Chebyshev polynomials on circular arcs

09.04 Klaus Schiefermayr
(University of Applied Sciences Upper Austria, Wels, Austria)
Time: Wednesday 24.07., 12:00-12:30, Room HS 4

Abstract: In this talk, we give an explicit representation of the Chebyshev polynomial on a given circular arc

$$
A_{\alpha}:=\{z \in \mathbb{C}:|z|=1,-\alpha \leq \arg (z) \leq \alpha\}, \quad 0<\alpha \leq \pi,
$$

(a problem which was first considered in [1]), which is done in two steps: In the first step, following [2], we give an explicit representation of the Chebyshev polynomial (of degree N) on A_{α} in terms of the Chebyshev polynomial with respect to the weight function $w(x):=1$ (for N even) and $w(x):=\sqrt{1-x^{2}}$ (for N odd) on the two real intervals $[-1,-a] \cup[a, 1]$, where $a:=\cos \left(\frac{\alpha}{2}\right)$. For this representation, we will need the mapping $z \mapsto \frac{1}{2}\left(\sqrt{z}+\frac{1}{\sqrt{z}}\right)$ which maps $\{z \in \mathbb{C}:|z|=1, \operatorname{Im}\{z\} \geq 0\}$ bijectively onto the interval $[0,1]$. In the second step, these Chebyshev polynomials (with respect to $w(x):=1$ and $w(x):=\sqrt{1-x^{2}}$) are represented with the help of Jacobian elliptic and theta functions. These representations go back to [3] and [4]. The talk is based on the paper [5].
[1] J.-P. Thiran and C. Detaille, Chebyshev polynomials on circular arcs in the complex plane, Progress in approximation theory, Academic Press, 1991, pp. 771-786.
[2] F. Peherstorfer and K. Schiefermayr, On the connection between minimal polynomials on arcs and on intervals, in "Functions, Series, Operators" (Budapest, 1999), János Bolyai Math. Soc., Budapest, 2002, pp. 339-356.
[3] N.I. Akhiezer, Über einige Funktionen, die in gegebenen Intervallen am wenigsten von Null abweichen, Bull. Soc. Phys.Math. Kazan, III. Ser. 3 (1928), 1-69 (in German).
[4] E.I. Krupickiŭ, On a class of polynomials with least deviation from zero on two intervals, Dokl. Akad. Nauk SSSR 138 (1961), 533-536.
[5] K. Schiefermayr, Chebyshev polynomials on circular arcs, to appear in Acta Sci. Math. (Szeged).

