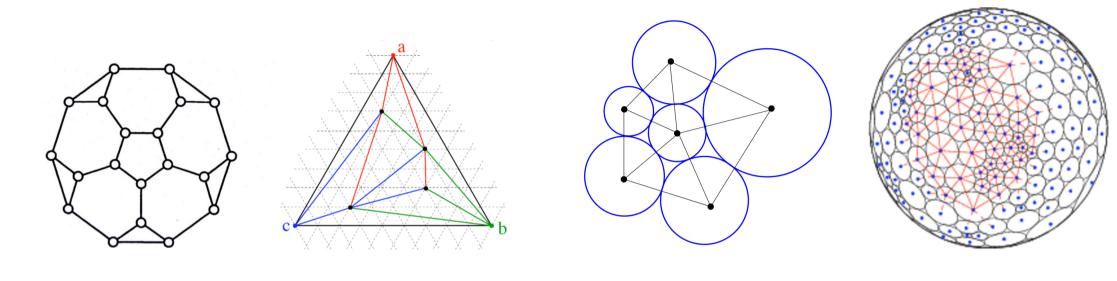
Planar maps: bijections and applications

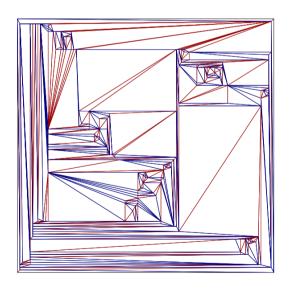
Éric Fusy (CNRS/LIX)

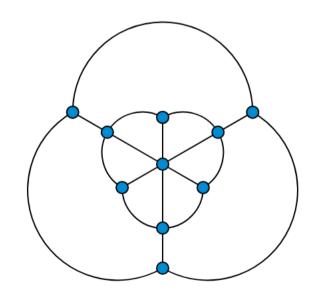
AEC summer school, Hagenberg, 2018

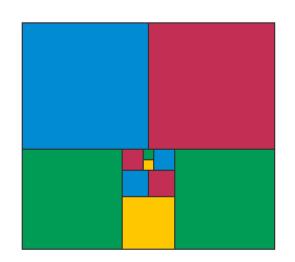
Geometric representation of planar maps

Various methods can be used to draw a map on the plane/sphere

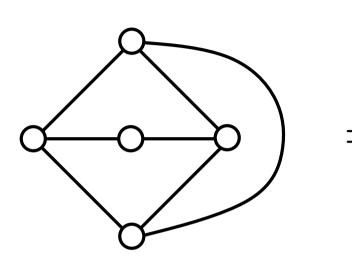


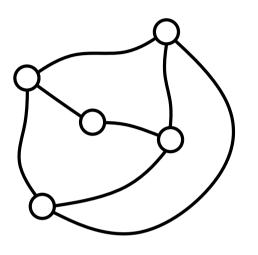




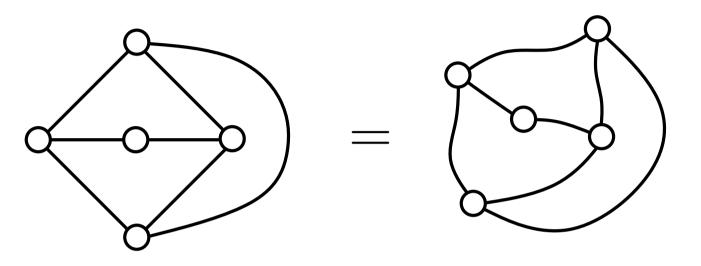


planar map (with outer face) = equivalence class of planar drawings of graphs up to continuous deformation



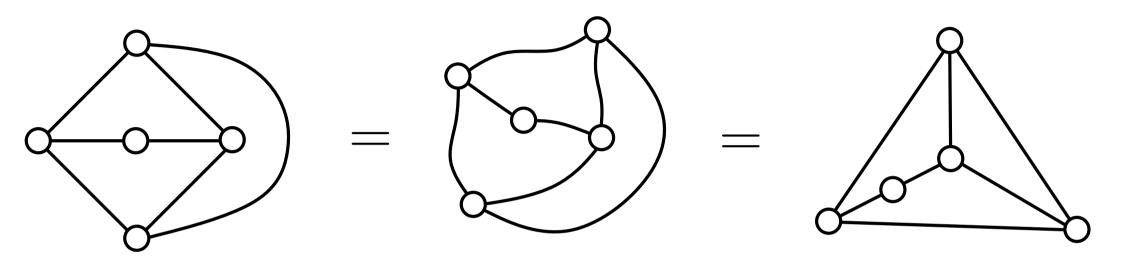


planar map (with outer face) = equivalence class of planar drawings of graphs up to continuous deformation



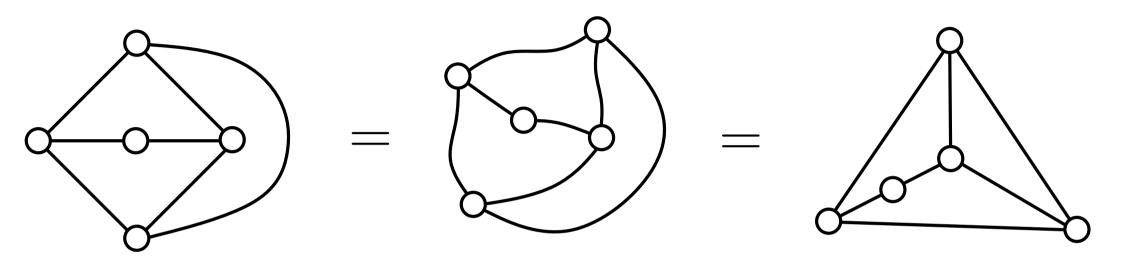
Question: Does there always exist an equivalent planar drawing such that all edges are drawn as segments ?

planar map (with outer face) = equivalence class of planar drawings of graphs up to continuous deformation



Question: Does there always exist an equivalent planar drawing such that all edges are drawn as segments ?

planar map (with outer face) = equivalence class of planar drawings of graphs up to continuous deformation



Question: Does there always exist an equivalent planar drawing such that all edges are drawn as segments ? (such as drawing is called a (planar) straight-line drawing)

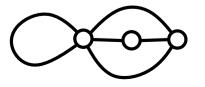
planar map (with outer face) = equivalence class of planar drawings of graphs up to continuous deformation



Question: Does there always exist an equivalent planar drawing such that all edges are drawn as segments ?

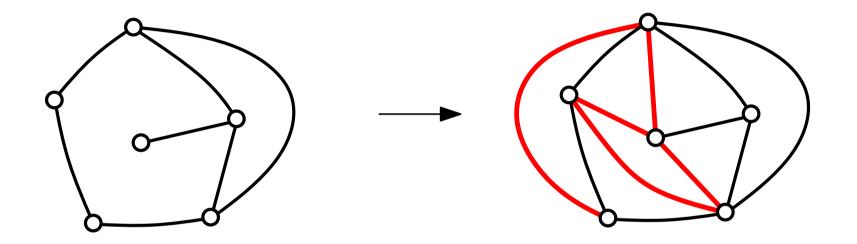
(such as drawing is called a (planar) straight-line drawing)

Remark: For such a drawing to exist, the map needs to be simple



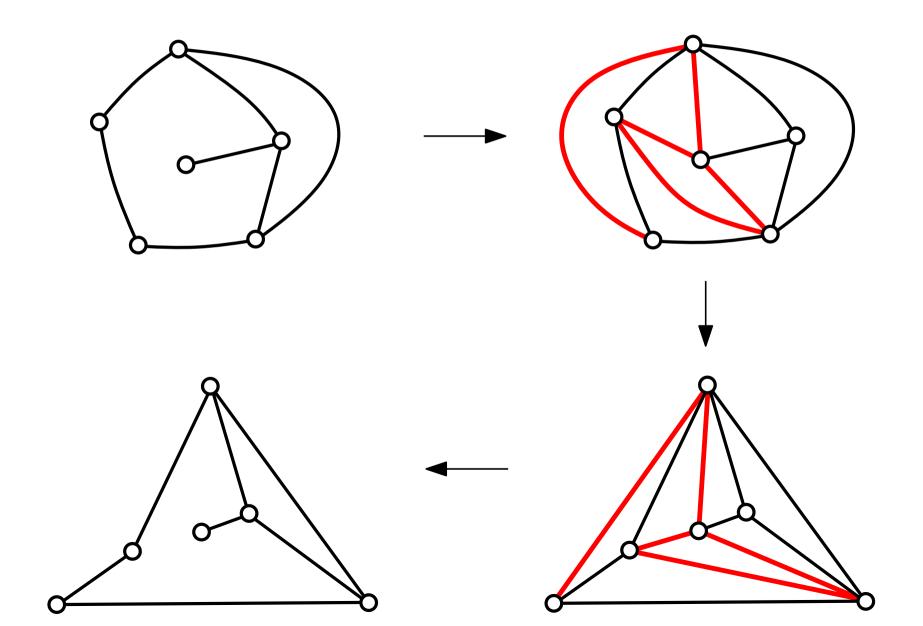
Existence proof (reduction to triangulations)

• Any simple planar map M can be completed to a simple triangulation T

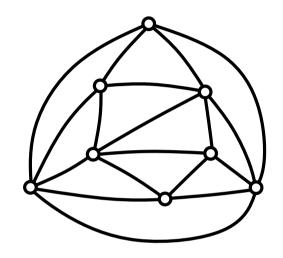


Existence proof (reduction to triangulations)

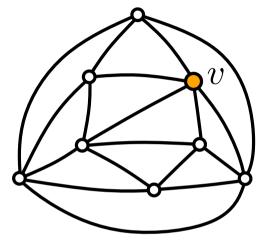
- ullet Any simple planar map M can be completed to a simple triangulation T
- \bullet A straight-line drawing of T yields a straight-line drawing of M



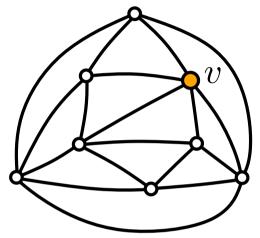
First proof: induction on the number of vertices Let T be a triangulation with n vertices

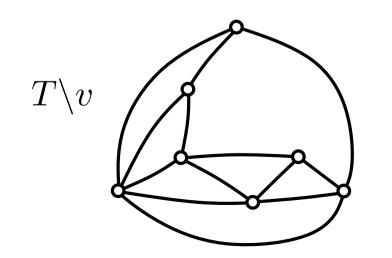


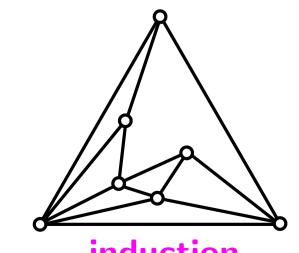
First proof: induction on the number of vertices Let T be a triangulation with n vertices **Exercise:** T has at least one inner vertex v of degree ≤ 5



First proof: induction on the number of vertices Let T be a triangulation with n vertices **Exercise:** T has at least one inner vertex v of degree ≤ 5

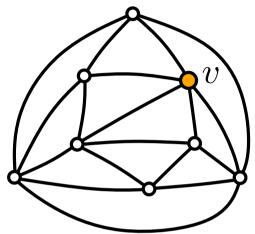


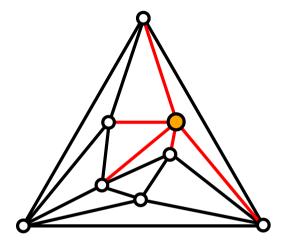


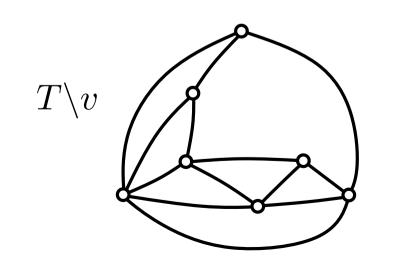


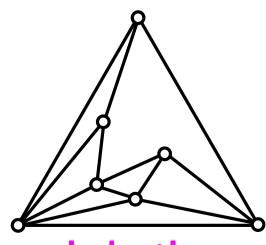
induction $T \setminus v$ has a straight-line drawing

First proof: induction on the number of vertices Let T be a triangulation with n vertices **Exercise:** T has at least one inner vertex v of degree ≤ 5







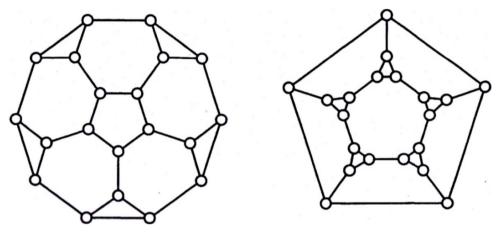


induction $T \setminus v$ has a straight-line drawing

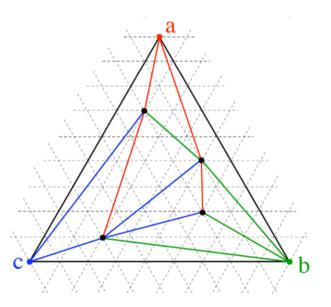
Straight-line drawing algorithms

We present two classical algorithms

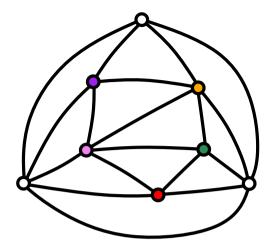
• Tutte's barycentric method

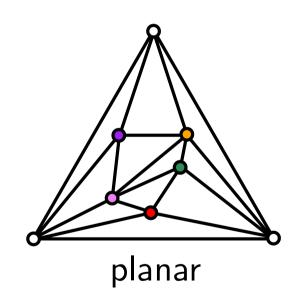


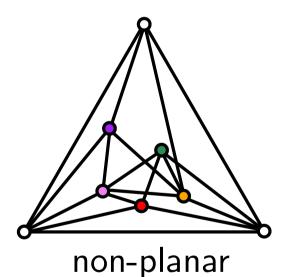
• Schnyder's face-counting algorithm



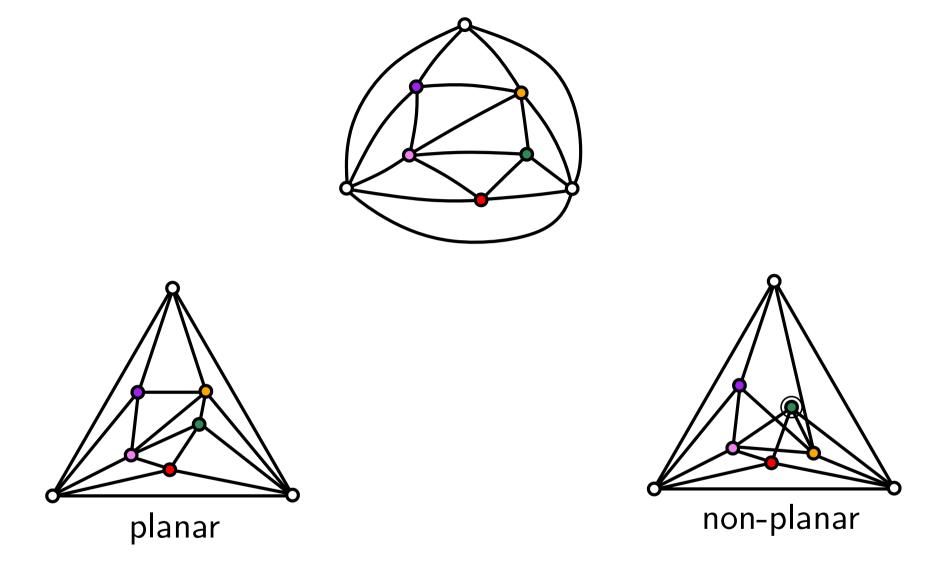
Planarity criterion for straight-line drawings







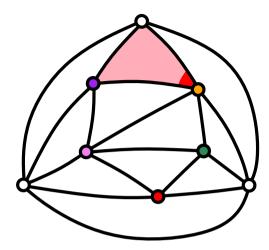
Planarity criterion for straight-line drawings

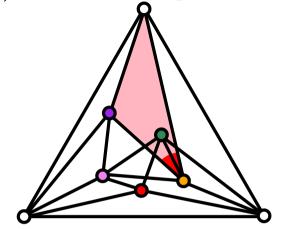


Theorem: a straight-line drawing is planar iff every inner vertex is inside the **convex hull** of its neighbours

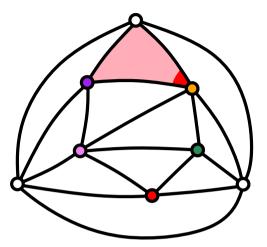
(works for triangulations and more generally for 3-connected planar graphs)

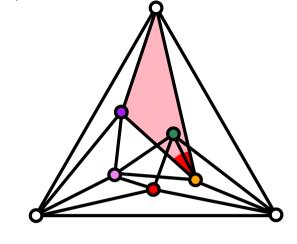
• For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing





• For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing

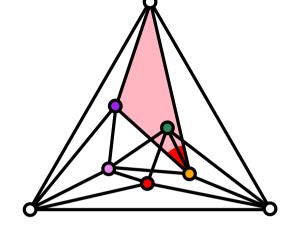




• For each vertex v, let $\Theta(v) = \sum_{c \in v} \theta(c)$

• For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing



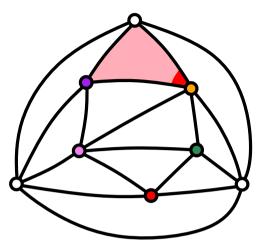


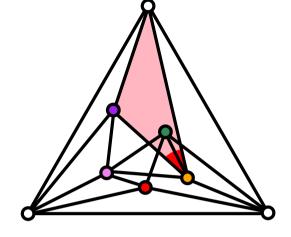
- \bullet For each vertex v, let $\Theta(v) = \sum \theta(c)$
- Whatever the drawing we always have $\left|\sum_{v} \Theta(v) = 2\pi |V|\right|$

 $c \in v$

from the Euler relation

• For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing





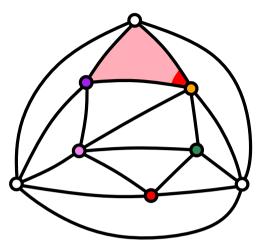
• For each vertex v, let $\Theta(v) = \sum \theta(c)$

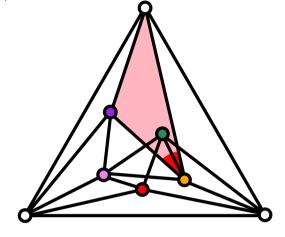
- Whatever the drawing we always have $\left|\sum_{v} \Theta(v) = 2\pi |V|\right|$
- If convex hull condition holds, then $\Theta(v) \ge 2\pi$ for each v

 $c \in v$

from the Euler relation

• For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing





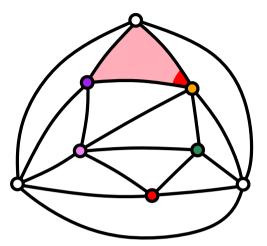
• For each vertex v, let $\Theta(v) = \sum \theta(c)$

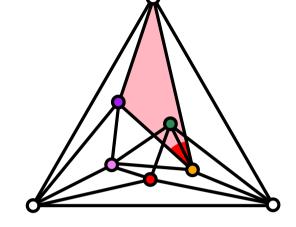
• Whatever the drawing we always have $\left|\sum_{v} \Theta(v) = 2\pi |V|\right|$

 $c \in v$

- from the Euler relation
- If convex hull condition holds, then $\Theta(v) \ge 2\pi$ for each vand since $\sum_v \Theta(v) = 2\pi |V|$, must have $\Theta(v) = 2\pi$ for each v

• For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing





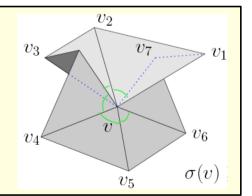
• For each vertex v, let $\Theta(v) = \sum \theta(c)$

- Whatever the drawing we always have $\left|\sum_{v} \Theta(v) = 2\pi |V|\right|$
- from the Euler relation
- If convex hull condition holds, then $\Theta(v) \ge 2\pi$ for each v

and since $\sum_{v} \Theta(v) = 2\pi |V|$, must have $\Theta(v) = 2\pi$ for each v

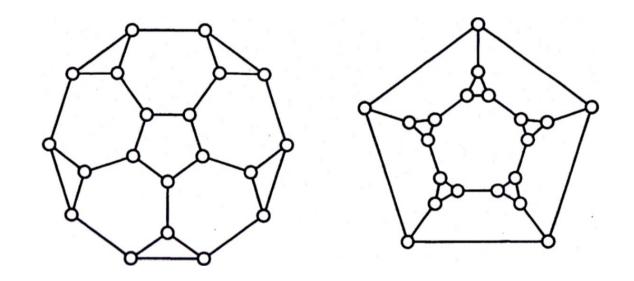
 $c \in v$

Hence locally planar at each vertex (no "folding" of triangles at a vertex) \Rightarrow the drawing is planar

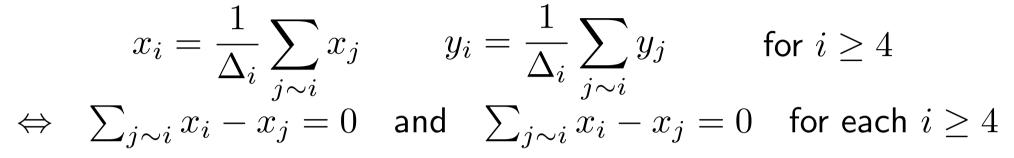


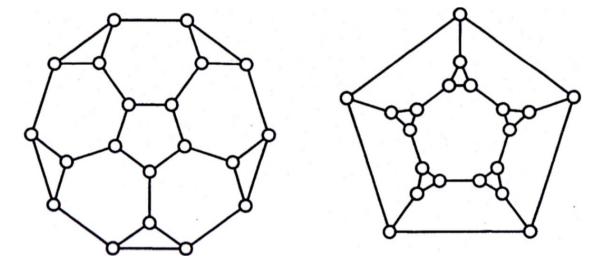
- Outer vertices v_1, \ldots, v_d are fixed at fixed positions (nailed)
- Each inner vertex is at the **barycenter of its neighbours**

$$x_i = \frac{1}{\Delta_i} \sum_{j \sim i} x_j$$
 $y_i = \frac{1}{\Delta_i} \sum_{j \sim i} y_j$ for $i \ge 4$

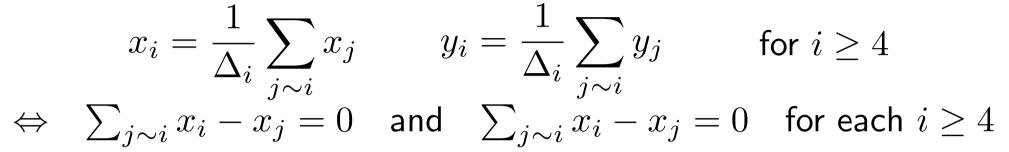


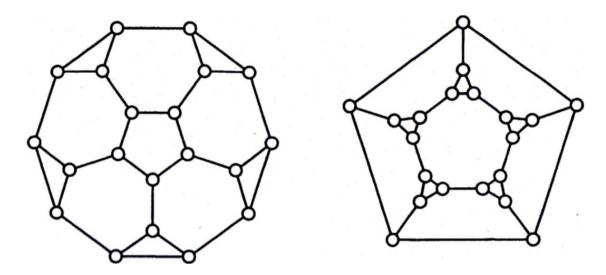
- Outer vertices v_1, \ldots, v_d are fixed at fixed positions (nailed)
- Each inner vertex is at the **barycenter of its neighbours**





- Outer vertices v_1, \ldots, v_d are fixed at fixed positions (nailed)
- Each inner vertex is at the **barycenter of its neighbours**





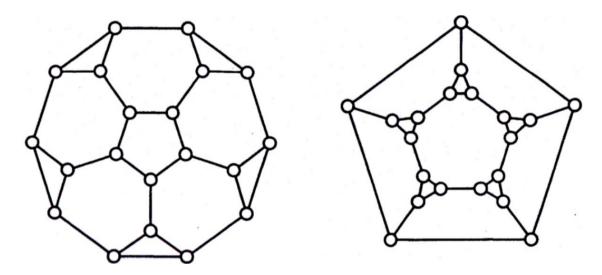
• This drawing exists and is unique. It minimizes the energy

$$\mathcal{P} = \sum_{e} \ell(e)^2 = \sum_{\{i,j\} \in T} (x_i - x_j)^2 + (y_i - y_j)^2$$

under the constraint of fixed $x_1, \dots, x_d, y_1, \dots, y_d$

- Outer vertices v_1, \ldots, v_d are fixed at fixed positions (nailed)
- Each inner vertex is at the **barycenter of its neighbours**

$$\begin{aligned} x_i &= \frac{1}{\Delta_i} \sum_{j \sim i} x_j \qquad y_i = \frac{1}{\Delta_i} \sum_{j \sim i} y_j \qquad \text{for } i \ge 4 \\ \Leftrightarrow \quad \sum_{j \sim i} x_i - x_j &= 0 \quad \text{and} \quad \sum_{j \sim i} x_i - x_j &= 0 \quad \text{for each } i \ge 4 \end{aligned}$$



• This drawing exists and is unique. It minimizes the energy

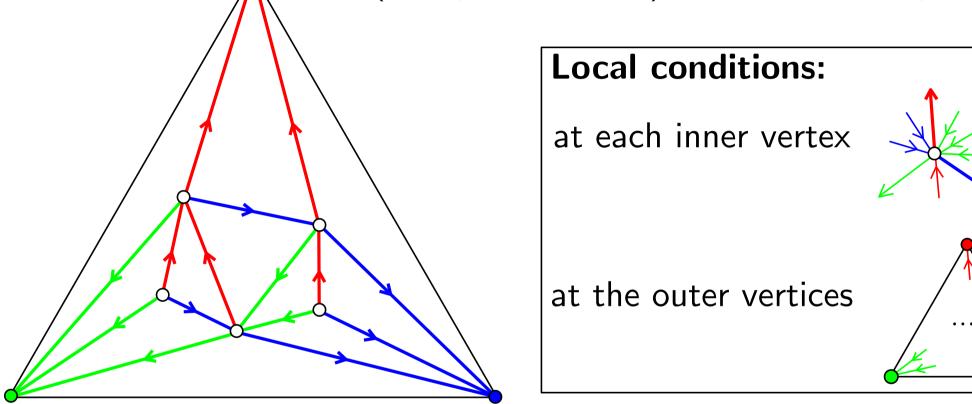
$$\mathcal{P} = \sum_{e} \ell(e)^2 = \sum_{\{i,j\} \in T} (x_i - x_j)^2 + (y_i - y_j)^2$$

under the constraint of fixed $x_1, \ldots, x_d, y_1, \ldots, y_d$

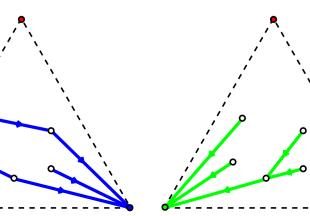
• also called spring embedding (each edge is a spring of energy $\ell(e)^2$)

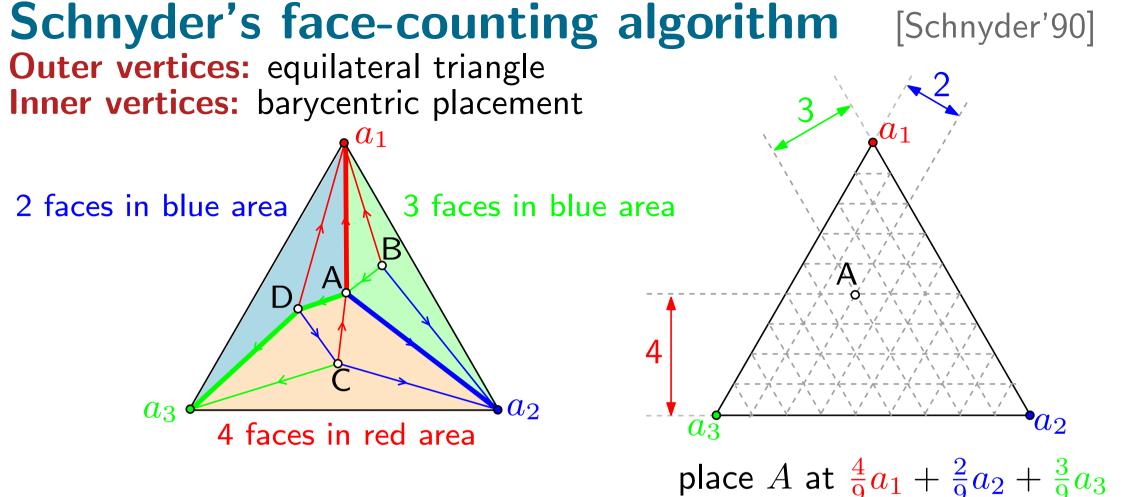
Schnyder woods on triangulations [Schnyder'89]

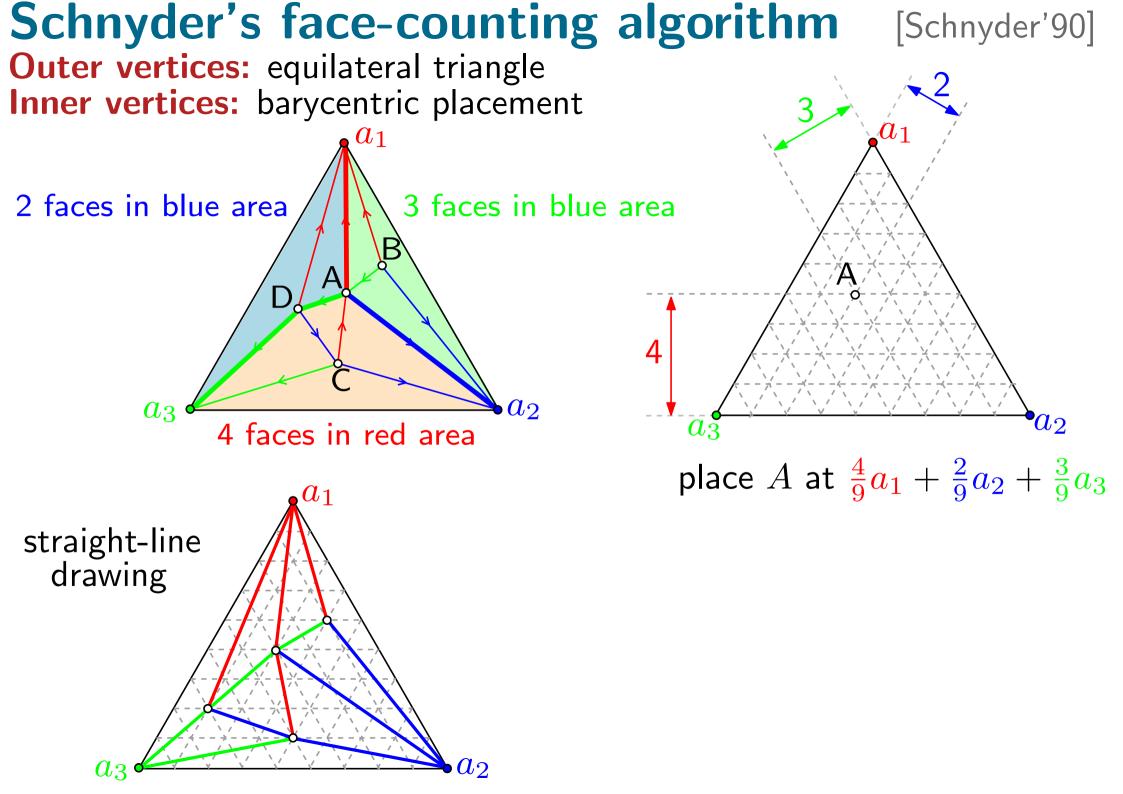
Schnyder wood = choice of a direction and color (red, green, or blue) for each inner edge, such that:

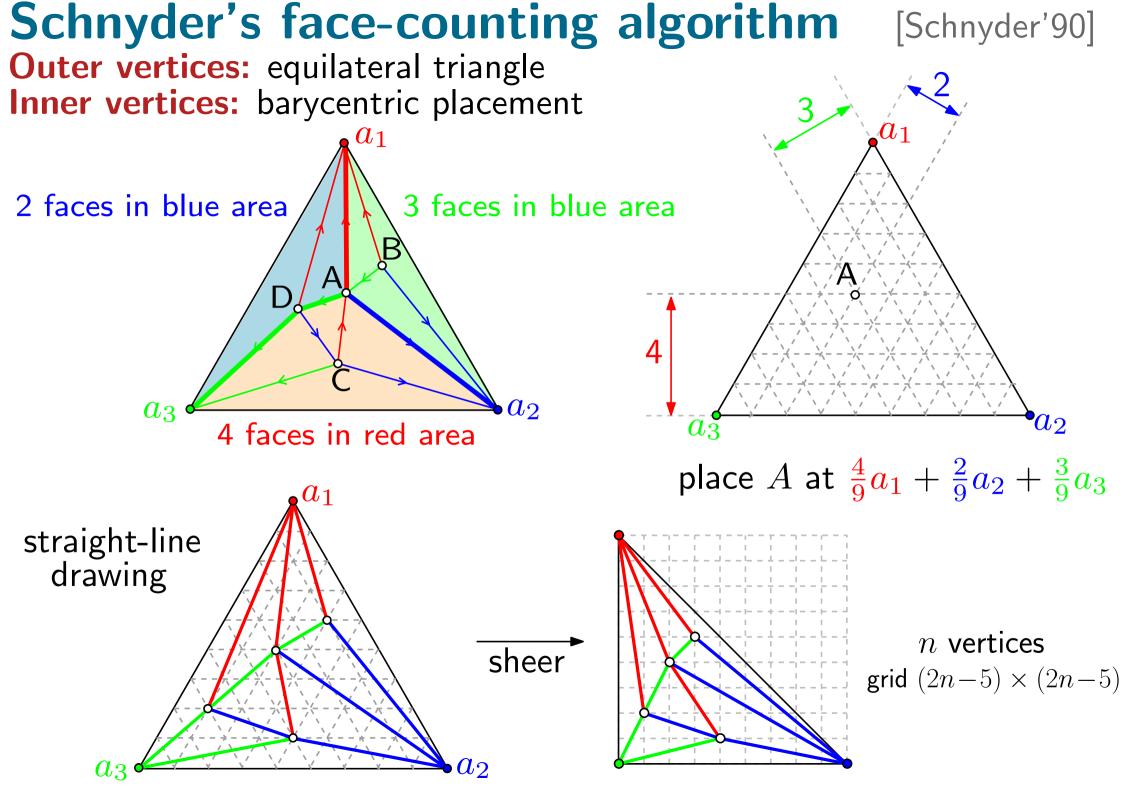


yields a **spanning tree** in each color

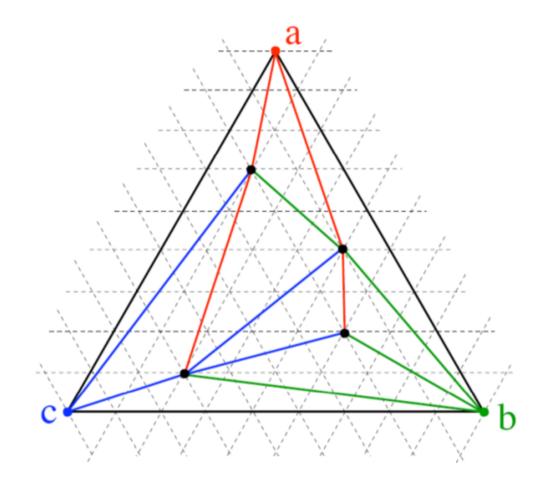




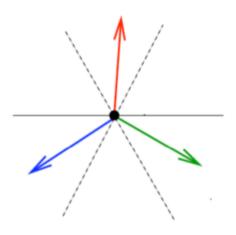




Proof of planarity



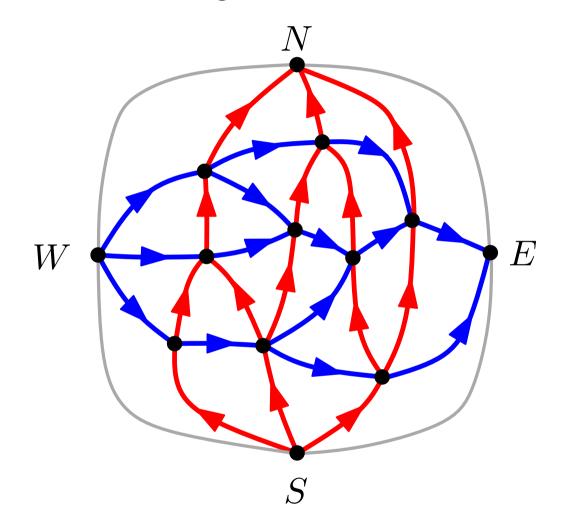
at each inner vertex:



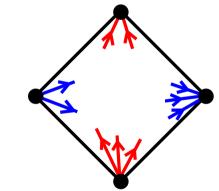
(hence inside the convex hull of neighbours)

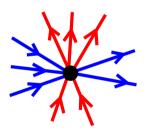
Transversal structures

For T a triangulation of the 4-gon, a transversal structure is a partition of the inner edges into 2 transversal Hasse diagrams



characterized by local conditions:

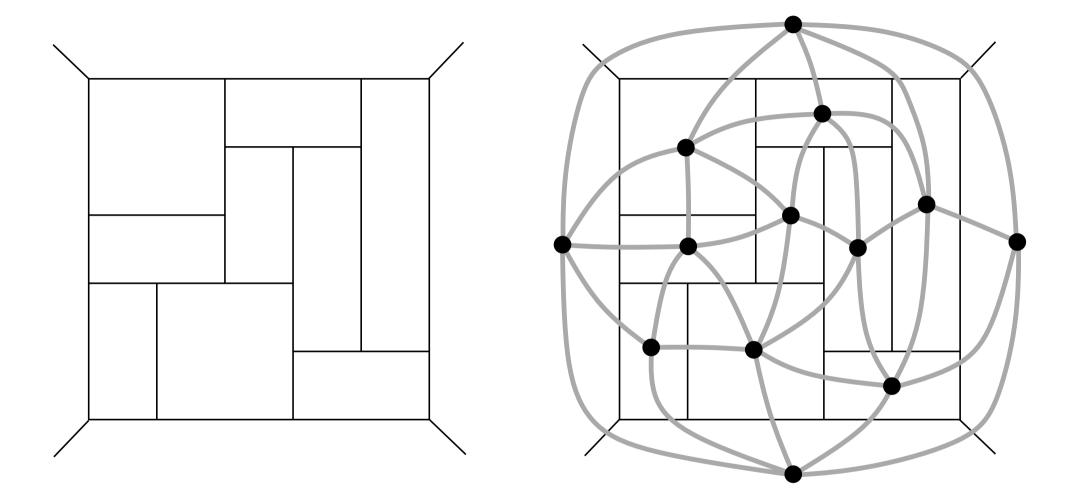




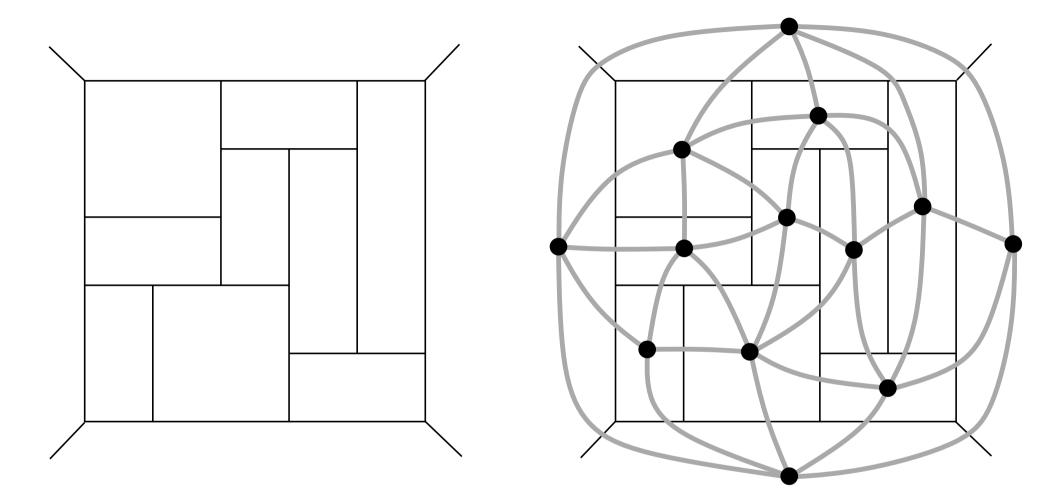
inner vertex

T admits a transversal structure iff every 3-cycle is facial

Rectangle tilings and dual triangulation



Rectangle tilings and dual triangulation



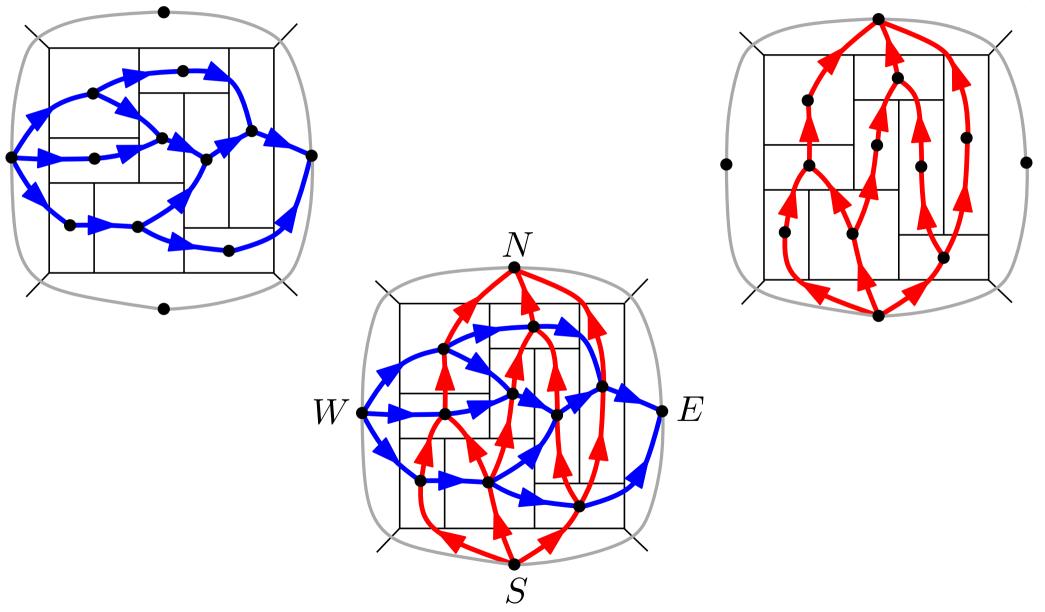
The dual map is a triangulation of the 4-gon, where every 3-cycle is facial

Rectangle tilings and dual triangulation

The dual is naturally endowed with a transversal structure

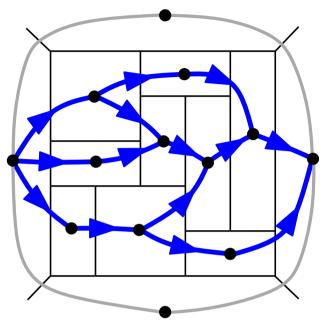
dual for vertical edges

dual for horizontal edges



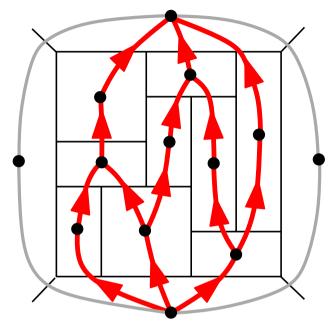
Face-labelling of the two Hasse diagrams

dual for vertical edges



a horizontal segment in each face

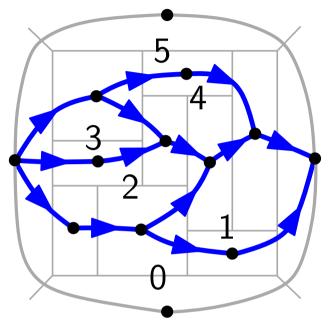
dual for horizontal edges



a vertical segment in each face

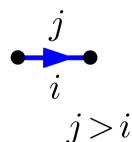
Face-labelling of the two Hasse diagrams

dual for vertical edges



a horizontal segment in each face

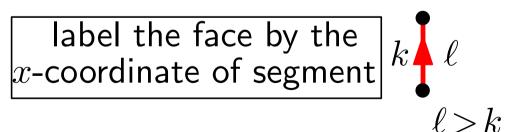
label the face by the y-coordinate of segment



dual for horizontal edges

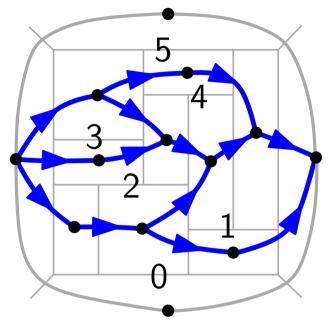


a vertical segment in each face



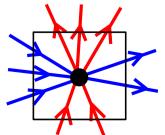
Face-labelling of the two Hasse diagrams

dual for vertical edges

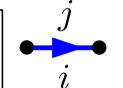


a horizontal segment in each face

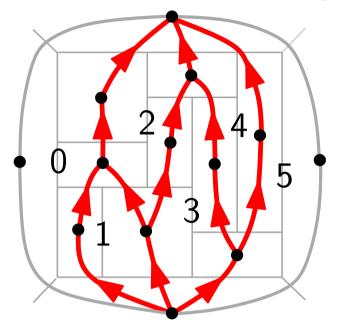
label the face by the y-coordinate of segment



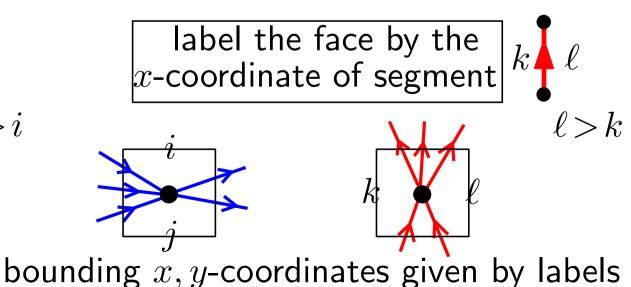
vertex $v \leftrightarrow$ rectangle R(v)

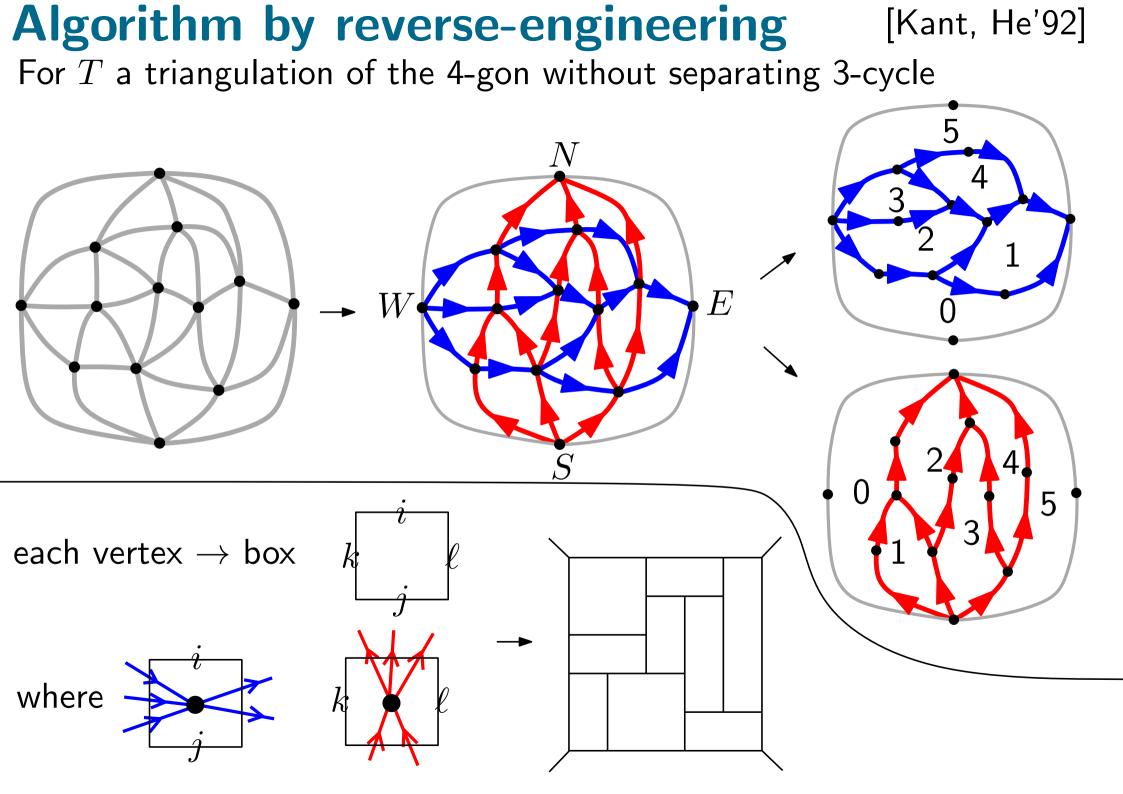


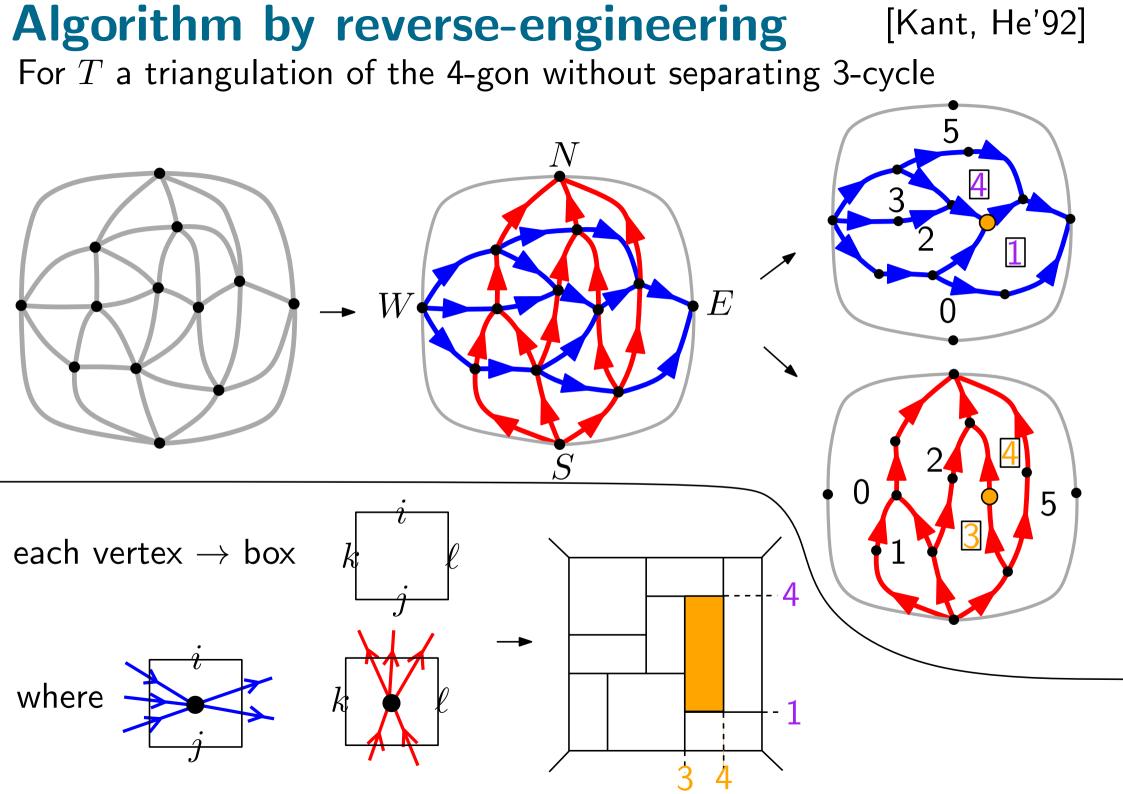
dual for horizontal edges



a vertical segment in each face

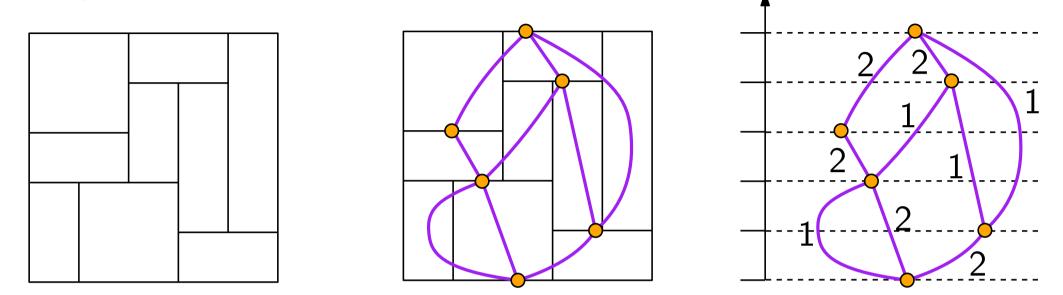






Rectangle tilings and electrical networks other way of associating a planar map to a rectangle tiling

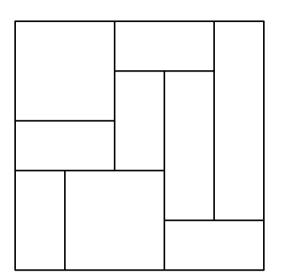
nice way to visualize Kirchhoff's laws

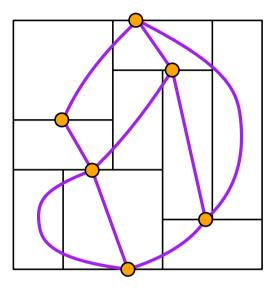


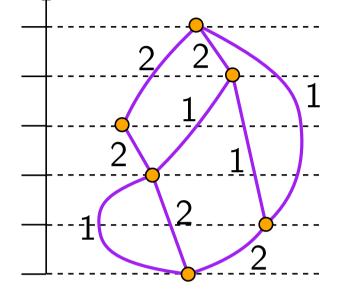
Rk: aspect ratio of a rectangle \leftrightarrow resistance of corresponding link in the network

Rectangle tilings and electrical networks other way of associating a planar map to a rectangle tiling

other way of associating a planar map to a rectangle tiling nice way to visualize Kirchhoff's laws V



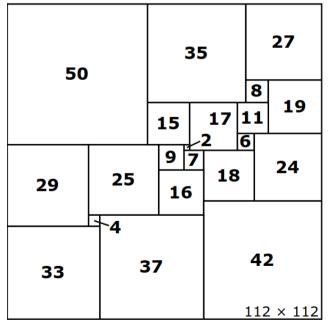




Rk: aspect ratio of a rectangle \leftrightarrow resistance of corresponding link in the network

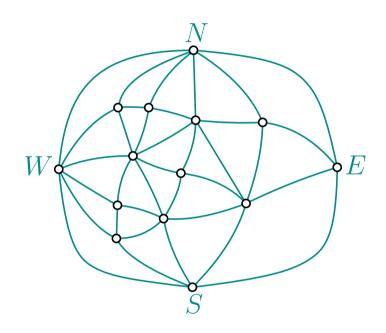
Given a network with resistances = 1one gets a square tiling representation by solving the Kirchhoff's laws

cf 'squaring the square'



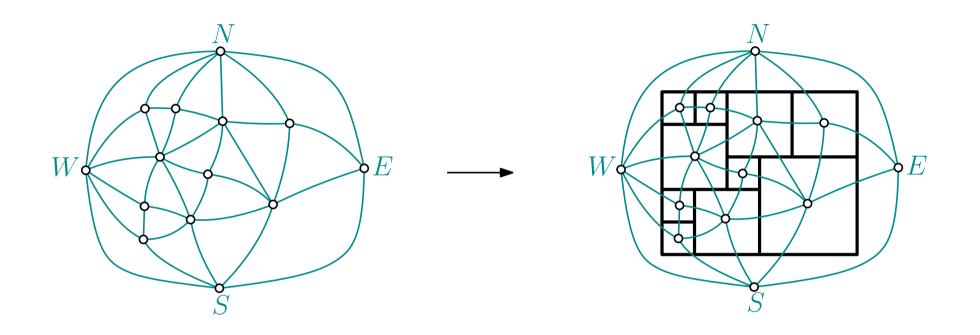
Square tilings dual to triangulations [Schramm'93]

Question: Given T a triangulation of the 4-gon, does there always exist a square tiling whose dual is T?



Square tilings dual to triangulations [Schramm'93]

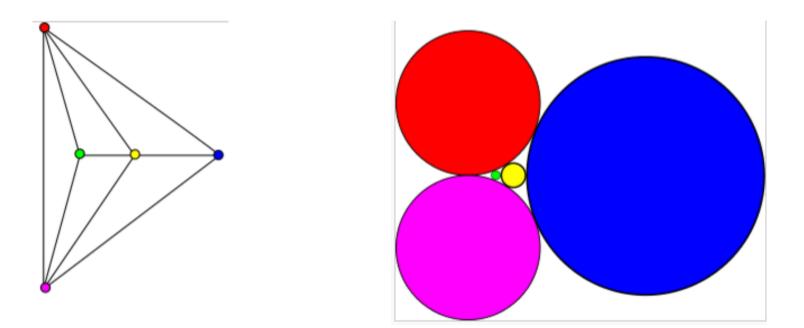
Question: Given T a triangulation of the 4-gon, does there always exist a square tiling whose dual is T?



Yes ! up to allowing for degeneracies (empty squares) solution via computing the 'optimal metric' of T(no known algorithm by solving linear equation systems)

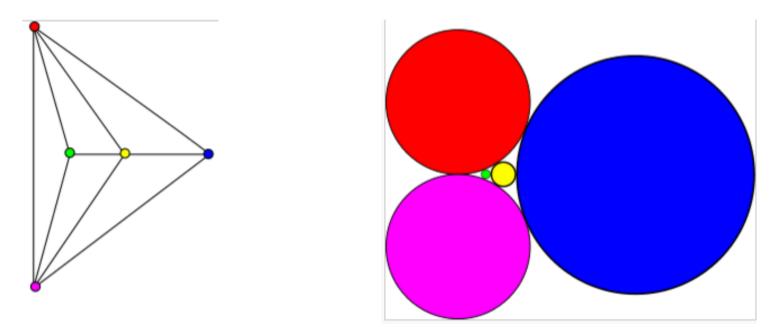
[Koebe'36, Andreev'70, Thurston'85]: every planar triangulation admits a contact representation by disks

The representation is unique if the 3 outer disks have prescribed radius

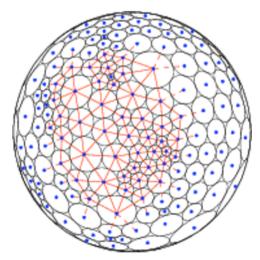


[Koebe'36, Andreev'70, Thurston'85]: every planar triangulation admits a contact representation by disks

The representation is unique if the 3 outer disks have prescribed radius

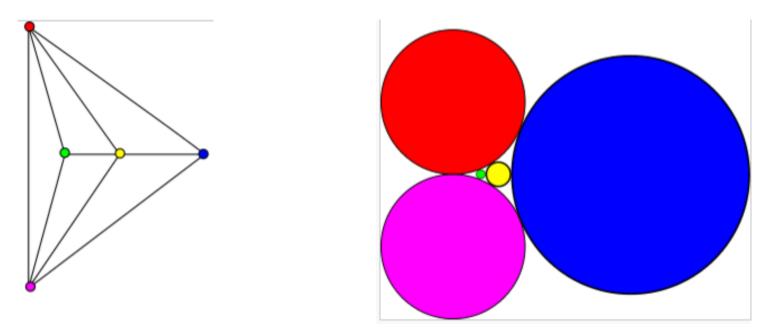


Exercise: the stereographic projection maps circles to circles (considering lines as circle of radius $+\infty$).



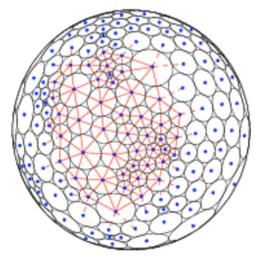
[Koebe'36, Andreev'70, Thurston'85]: every planar triangulation admits a contact representation by disks

The representation is unique if the 3 outer disks have prescribed radius



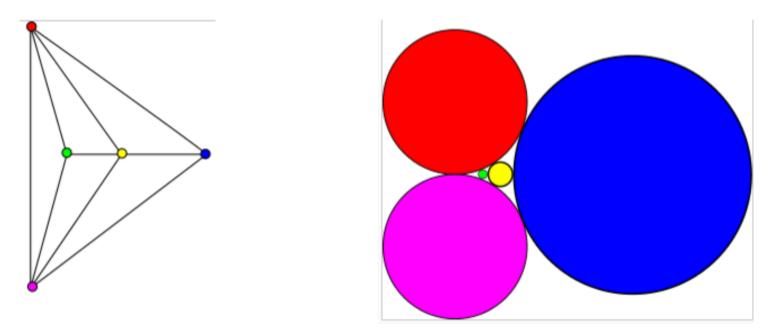
Exercise: the stereographic projection maps circles to circles (considering lines as circle of radius $+\infty$).

Hence one can lift to a circle packing on the sphere



[Koebe'36, Andreev'70, Thurston'85]: every planar triangulation admits a contact representation by disks

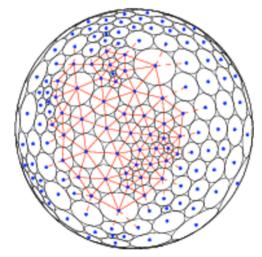
The representation is unique if the 3 outer disks have prescribed radius



Exercise: the stereographic projection maps circles to circles (considering lines as circle of radius $+\infty$).

Hence one can lift to a circle packing on the sphere

There is a unique representation where the centre of the sphere is the barycenter of the contact points



Contact representations with prescribed shapes

Generalized statement:

[Schramm's PHD 1990]

for any triangulation T and a prescribed convex shape for each vertex there exists a contact representation of T

(possibility of degeneracies if shapes are not smooth)

