
PρLog: a System for Rule-based Programming

Besik Dundua

Ilia Vekua Institute of Applied Mathematics
Ivane Javakhishvili Tbilisi State University

Tbilisi, Georgia

bdundua@gmail.com

Outline

Introduction

PρLog language

Programming in PρLog

Outline

Introduction

PρLog language

Programming in PρLog

What is PρLog

I A system that extends Prolog with strategic conditional
transformation rules.

I Rules perform nondeterministic transformations of sequences.

I Strategies provide control on rule applications.

I PρLog system combines the power of logic programming and
the flexibility of strategy-based conditional transformation in a
single framework.

What is PρLog

I PρLog supports programming with four different types of
variables: individual, sequence, function and context variables.

I PρLog is expressive enough to specifying and prototyping
deductive systems, solvers for various equational theories,
tools for XML querying and transformation, etc.

I PρLog code is usually quite short, declaratively clear, and
reusable.

I Implemented in Prolog, available from
http://www.risc.jku.at/˜tkutsia/software.html

http://www.risc.jku.at/~tkutsia/software.html

Different Kinds of Variables

I Individual variables stand for single terms, while sequence
variables stand for finite (possible empty) sequences of terms.

I Function variables denote function symbols, while context
variables denote contexts that can be seen as unary functions
with a single occurrence of the bound variable.

I Four different types of variables give the user flexibility on
selecting subsequences in sequences or subterms/contexts in
terms.

I This variables enhance expressive capabilities of a language,
help to write short, neat, understandable code, and hide away
many tedious data processing details from the programmer.

Intuition Behind Individual (X) and Sequence Variables (X)

Example

f(g, f(X), g(a,X))

f

g f

X

g

a X

{X 7→ (g(a), X), X 7→ f(a)}

X 7→ g

a

X

X 7→ f

a

f(g, f(g(a), y), g(a, f(a)))

f

g f

g

a

X

g

a f

a

{X 7→ (g(a), X), X 7→ f(a)}

X 7→ g

a

X

X 7→ f

a

Intuition Behind Individual (X) and Sequence Variables (X)

Example

f(g, f(X), g(a,X))

f

g f

X

g

a X

{X 7→ (g(a), X), X 7→ f(a)}

X 7→ g

a

X

X 7→ f

a

f(g, f(g(a), y), g(a, f(a)))

f

g f

g

a

X

g

a f

a

{X 7→ (g(a), X), X 7→ f(a)}

X 7→ g

a

X

X 7→ f

a

Intuition Behind Function (F) and Context Variables (C)

Example

f(a,C(F (b)))

f

a C

F

b

{C 7→ g(g(a), ◦, b), F 7→ h}

C 7→ g

g

a

b

F 7→ h

f(a, g(g(a),h(b), b))

f

a g

g

a

bh

b

{C 7→ g(g(a), ◦, b), F 7→ h}

C 7→ g

g

a

b

F 7→ h

Intuition Behind Function (F) and Context Variables (C)

Example

f(a,C(F (b)))

f

a C

F

b

{C 7→ g(g(a), ◦, b), F 7→ h}

C 7→ g

g

a

b

F 7→ h

f(a, g(g(a),h(b), b))

f

a g

g

a

bh

b

{C 7→ g(g(a), ◦, b), F 7→ h}

C 7→ g

g

a

b

F 7→ h

Outline

Introduction

PρLog language

Programming in PρLog

Terms and Sequences

Terms and sequences are defined as follows:

I t ::= X | f(s) | F (s) | C(t)

I s ::= t | X̄ | (s1, . . . , sn)

where

1. X is an individual variable

2. X̄ is a sequence variable

3. F is a function variable

4. C is a context variable

5. f is a function symbol

Atoms, Literals

I ρ-atoms have a form st :: s1 ⇒ s2.
I st: strategy (a term).
I s1, s2: sequences.
I Intuitive meaning: the strategy st transforms the sequence s1

to the sequence s2.

I Negation of a ρ-atom: st :: s1 ; s2.

I Prolog conventions for naming symbols apply.

Clauses, Queries

I PρLog clauses have a form:
st :: s1 ⇒ s2 :-L1, . . . , Ln, n ≥ 0.

I Each Li is either a ρ-literal or a Prolog literal.

I Prolog clauses can be used in PρLog programs as well.

I PρLog queries: Conjunction of ρ- or Prolog literals:
L1, . . . , Ln

I Well-modedness.

Built-in Strategies

I PρLog has a library of built-in strategies.

I id :: s1 ⇒ s2 succeeds if s1 matches with s2.
I choice(st1, . . . , stn): nondeterministic choice.
I first one(st1, . . . , stn), n ≥ 1, selects the first sti that does

not fail and returns only one result of its application to the
input sequence.

I compose(st1, . . . , stn), n ≥ 2, first transforms the input
sequence by st1 and then transforms the result by
compose(st2, . . . , stn).

I nf (st) computes a normal form of the input hedge with
respect to st. It never fails because if an application of st to a
hedge fails, then st returns that sequence itself. Backtracking
returns all normal forms.

I prox (λ) :: s1 ⇒ s2 succeeds if s1 matches approximately with
s2, at least with the degree λ.

I etc.

Built-in Strategies

I PρLog has a library of built-in strategies.
I id :: s1 ⇒ s2 succeeds if s1 matches with s2.

I choice(st1, . . . , stn): nondeterministic choice.
I first one(st1, . . . , stn), n ≥ 1, selects the first sti that does

not fail and returns only one result of its application to the
input sequence.

I compose(st1, . . . , stn), n ≥ 2, first transforms the input
sequence by st1 and then transforms the result by
compose(st2, . . . , stn).

I nf (st) computes a normal form of the input hedge with
respect to st. It never fails because if an application of st to a
hedge fails, then st returns that sequence itself. Backtracking
returns all normal forms.

I prox (λ) :: s1 ⇒ s2 succeeds if s1 matches approximately with
s2, at least with the degree λ.

I etc.

Built-in Strategies

I PρLog has a library of built-in strategies.
I id :: s1 ⇒ s2 succeeds if s1 matches with s2.
I choice(st1, . . . , stn): nondeterministic choice.

I first one(st1, . . . , stn), n ≥ 1, selects the first sti that does
not fail and returns only one result of its application to the
input sequence.

I compose(st1, . . . , stn), n ≥ 2, first transforms the input
sequence by st1 and then transforms the result by
compose(st2, . . . , stn).

I nf (st) computes a normal form of the input hedge with
respect to st. It never fails because if an application of st to a
hedge fails, then st returns that sequence itself. Backtracking
returns all normal forms.

I prox (λ) :: s1 ⇒ s2 succeeds if s1 matches approximately with
s2, at least with the degree λ.

I etc.

Built-in Strategies

I PρLog has a library of built-in strategies.
I id :: s1 ⇒ s2 succeeds if s1 matches with s2.
I choice(st1, . . . , stn): nondeterministic choice.
I first one(st1, . . . , stn), n ≥ 1, selects the first sti that does

not fail and returns only one result of its application to the
input sequence.

I compose(st1, . . . , stn), n ≥ 2, first transforms the input
sequence by st1 and then transforms the result by
compose(st2, . . . , stn).

I nf (st) computes a normal form of the input hedge with
respect to st. It never fails because if an application of st to a
hedge fails, then st returns that sequence itself. Backtracking
returns all normal forms.

I prox (λ) :: s1 ⇒ s2 succeeds if s1 matches approximately with
s2, at least with the degree λ.

I etc.

Built-in Strategies

I PρLog has a library of built-in strategies.
I id :: s1 ⇒ s2 succeeds if s1 matches with s2.
I choice(st1, . . . , stn): nondeterministic choice.
I first one(st1, . . . , stn), n ≥ 1, selects the first sti that does

not fail and returns only one result of its application to the
input sequence.

I compose(st1, . . . , stn), n ≥ 2, first transforms the input
sequence by st1 and then transforms the result by
compose(st2, . . . , stn).

I nf (st) computes a normal form of the input hedge with
respect to st. It never fails because if an application of st to a
hedge fails, then st returns that sequence itself. Backtracking
returns all normal forms.

I prox (λ) :: s1 ⇒ s2 succeeds if s1 matches approximately with
s2, at least with the degree λ.

I etc.

Built-in Strategies

I PρLog has a library of built-in strategies.
I id :: s1 ⇒ s2 succeeds if s1 matches with s2.
I choice(st1, . . . , stn): nondeterministic choice.
I first one(st1, . . . , stn), n ≥ 1, selects the first sti that does

not fail and returns only one result of its application to the
input sequence.

I compose(st1, . . . , stn), n ≥ 2, first transforms the input
sequence by st1 and then transforms the result by
compose(st2, . . . , stn).

I nf (st) computes a normal form of the input hedge with
respect to st. It never fails because if an application of st to a
hedge fails, then st returns that sequence itself. Backtracking
returns all normal forms.

I prox (λ) :: s1 ⇒ s2 succeeds if s1 matches approximately with
s2, at least with the degree λ.

I etc.

Built-in Strategies

I PρLog has a library of built-in strategies.
I id :: s1 ⇒ s2 succeeds if s1 matches with s2.
I choice(st1, . . . , stn): nondeterministic choice.
I first one(st1, . . . , stn), n ≥ 1, selects the first sti that does

not fail and returns only one result of its application to the
input sequence.

I compose(st1, . . . , stn), n ≥ 2, first transforms the input
sequence by st1 and then transforms the result by
compose(st2, . . . , stn).

I nf (st) computes a normal form of the input hedge with
respect to st. It never fails because if an application of st to a
hedge fails, then st returns that sequence itself. Backtracking
returns all normal forms.

I prox (λ) :: s1 ⇒ s2 succeeds if s1 matches approximately with
s2, at least with the degree λ.

I etc.

Semantics of PρLog

We studied operational and declarative semantics of PρLog from
constraint logic programming point of view.

Outline

Introduction

PρLog language

Programming in PρLog

Sorting

Example
The following program illustrates how bubble sort can be
implemented in PρLog:

swap :: (X̄,X, Y, Ȳ)⇒ (X̄, Y,X, Ȳ) :-X > Y.

sort :: X̄ ⇒ Ȳ :- nf (swap) :: X̄ ⇒ Ȳ .

Query:

sort :: (3, 1, 1, 2)⇒ R̄.

Outputs: R̄ = (1, 1, 2, 3)

Example: Merge Proximals

Assume our proximity relation is such that a and b are proximal
with the degree 0.6 and b is close to c with the degree 0.8. Then
we have:

I Merge proximals from a sequence:

merge proximals(λ) :: (X,X, Y , Y, Z) =⇒ (X,Y , Y, Z) : −
prox(λ) :: X =⇒ Y.

merge all proximals(λ) := first one(nf (merge proximals(λ)))

I Query:

merge all proximals(0 .5) :: (a, b, d, b, c) =⇒ R.

R = (d, c)

Example: Merge Proximals

Assume our proximity relation is such that a and b are proximal
with the degree 0.6 and b is close to c with the degree 0.8. Then
we have:

I Merge proximals from a sequence:

merge proximals(λ) :: (X,X, Y , Y, Z) =⇒ (X,Y , Y, Z) : −
prox(λ) :: X =⇒ Y.

merge all proximals(λ) := first one(nf (merge proximals(λ)))

I Query:

merge all proximals(0 .5) :: (a, b, d, b, c) =⇒ R.

R = (d, c)

Example: Merge Proximals

Assume our proximity relation is such that a and b are proximal
with the degree 0.6 and b is close to c with the degree 0.8. Then
we have:

I Merge proximals from a sequence:

merge proximals(λ) :: (X,X, Y , Y, Z) =⇒ (X,Y , Y, Z) : −
prox(λ) :: X =⇒ Y.

merge all proximals(λ) := first one(nf (merge proximals(λ)))

I Query:

merge all proximals(0 .7) :: (a, b, d, b, c) =⇒ R.

R = (a, d, c)

Example: Merge Proximals

Assume our proximity relation is such that a and b are proximal
with the degree 0.6 and b is close to c with the degree 0.8. Then
we have:

I Merge proximals from a sequence:

merge proximals(λ) :: (X,X, Y , Y, Z) =⇒ (X,Y , Y, Z) : −
prox(λ) :: X =⇒ Y.

merge all proximals(λ) := first one(nf (merge proximals(λ)))

I Query:

merge all proximals(0 .5) :: (b, d, b, c, a) =⇒ R.

R = (d, c, a)

Example: Merge Proximals

Assume our proximity relation is such that a and b are proximal
with the degree 0.6 and b is close to c with the degree 0.8. Then
we have:

I Merge proximals from a sequence:

merge proximals(λ) :: (X,X, Y , Y, Z) =⇒ (X,Y , Y, Z) : −
prox(λ) :: X =⇒ Y.

merge all proximals(λ) := first one(nf (merge proximals(λ)))

I Query:

merge all proximals(0 .7) :: (b, d, b, c, a) =⇒ R.

R = (d, c, a)

Applications of PρLog

We have applications of PρLog in

I XML processing,

I Web reasoning,

I Implementing rewriting strategies,

I Extraction of frequent patterns from data mining workflows,

I Modeling of access control policies.

Acknowledgement

This work has been supported by the Shota Rustaveli National
Science Foundation of Georgia under the grant YS-18-1480

	Introduction
	PLog language
	Programming in PLog

