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What is PρLog

I A system that extends Prolog with strategic conditional
transformation rules.

I Rules perform nondeterministic transformations of sequences.

I Strategies provide control on rule applications.

I PρLog system combines the power of logic programming and
the flexibility of strategy-based conditional transformation in a
single framework.



What is PρLog

I PρLog supports programming with four different types of
variables: individual, sequence, function and context variables.

I PρLog is expressive enough to specifying and prototyping
deductive systems, solvers for various equational theories,
tools for XML querying and transformation, etc.

I PρLog code is usually quite short, declaratively clear, and
reusable.

I Implemented in Prolog, available from
http://www.risc.jku.at/˜tkutsia/software.html

http://www.risc.jku.at/~tkutsia/software.html


Different Kinds of Variables

I Individual variables stand for single terms, while sequence
variables stand for finite (possible empty) sequences of terms.

I Function variables denote function symbols, while context
variables denote contexts that can be seen as unary functions
with a single occurrence of the bound variable.

I Four different types of variables give the user flexibility on
selecting subsequences in sequences or subterms/contexts in
terms.

I This variables enhance expressive capabilities of a language,
help to write short, neat, understandable code, and hide away
many tedious data processing details from the programmer.



Intuition Behind Individual (X) and Sequence Variables (X)
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Intuition Behind Function (F ) and Context Variables (C)

Example
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Intuition Behind Function (F ) and Context Variables (C)
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Terms and Sequences

Terms and sequences are defined as follows:

I t ::= X | f(s) | F (s) | C(t)

I s ::= t | X̄ | (s1, . . . , sn)

where

1. X is an individual variable

2. X̄ is a sequence variable

3. F is a function variable

4. C is a context variable

5. f is a function symbol



Atoms, Literals

I ρ-atoms have a form st :: s1 ⇒ s2.
I st: strategy (a term).
I s1, s2: sequences.
I Intuitive meaning: the strategy st transforms the sequence s1

to the sequence s2.

I Negation of a ρ-atom: st :: s1 ; s2.

I Prolog conventions for naming symbols apply.



Clauses, Queries

I PρLog clauses have a form:
st :: s1 ⇒ s2 :-L1, . . . , Ln, n ≥ 0.

I Each Li is either a ρ-literal or a Prolog literal.

I Prolog clauses can be used in PρLog programs as well.

I PρLog queries: Conjunction of ρ- or Prolog literals:
L1, . . . , Ln

I Well-modedness.



Built-in Strategies

I PρLog has a library of built-in strategies.

I id :: s1 ⇒ s2 succeeds if s1 matches with s2.
I choice(st1, . . . , stn): nondeterministic choice.
I first one(st1, . . . , stn), n ≥ 1, selects the first sti that does

not fail and returns only one result of its application to the
input sequence.

I compose(st1, . . . , stn), n ≥ 2, first transforms the input
sequence by st1 and then transforms the result by
compose(st2, . . . , stn).

I nf (st) computes a normal form of the input hedge with
respect to st. It never fails because if an application of st to a
hedge fails, then st returns that sequence itself. Backtracking
returns all normal forms.

I prox (λ) :: s1 ⇒ s2 succeeds if s1 matches approximately with
s2, at least with the degree λ.

I etc.
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Semantics of PρLog

We studied operational and declarative semantics of PρLog from
constraint logic programming point of view.
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Sorting

Example
The following program illustrates how bubble sort can be
implemented in PρLog:

swap :: (X̄,X, Y, Ȳ )⇒ (X̄, Y,X, Ȳ ) :-X > Y.

sort :: X̄ ⇒ Ȳ :- nf (swap) :: X̄ ⇒ Ȳ .

Query:

sort :: (3, 1, 1, 2)⇒ R̄.

Outputs: R̄ = (1, 1, 2, 3)



Example: Merge Proximals

Assume our proximity relation is such that a and b are proximal
with the degree 0.6 and b is close to c with the degree 0.8. Then
we have:

I Merge proximals from a sequence:

merge proximals(λ) :: (X,X, Y , Y, Z) =⇒ (X,Y , Y, Z) : −
prox(λ) :: X =⇒ Y.

merge all proximals(λ) := first one(nf (merge proximals(λ)))

I Query:

merge all proximals(0 .5 ) :: (a, b, d, b, c) =⇒ R.

R = (d, c)
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Example: Merge Proximals

Assume our proximity relation is such that a and b are proximal
with the degree 0.6 and b is close to c with the degree 0.8. Then
we have:

I Merge proximals from a sequence:

merge proximals(λ) :: (X,X, Y , Y, Z) =⇒ (X,Y , Y, Z) : −
prox(λ) :: X =⇒ Y.

merge all proximals(λ) := first one(nf (merge proximals(λ)))

I Query:

merge all proximals(0 .7 ) :: (b, d, b, c, a) =⇒ R.

R = (d, c, a)



Applications of PρLog

We have applications of PρLog in

I XML processing,

I Web reasoning,

I Implementing rewriting strategies,

I Extraction of frequent patterns from data mining workflows,

I Modeling of access control policies.
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