
Exercises for the course on planar maps
AEC Summer School, Hagenberg, 2018

Exercise 1: Whitney’s theorem

Our aim is to show here Whitney’s theorem (assuming Menger’s theorem for
3-connected graphs), which states that a 3-connected planar graph has a unique
embedding on the sphere (up to a mirror). A graph G is called 3-connected
if it simple, has at least 4 vertices and for any pair u, v of vertices, the graph
G\{u, v} is connected.

Q1. Let M be a planar map. Show that if a cycle C is not the contour of a
face, then C either has a chord (i.e., an edge not on C with its two extremities
on C), or C is a separating cycle (i.e., G\C is not connected).

Q2. If M is a 3-connected planar map, show that every face-contour is a non-
separating chordless cycle.

(To show non-separation we need Menger’s theorem, which states that for G a
3-connected graph and u, v any two vertices of G, there are 3 paths connecting
u to v that are vertex-disjoint except at their extremities.)

Q3. Deduce from it that a 3-connected planar graph has exactly two embed-
dings on the sphere, which differ by a mirror.

Exercise 2: Tutte’s method (cf Brown) for simple triangulations

We define a quasi-triangulation as a rooted planar map that is simple (no loops
nor multiple edges), with all inner faces of degree 3 and such that the outer face
contour is a simple cycle (no pinch point).

Figure 1: A quasi-triangulation with 4 internal vertices and 8 external vertices.

For n ≥ 0 and m ≥ 0 we let dn,m be the number of quasi-triangulations with n
internal vertices and m+ 3 external vertices (those incident to the outer face),
and let D ≡ D(t, x) =

∑
n,m dn,mt

nxm be the associated generating function;
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and let D0 ≡ D(t, 0) =
∑
n≥0 dn,0t

n, which is the generating function of rooted
simple triangulations.

Q1. Show (using deletion of the root-edge) that D ≡ D(t, x) satisfies the
equation

(E) : D = (1 + xD)2 + tx−1(D −D0)− tDD0 where D0 = D(t, 0).

Q2. Show that this equation has a unique solution that is a power series in
t and x (hint: there is a certain way to order the coefficients such that the
equation determines the coefficients iteratively)

Q3. Let K ≡ K(t) be an arbitrary power series in t. Consider the equation, in
the unknown D ≡ D(t, x):

(EK) : D = (1 + xD)2 + tx−1(D −K)− tDK.

Show that if there is a solution D to this equation that is a power series in (t, x),
then D(t, 0) = K(t) and thus D is the unique solution of (E).

Q4. (To be done with a computer algebra software) From (E) one can quickly
compute the coefficients of D(t, x) and conjecture that

D(t, 0) =
∑
n≥0

2(4n+ 1)!

(3n+ 2)!(n+ 1)!
tn,

One can check (e.g. using the Lagrange inversion formula) that this is parametrized
as D(t, 0) = 1−2u

(1−u)3 , where u = u(t) is the power series given by u = t/(1− u)3.

Check that if we consider the power series K ≡ K(t) given by{
K = (1− 2u)/(1− u)3,
t = u(1− u)3,

then there is a solution D to (EK) that is a power series in (t, x).

Note: This is Brown’s proof (‘Enumeration of triangulations of the disk’, 1963)
for the number of rooted simple triangulations, where he more generally obtains
the following nice explicit formula for dn,m:

dn,m =
2(2m+ 3)!(4n+ 2m+ 1)!

(m+ 2)!m!n!(3n+ 2m+ 3)!
.
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Exercise 3: counting tree-rooted d-regular maps

A tree-rooted map is a pair (M,T ) where M is a rooted planar map and T is a
spanning tree of M . A map is called d-regular if all its vertices have degree d.

Our aim here is to find (bijectively) a formula for the number r
(d)
n of tree-rooted

d-regular maps with n vertices.

Figure 2: A tree-rooted 3-regular map with 8 vertices (the root is here indicated
as a marked corner).

Q1. For d ≥ 3 and n ≥ 1, let A(d)
n be the set of rooted (embedded) trees with n

nodes (in a tree, a node is a vertex that is not a leaf), such that the root-node

has d children and all the other nodes have d−1 children. Let a
(d)
n = Card(A(d)

n )

and let F (d)(x) =
∑
n≥1 a

(d)
n xn. Show that

F (d)(x) = x(1 + u)d, where u ≡ u(x) is given by u = x(1 + u)d−1.

Deduce from it a formula for a
(d)
n .

(We recall the Lagrange inversion formula: if F (x) is given by F (x) = ψ(u(x))
where u(x) is given by u(x) = xφ(u(x)), then [xn]F (x) = 1

n [un−1]ψ′(u)φ(u)n.)

Q2. Let f be the number of leaves of a tree in A(d)
n . Express f in terms of n

and d.

Q3. Show that (with Catm = (2m)!
m!(m+1)! the mth Catalan number)

r(d)n = a(d)n · Catf/2.

and deduce from it a closed-form formula for r
(d)
n .

Q4. Check that the asymptotic for r
(d)
n is always of the form cγnn−3 for some

constants c and γ (and for n such that r
(d)
n 6= 0).
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Exercise 4: local characterization of geodesic labellings

For a connected graph G with a marked vertex v0, consider the geodesic labelling
with respect to v0, that is, every vertex v ∈ G gets label d(v0, v) (the length of
a shorted path connecting v0 to v).

Q1. Show that this labelling is characterized as the unique labelling `(v) of the
vertices of G (with labels in Z) satisfying the following properties:

• for every edge {u, v} of G we have |`(u)− `(v)| ≤ 1,

• every vertex v 6= v0 has a neighbour of smaller label

• the label of v0 is 0.

Q2. Show that the graph is bipartite if and only if there is no edge {u, v} with
`(u) = `(v).

Exercise 5: relation expected radius ↔ expected 2-point distance

Q1. Let Qn be the set of pairs (M, v0) where M is a rooted quadrangulation
with n faces, and v0 is a vertex of M . For Qn a random element from Qn,
with e = {u,w} the root-edge, let Xn be the distance from v0 to e, i.e., Xn =
min(dist(v0, u),dist(v0, w)). And let Yn be the radius of Qn centered at v0, i.e.,
Yn = maxv∈Qn

dist(v0, v). Show that

E(Yn) = 2E(Xn) + 1.

Q2. A similar feature occurs for plane trees. Let Tn be the set of pairs (T, v0)
where T is a rooted plane tree (embedded tree with a marked corner) with n
edges, and v0 is a vertex of T . Let v1 be the vertex incident to the root-corner
(possibly v0 = v1). For Tn a random element from Tn, let Xn = dist(v0, v1), and
let Yn be the radius of Tn centered at v0, i.e., Yn = maxv∈Tndist(v0, v). Show
that

E(Yn) = 2E(Xn).

Exercise 6: an invariant for well-labelled trees

Recall that a well-labelled tree is a rooted plane tree T (plane tree with a marked
corner) where each vertex v has a label `(v) ∈ Z such that the root-vertex has
label 0 and for every edge e = {u, v} of T we have |`(v)− `(u)| ≤ 1.

The generating function of well-labelled trees by edges is denoted R ≡ R(t), and
for i ≥ 0, Ri ≡ Ri(t) denotes the generating function of well-labelled trees where
all the vertex-labels are strictly larger than −i (so we have R(t) = limi→∞Ri(t)
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for the coefficientwise convergence in power series). Recall that we have the
equations

R = 1 + 3tR2, R0 = 0, Ri = 1 + tRi(Ri−1 +Ri +Ri+1) for i ≥ 1.

Q1. Let Si = Ri −Ri−1 be the generating function of well-labelled trees where
the smallest vertex-label is −i+ 1. Show that

Si = Ri−1t(Si−1 + Si + Si+1)Ri.

Q2. Deduce from it that the quantity Ri − tRi−1RiRi+1 is an invariant (does
not depend on i), and that it gives R1 = R− tR3.

Q3. We now consider the generating functions ri ≡ ri(s) defined by the relation

ri(s) =
Ri(t)

R1(t)
with the change of variable relation s = tR1(t)2.

Show that the generating functions ri satisfy the equations

r0 = 0, ri = 1 + s · (ri−1 ri ri+1) for i ≥ 1.

Give a combinatorial interpretation of objects counted by ri(s).

Q4. It is possible to find an exact expression for ri(s) by a guessing/checking
approach as seen in the course. But we can also proceed by a substitution
approach starting from the known expression of Ri(t). Recall that Ri(t) has the
explicit expression

Ri = R
(1− xi)(1− xi+3)

(1− xi+1)(1− xi+2)
,

where R ≡ R(t) is given by R = 1+3tR2 and x ≡ x(t) is given by x+ 1
x+1 = 1

tR2 .

Show that ri is expressed as

ri = r
(1− yi)(1− yi+3)

(1− yi+1)(1− yi+2)
,

where r ≡ r(s) = limi→∞ ri(s) is given by r = 1 + sr3 and y ≡ y(s) is given by
y + 1

y + 1 = 1
sr2 .

(Hint: check that under the change of variable relation s = tR2
1, one has tR(t)2 =

sr(s)2 and Ri(t)
R(t) = ri(s)

r(s) .)

Note: The combinatorial proof of the invariant Ri − tRi−1RiRi+1 in Q1&2
is due to Guillaume Chapuy. Another combinatorial proof relying on local
operations on quadrangulations is given in Section 3.3 of the article ‘Planar maps
and continued fractions’ by Bouttier and Guitter. The substitution approach
in Q4 to obtain the exact expression of ri(s) is given in Section 2.3 of the
article ‘Distance statistics in quadrangulations with no multiple edges and the
geometry of minbus’ by Bouttier and Guitter.
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Exercise 7: uniqueness of square tilings with a prescribed
combinatorics

As shown in the figure below, a square tiling of a rectangle has naturally a dual
map, which is a triangulation of the 4-gon (we consider square tilings with no
degeneracy, i.e., no point belonging to four squares).

W

N

S

E W

N

S

E

In this exercise we consider the inverse problem. Given T a triangulation of
the 4-gon, with W,N,E, S its four outer vertices, realize T as the dual of a
square tiling. As we will see here, the square tiling is unique (up to scaling) and
well characterized (it also always exists, up to allowing for degeneracies, but the
proof is more involved).

Let V be the set of internal vertices of T . A metric on T is a mapping m(·) from
V to non-negative values that are not all zero. The norm of m is ||m|| given
by ||m||2 =

∑
v∈V m(v)2. An (N,S)-path is a path γ from N to S passing by

internal vertices only, and the m-length of γ, denoted `γ(m), is the sum of the
m-values of the visited internal vertices. The (N,S)-length of m is then defined
as

`m := min `γ(m),

where the minimum is taken over all (N,S)-paths. A metric s is called optimal

if it satisfies
`2s
||s||2 ≥

`2m
||m||2 for every metric m.

Q1. Show that there exists an optimal metric and that it is unique up to scaling,
i.e., up to multiplication of all values by a same constant.

(Hint: consider the problem of minimizing ||m|| under the constraint `m ≥ 1)

Q2. Assume there is a square tiling with T as its dual, and of unit total area. Let
s(·) be the metric assigning to each internal vertex the length of the associated
square. Show that s is the optimal metric of T .

(Hint: let h be the height and h−1 the width of the tiling. Let m be an arbitrary
metric on T . For t ∈ [0, h−1] consider the (N,S)-path γt consisting of vertices
that are dual to the squares intersected by the vertical line {x = t}. Integrate
`m(γt) on [0, h−1].)

Note: This exercise is extracted from the article ‘Square tilings with prescribed
combinatorics’ by Oded Schramm, which also proves the existence of such tilings
(if degeneracies are allowed).
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