃

y
¬P[y ] is inconsistent.

I ∀
x
P[x ] ⇒ ∃

y
P[y ] is valid.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable iff there exists an interpretation I such that
I |= F .

A formula F is valid iff for all interpretations I , I |= F .

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

I ∀
x
P[x ] ∧ ∃

y
¬P[y ] is inconsistent.

I ∀
x
P[x ] ⇒ ∃

y
P[y ] is valid.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable iff there exists an interpretation I such that
I |= F .

A formula F is valid iff for all interpretations I , I |= F .

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

I ∀
x
P[x ] ∧ ∃

y
¬P[y ] is inconsistent.

I ∀
x
P[x ] ⇒ ∃

y
P[y ] is valid.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable iff there exists an interpretation I such that
I |= F .

A formula F is valid iff for all interpretations I , I |= F .

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

I ∀
x
P[x ] ∧ ∃

y
¬P[y ] is inconsistent.

I ∀
x
P[x ] ⇒ ∃

y
P[y ] is valid.


	Syntax
	Semantics
	Equivalences of Formulas
	Normal Forms
	(Un)Satisfiability & (In)Validity

