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Abstract: In this work, a general T -fraction based on a polynomial map is considered. Two generalized
linear matrix pencils of the form G − zH, where G and H are tridiagonal matrices, associated to this
polynomial map are considered and the orthogonality of the related Laurent polynomials are discussed.
These matrix pencils are useful in constructing two sequences of biorthogonal rational functions, {pLn(z)}∞n=0

and {pRn (z)}∞n=0, associated with the parameters an and bn respectively, that form the components of the
left and right eigenvectors of the matrix pencil. The procedure for constructing these two families is
different from the one given in [3]. These two different sequences of orthogonal rational functions lead to
the recurrence relations given by

Pn+1(z) = ρn(z − νn)Pn(z) + τn(z − an)(z − bn)Pn−1(z), n ≥ 1,

with initial conditions P0(z) = 1 and P1(z) = ρ0(z − ν0) that are defined on the unit circle as well in the
real line. These are known as RII type recurrence relations and were studied by Ismail and Masson [2] and
Zhedanov [4] independently. A particular case is considered that provides a Christoffel type transformation
of the generalized eigenvalue problem with a reformulation different from the existing literature. Specific
illustrations are provided to support the given results.
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