Hypergeometric transformations based on Hahn and Racah polynomials

02.10 Robert S. Maier

(University of Colorado, Boulder, USA) **Time:** Tuesday 23.07., 11:00 - 11:30, Room AM

Abstract: Much as the Gauss hypergeometric function ${}_{2}F_{1}$ satisfies many transformation identities, the function ${}_{3}F_{2}$ can be quadratically and cubically transformed. For example, a ${}_{3}F_{2}$ with a parametric excess equal to $\frac{1}{2}$ or $-\frac{1}{2}$ may be quadratically transformed to a well-poised ${}_{3}F_{2}$ or a very well-poised ${}_{4}F_{3}$. Summation identities can be derived from such transformations by the classical technique of equating coefficients, or by Gessel–Stanton pairing. We show that the classical quadratic and cubic transformations of ${}_{3}F_{2}$ can extended: in the quadratic case, the parametric excess may be greater than $\frac{1}{2}$ or less than $-\frac{1}{2}$ by any natural number. The transformed functions now become hypergeometric functions of higher order, the added parameters of which make contact with the theory of orthogonal polynomials of a discrete argument. For instance, the added parameters can be the (negated) roots of certain dual Hahn or Racah polynomials, which are defined on a quadratic lattice; or in the cubic case, new polynomials with no evident orthogonal interpretation. Extended versions of summation identities of Whipple and Bailey can be derived from the extended transformations of ${}_{3}F_{2}$: for instance, extensions of Dougall's theorem on the sum of a 2-balanced, very well-poised ${}_{7}F_{6}(1)$.