Planar maps: bijections and applications

Éric Fusy (CNRS/LIX)

AEC summer school, Hagenberg, 2018

Geometric representation of planar maps

Various methods can be used to draw a map on the plane/sphere

Existence question

planar map (with outer face) = equivalence class of planar drawings of graphs up to continuous deformation

Existence question

planar map (with outer face) = equivalence class of planar drawings of graphs up to continuous deformation

Question: Does there always exist an equivalent planar drawing such that all edges are drawn as segments ?

Existence question

planar map (with outer face) = equivalence class of planar drawings of graphs up to continuous deformation

Question: Does there always exist an equivalent planar drawing such that all edges are drawn as segments ?

Existence question

planar map (with outer face) $=$ equivalence class of planar drawings of graphs up to continuous deformation

Question: Does there always exist an equivalent planar drawing such that all edges are drawn as segments ?
(such as drawing is called a (planar) straight-line drawing)

Existence question

planar map (with outer face) = equivalence class of planar drawings of graphs up to continuous deformation

Question: Does there always exist an equivalent planar drawing such that all edges are drawn as segments ?
(such as drawing is called a (planar) straight-line drawing)
Remark: For such a drawing to exist, the map needs to be simple

Existence proof (reduction to triangulations)

- Any simple planar map M can be completed to a simple triangulation T

Existence proof (reduction to triangulations)

- Any simple planar map M can be completed to a simple triangulation T - A straight-line drawing of T yields a straight-line drawing of M

Existence proof (for triangulations)

First proof: induction on the number of vertices
Let T be a triangulation with n vertices

Existence proof (for triangulations)

First proof: induction on the number of vertices
Let T be a triangulation with n vertices
Exercise: T has at least one inner vertex v of degree ≤ 5

Existence proof (for triangulations)

First proof: induction on the number of vertices
Let T be a triangulation with n vertices
Exercise: T has at least one inner vertex v of degree ≤ 5

$T \backslash v$ has a straight-line drawing

Existence proof (for triangulations)

First proof: induction on the number of vertices
Let T be a triangulation with n vertices
Exercise: T has at least one inner vertex v of degree ≤ 5

$T \backslash v$ has a straight-line drawing

Straight-line drawing algorithms

We present two classical algorithms

- Tutte's barycentric method

- Schnyder's face-counting algorithm

Planarity criterion for straight-line drawings

Planarity criterion for straight-line drawings

Theorem: a straight-line drawing is planar iff every inner vertex is inside the convex hull of its neighbours
(works for triangulations and more generally for 3-connected planar graphs)

Proof idea

- For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing

Proof idea

- For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing

- For each vertex v, let $\Theta(v)=\sum_{c \in v} \theta(c)$

Proof idea

- For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing

- For each vertex v, let $\Theta(v)=\sum_{c \in v} \theta(c)$
- Whatever the drawing we always have $\sum_{v} \Theta(v)=2 \pi|V|$

Proof idea

- For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing

- For each vertex v, let $\Theta(v)=\sum_{c \in v} \theta(c)$
- Whatever the drawing we always have $\sum_{v} \Theta(v)=2 \pi|V| \quad \begin{gathered}\text { from the } \\ \text { Euler relation }\end{gathered}$
- If convex hull condition holds, then $\Theta(v) \geq 2 \pi$ for each v

Proof idea

- For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing

- For each vertex v, let $\Theta(v)=\sum_{c \in v} \theta(c)$
- Whatever the drawing we always have $\sum_{v} \Theta(v)=2 \pi|V| \quad \begin{gathered}\text { from the } \\ \text { Euler relation }\end{gathered}$
- If convex hull condition holds, then $\Theta(v) \geq 2 \pi$ for each v
and since $\sum_{v} \Theta(v)=2 \pi|V|$, must have $\Theta(v)=2 \pi$ for each v

Proof idea

- For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing

- For each vertex v, let $\Theta(v)=\sum_{c \in v} \theta(c)$
- Whatever the drawing we always have $\sum_{v} \Theta(v)=2 \pi|V| \quad \begin{gathered}\text { from the } \\ \text { Euler relation }\end{gathered}$
- If convex hull condition holds, then $\Theta(v) \geq 2 \pi$ for each v
and since $\sum_{v} \Theta(v)=2 \pi|V|$, must have $\Theta(v)=2 \pi$ for each v
Hence locally planar at each vertex (no "folding" of triangles at a vertex)
\Rightarrow the drawing is planar

Tutte's barycentric method

- Outer vertices v_{1}, \ldots, v_{d} are fixed at fixed positions (nailed)
- Each inner vertex is at the barycenter of its neighbours

$$
x_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} x_{j} \quad y_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} y_{j} \quad \text { for } i \geq 4
$$

Tutte's barycentric method

- Outer vertices v_{1}, \ldots, v_{d} are fixed at fixed positions (nailed)
- Each inner vertex is at the barycenter of its neighbours

$$
\begin{aligned}
& x_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} x_{j} \quad y_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} y_{j} \quad \text { for } i \geq 4 \\
& \Leftrightarrow \quad \sum_{j \sim i} x_{i}-x_{j}=0 \quad \text { and } \quad \sum_{j \sim i} x_{i}-x_{j}=0 \quad \text { for each } i \geq 4
\end{aligned}
$$

Tutte’s barycentric method

- Outer vertices v_{1}, \ldots, v_{d} are fixed at fixed positions (nailed)
- Each inner vertex is at the barycenter of its neighbours

$$
\begin{aligned}
& x_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} x_{j} \quad y_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} y_{j} \quad \text { for } i \geq 4 \\
& \Leftrightarrow \quad \sum_{j \sim i} x_{i}-x_{j}=0 \quad \text { and } \quad \sum_{j \sim i} x_{i}-x_{j}=0 \quad \text { for each } i \geq 4
\end{aligned}
$$

- This drawing exists and is unique. It minimizes the energy

$$
\mathcal{P}=\sum_{e} \ell(e)^{2}=\sum_{\{i, j\} \in T}\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}
$$

under the constraint of fixed $x_{1}, \ldots, x_{d}, y_{1}, \ldots, y_{d}$

Tutte's barycentric method

- Outer vertices v_{1}, \ldots, v_{d} are fixed at fixed positions (nailed)
- Each inner vertex is at the barycenter of its neighbours

$$
\begin{aligned}
& x_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} x_{j} \quad y_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} y_{j} \quad \text { for } i \geq 4 \\
& \Leftrightarrow \quad \sum_{j \sim i} x_{i}-x_{j}=0 \quad \text { and } \quad \sum_{j \sim i} x_{i}-x_{j}=0 \quad \text { for each } i \geq 4
\end{aligned}
$$

- This drawing exists and is unique. It minimizes the energy

$$
\mathcal{P}=\sum_{e} \ell(e)^{2}=\sum_{\{i, j\} \in T}\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}
$$

under the constraint of fixed $x_{1}, \ldots, x_{d}, y_{1}, \ldots, y_{d}$

- also called spring embedding (each edge is a spring of energy $\left.\ell(e)^{2}\right)$
[Schnyder'89]
Schnyder wood = choice of a direction and color (red, green, or blue) for each inner edge, such that:

Local conditions:

at each inner vertex

at the outer vertices

yields a spanning tree in each color

Schnyder's face-counting algorithm
[Schnyder'90]
Outer vertices: equilateral triangle Inner vertices: barycentric placement
2 faces in blue area 3 faces in blue area

place A at $\frac{4}{9} a_{1}+\frac{2}{9} a_{2}+\frac{3}{9} a_{3}$

Schnyder's face-counting algorithm
[Schnyder'90] Outer vertices: equilateral triangle Inner vertices: barycentric placement

place A at $\frac{4}{9} a_{1}+\frac{2}{9} a_{2}+\frac{3}{9} a_{3}$

Schnyder's face-counting algorithm
[Schnyder'90] Outer vertices: equilateral triangle Inner vertices: barycentric placement

place A at $\frac{4}{9} a_{1}+\frac{2}{9} a_{2}+\frac{3}{9} a_{3}$

n vertices
$\operatorname{grid}(2 n-5) \times(2 n-5)$

at each inner vertex:

(hence inside the convex hull of neighbours)

Transversal structures

For T a triangulation of the 4-gon, a transversal structure is a partition of the inner edges into 2 transversal Hasse diagrams

characterized by local conditions:

T admits a transversal structure iff every 3-cycle is facial

Rectangle tilings and dual triangulation

Rectangle tilings and dual triangulation

The dual map is a triangulation of the 4-gon, where every 3-cycle is facial

The dual is naturally endowed with a transversal structure
dual for vertical edges

dual for horizontal edges

Face-labelling of the two Hasse diagrams

dual for vertical edges

a horizontal segment in each face
dual for horizontal edges

a vertical segment in each face

Face-labelling of the two Hasse diagrams
dual for vertical edges

a horizontal segment in each face label the face by the y-coordinate of segment

$$
j>i
$$

dual for horizontal edges

a vertical segment in each face
$\left.\begin{array}{|c|}\hline \text { label the face by the } \\ x \text {-coordinate of segment }\end{array}\right\} \ell$

Face-labelling of the two Hesse diagrams

dual for vertical edges

a horizontal segment in each face label the face by the y-coordinate of segment

vertex $v \leftrightarrow$ rectangle $R(v)$
dual for horizontal edges

a vertical segment in each face

bounding x, y-coordinates given by labels

Algorithm by reverse-engineering
[Kant, He'92]
For T a triangulation of the 4 -gon without separating 3-cycle

each vertex \rightarrow box

Algorithm by reverse-engineering
[Kant, He'92]
For T a triangulation of the 4 -gon without separating 3-cycle

each vertex \rightarrow box

Rectangle tilings and electrical networks
other way of associating a planar map to a rectangle tiling nice way to visualize Kirchhoff's laws

Rk: aspect ratio of a rectangle \leftrightarrow resistance of corresponding link in the network

Question: Given T a triangulation of the 4 -gon, does there always exist a square tiling whose dual is T ?

[Schramm'93]
Question: Given T a triangulation of the 4-gon, does there always exist a square tiling whose dual is T ?

Yes! up to allowing for degeneracies (empty squares) solution via computing the 'optimal metric' of T
(no known algorithm by solving linear equation systems)

Circle packing

[Koebe'36, Andreev'70, Thurston'85]: every planar triangulation admits a contact representation by disks
The representation is unique if the 3 outer disks have prescribed radius

Circle packing

[Koebe'36, Andreev'70, Thurston'85]: every planar triangulation admits a contact representation by disks
The representation is unique if the 3 outer disks have prescribed radius

Exercise: the stereographic projection maps circles to circles (considering lines as circle of radius $+\infty$).

Circle packing

[Koebe'36, Andreev'70, Thurston'85]: every planar triangulation admits a contact representation by disks
The representation is unique if the 3 outer disks have prescribed radius

Exercise: the stereographic projection maps circles to circles (considering lines as circle of radius $+\infty$).

Hence one can lift to a circle packing on the sphere

Circle packing

[Koebe'36, Andreev'70, Thurston'85]: every planar triangulation admits a contact representation by disks
The representation is unique if the 3 outer disks have prescribed radius

Exercise: the stereographic projection maps circles to circles (considering lines as circle of radius $+\infty$).

Hence one can lift to a circle packing on the sphere
There is a unique representation where the centre of the sphere is the barycenter of the contact points

Generalized statement:

 for any triangulation T and a prescribed convex shape for each vertex there exists a contact representation of T(possibility of degeneracies if shapes are not smooth)
Example (Eppstein's blog post)
isocahedron

