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Abstract: Recently [2], C. da Fonseca et al considered a model for deposition and evaporation on discrete
cells of a finite array of any dimension that led to a matrix equation involving a Sylvester-Kac type matrix.
They found the eigenvalues and eigenvectors of that matrix and generalized some results of R. Askey [1]
and O. Holtz [3]. In this talk, we discuss a somewhat novel approach that allows to generalize the results
of all previous authors. More exactly, we find the eigenvalues and eigenvectors of the following N × N
matrix: 

0 α 0 . . . 0 0 0
−Nγ β 2α . . . 0 0 0

0 −(N − 1)γ 2β . . . 0 0 0
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0 0 0 . . . (N − 2)β (N − 1)α 0
0 0 0 . . . −2γ (N − 1)β Nα
0 0 0 . . . 0 −γ Nβ


,

where α, β, and γ are arbitrary complex numbers, and γ 6= 0.
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