Rational approximation and Sobolev orthogonal polynomials

03.08 Hector Pijeira Cabrera

(Universidad Carlos III de Madrid, Spain)
Time: Tuesday 23.07., 12:00-12:30, Room HS 6
Abstract: Let $\left\{S_{n}\right\}_{n=0}^{\infty}$ be the sequence of orthogonal polynomialswith respect to the Sobolev-typeinner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d \mu(x)+\sum_{j=1}^{N} \eta_{j} f^{\left(d_{j}\right)}\left(c_{j}\right) g^{\left(d_{j}\right)}\left(c_{j}\right)
$$

where μ is in the Nevai class $\mathbf{M}(0,1), \eta_{j}>0, N, d_{j} \in \mathbb{Z}_{+}$and $\left\{c_{1}, \ldots, c_{N}\right\} \subset \mathbb{R} \backslash[-1,1]$. Under some restriction of order in the discrete part of $\langle\cdot, \cdot\rangle$, we proof that for n sufficiently large the zeros of S_{n} are real, simple, $n-N$ of them lie on $(-1,1)$ and each of the mass points c_{j} "attracts" one of the remaining N zeros. The sequences of associated polynomials $\left\{S_{n}^{[k]}\right\}_{n=0}^{\infty}$ are defined for each $k \in \mathbb{Z}_{+}$. We prove an analog of the Markov's theorem on rational approximation of some class holomorphic functions and we give an estimate of the "speed" of convergence. This is a joint work with Abel Díaz-González.

