Vorlesungsklausur

29.11.2012

Schreiben Sie Namen und Matrikelnummer auf alle Blätter, die abgegeben werden.

Aufgabe 1 [2 Punkte] Welche der folgenden Aussagen sind wahr? Kreuzen Sie alle richtigen Antworten an.

- □ Zu jedem nichtdeterministischen, endlichen Automaten kann ein sprachäquivalenter deterministischer endlicher Automat konstruiert werden.
- □ Zu jedem nichtdeterministischen Kellerautomaten kann ein sprachäquivalenter deterministischer Kellerautomat konstruiert werden.
- □ Zu jeder nichtdeterministischen Turingmaschine kann eine sprachäquivalente deterministische Turingmaschine konstruiert werden.

Aufgabe 2 [2 Punkte] Sind die beiden hier skizzierten Graphen isomorph? Begründen Sie Ihre Antwort!

- □ Ja, weil
- □ Nein, weil

Aufgabe 3 [2 Punkte] Für die Sprache $L = \{a^n b^n \mid n \in \mathbb{N}\}$ gilt:

- \square L ist eine Typ 3-Sprache.
- \square L ist eine Typ 2-Sprache, aber keine Typ 3-Sprache.
- \square L ist eine Typ 1-Sprache, aber keine Typ 2-Sprache.

Aufgabe 4 [6 Punkte] Gegeben sei die Turingmaschine $M = (Q, \Sigma, \Gamma, \square, \delta, q_0, q_f)$ mit $Q = (q_0, q_1, q_2, q_f), \Sigma = \{0, 1\}, \Gamma = \{0, 1\}$ und δ gemäß der folgenden Tafel:

q_0	0	q_0	0	R
$ q_0 $	1	q_0	1	R
q_0		q_1		L
q_1	0	q_2	1	L
$ q_1 $	1	q_1	0	L
q_1		q_f	1	N
q_2	0	q_2	0	L
q_2	1	q_2	1	L
q_2		q_f		R

Welches Ergebnis liefert diese Turingmaschine zum Input 1011? Geben Sie die entsprechende Konfigurationstabelle an. Handelt es sich hier um eine deterministische oder nichtdeterministische Turingmaschine? Begründen Sie Ihre Antwort!

Aufgabe 5 [6 Punkte]

- (a) Seien X eine Menge und $R \subseteq X \times X$ eine Relation. Wie sind die Eigenschaften (i) R ist symmetrisch, (ii) ist antisymmetrisch, und (iii) R ist transitiv definiert?
- (b) Gegeben ist die Menge $X = \{a, b, c\}$ und die Relation $R \subseteq X \times X$ durch

$$R = \{(a, b), (a, c), (b, b), (b, c), (c, a)\}.$$

Bestimmen Sie die reflexiv transitiv symmetrische Hülle R^* .

Aufgabe 6 [6 Punkte] Gegeben ist die Grammatik $G=(\{S,R,T\},\{a,b\},S,\Pi)$ mit den Produktionen Π gegeben durch

$$S \longrightarrow \varepsilon \mid R, \quad R \longrightarrow AB \mid AT, \quad T \longrightarrow RB, \quad A \longrightarrow a, \quad B \longrightarrow b.$$

- (a) Stellen Sie fest, ob die Grammatik in Chomsky-Normalform ist.
- (b) Zeigen Sie, dass das Wort w = aabb in der von G erzeugten Sprache liegt, indem Sie es ausgehend von S mit den gegebenen Produktionen ableiten.

Aufgabe 7 [6 Punkte] Geben Sie alle Komponenten eines Kellerautomaten an und beschreiben Sie sie.