A generalization of the Silvester-Kac matrix

12.08 Mikhail Tyaglov
 (Shanghai Jiao Tong University, China)

Time: Wednesday 24.07., 11:30-12:00, Room SH 02
Abstract: Recently [2], C. da Fonseca et al considered a model for deposition and evaporation on discrete cells of a finite array of any dimension that led to a matrix equation involving a Sylvester-Kac type matrix. They found the eigenvalues and eigenvectors of that matrix and generalized some results of R. Askey [1] and O. Holtz [3]. In this talk, we discuss a somewhat novel approach that allows to generalize the results of all previous authors. More exactly, we find the eigenvalues and eigenvectors of the following $N \times N$ matrix:

$$
\left(\begin{array}{ccccccc}
0 & \alpha & 0 & \ldots & 0 & 0 & 0 \\
-N \gamma & \beta & 2 \alpha & \cdots & 0 & 0 & 0 \\
0 & -(N-1) \gamma & 2 \beta & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & (N-2) \beta & (N-1) \alpha & 0 \\
0 & 0 & 0 & \ldots & -2 \gamma & (N-1) \beta & N \alpha \\
0 & 0 & 0 & \ldots & 0 & -\gamma & N \beta
\end{array}\right),
$$

where α, β, and γ are arbitrary complex numbers, and $\gamma \neq 0$.
[1] R. Askey, Evaluation of Sylvester type determinants using orthogonal polynomials, in: H.G.W. Begehr, et al. (Eds.), Advances in Analysis, World Scientific, Hackensack, NJ, 2005, pp. 1-16.
[2] C. da Fonseca, D. Mazilu, I. Mazilu, T. Williams, The eigenpairs of a Sylvester-Kac type matrix associated with a simple model for one-dimensional deposition and evaporation, Appl. Math. Lett., 26, no. 12, pp. 1206-1211.
[3] O. Holtz, Evaluation of Sylvester type determinants using block-triangularization, in: H.G.W. Begehr, et al. (Eds.), Advances in Analysis, World Scientific, Hackensack, NJ, 2005, pp. 395-405.

