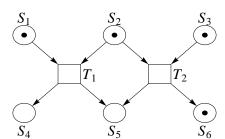
Vorlesungsklausur

27.9.2012

Schreiben Sie Namen und Matrikelnummer auf alle Blätter, die abgegeben werden.


Aufgabe 1 [2 Punkte] Gegeben ist eine Grammatik $G = (V, \Sigma, S, \Pi)$. Welche der folgenden Eigenschaften muss die Grammatik erfüllen, um in Chomsky-Normalform zu sein:

- ☐ Alle Produktionen sind kontextfrei.
- ☐ Alle Produktionen sind linkslinear.
- \square Entweder gibt es keine ε -Produktion, oder die einzige ε -Produktion ist $S \to \varepsilon$ und S kommt dann auf keiner der rechten Seiten einer Produktion vor.
- □ Jede Produktion in Π, ausser $S \to \varepsilon$, ist von der Form $S \to aS$, $S \to aA$ oder $S \to a$ mit $a \in \Sigma$ und $S, A \in V$.
- □ Jede Produktion in Π, ausser $S \to \varepsilon$, ist von der Form $A \to a$ oder $A \to BC$ mit $a \in \Sigma$ und $A, B, C \in V$.

Kreuzen Sie alle richtigen Antworten an!

Aufgabe 2 [2 Punkte] Welche der Aussagen gilt für das abgebildete Petri-Netz vom Typ Boolean?

- \square Nur die Transition T_1 kann feuern.
- \square Nur die Transition T_2 kann feuern.
- \square Beide Transitionen T_1 und T_2 können feuern.

Aufgabe 3 [2 Punkte] Seien $L_1, L_2 \subseteq \Sigma^*$ zwei Sprachen über einem gemeinsamen Alphabet Σ . Welche der folgenden Aussagen sind wahr?

- \square Falls $L_1 \leq_p L_2$ und $L_2 \in P$, dann gilt $L_1 \in P$.
- \square Falls $L_1 \leq_p L_2$ und $L_1 \in P$, dann gilt $L_2 \in P$.
- \square Falls L_1 NP-vollständig ist und $L_1 \in P$ gilt, dann ist das äquivalent dazu, dass P = NP gilt.

Kreuzen Sie alle richtigen Antworten an!

Aufgabe 4 [6 Punkte] Sei $\Sigma = \{0, 1, 2\}$ und sei $L \subseteq \Sigma^*$ die Sprache der nichtleeren Wörter, die keines der Muster 01 und 02 enthalten. Geben Sie einen endlichen Automaten an, der ein Wort genau dann akzeptiert, wenn es in L liegt und skizzieren Sie ihn.

Aufgabe 5 [6 Punkte]

- (a) Sei G = (V, E) ein endlicher, einfacher, ungerichteter Graph. Wie lautet die Definition eines Spannbaums von G?
- (b) Sei G=(V,E) ein ungerichteter Graph mit Knotenmenge $V=\{a,b,c,d,e,f,g\}$ und Kantenmenge $E=\{(a,b),(b,c),(b,f),(b,g),(c,d),(c,e),(d,e),(f,g)\}$. Skizzieren Sie den Graphen. Skizzieren Sie einen Spannbaum von G und geben Sie dessen Knotenund Kantenmenge an.

Aufgabe 6 [6 Punkte] Gegeben ist die Grammatik $G = (\{S,A\},\{a,b\},S,\Pi)$ mit den Produktionen

$$S \longrightarrow aS \mid bA$$
$$A \longrightarrow aA \mid bS \mid \varepsilon$$

- (a) Von welchem Typ ist die Grammatik? Begründen Sie Ihre Antwort.
- (b) Zeigen Sie, dass das Wort w=aabbab in der von G erzeugten Sprache liegt, indem Sie es aus den gegebenen Produktionen ableiten.

Aufgabe 7 [6 Punkte] Gegeben ist die Menge $A = \{a, b, c\}$. Sei X = P(A) (die Potenzmenge von A) und die Relation $R \subseteq X \times X$ gegeben durch

$$xRy \Leftrightarrow x \supseteq y.$$

- (a) Geben Sie die Menge X explizit an.
- (b) Welche Eigenschaften muss eine Relation erfüllen, um eine Ordnungsrelation zu sein?
- (c) Zeigen Sie, dass R eine Ordnungsrelation ist.
- (d) Ist R eine Totalordnung? Begründen Sie Ihre Antwort.