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Geometric representation of planar maps

Various methods can be used to draw a map on the plane/sphere
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Existence question

planar map (with outer face) = equivalence class of planar drawings of
graphs up to continuous deformation
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Question: Does there always exist an equivalent planar drawing
such that all edges are drawn as segments 7

(such as drawing is called a (planar) straight-line drawing)

Remark: For such a drawing to exist, the map needs to be simple
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Existence proof (reduction to triangulations)
e Any simple planar map M can be completed to a simple triangulation T’




Existence proof (reduction to triangulations)
e Any simple planar map M can be completed to a simple triangulation T’

e A straight-line drawing of T’ yields a straight-line drawing of M
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First proof: induction on the number of vertices
Let 1" be a triangulation with n vertices
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First proof: induction on the number of vertices

Let 1" be a triangulation with n vertices
Exercise: T has at least one inner vertex v of degree <5
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Straight-line drawing algorithms

We present two classical algorithms

e [utte's barycentric method

SR

e Schnyder's face-counting algorithm
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planar non-planar



Planarity criterion for straight-line drawings

planar non-planar

Theorem: a straight-line drawing is planar iff every inner vertex is inside
the convex hull of its neighbours

(works for triangulations and more generally for 3-connected planar graphs)
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Proof idea
e For each corner ¢ € T let 6(c) be the angle of ¢ in the drawing

e For each vertex v, let O(v) = Ze(c)

ccv

e Whatever the drawing we always have|) | O(v) = 27|V/| from the

Euler relation

e If convex hull condition holds, then ©(v) > 27 for each v
and since ) O(v) = 27|V

, must have ©(v) = 27 for each v

Hence locally planar at each vertex o " &

(no “folding” of triangles at a vertex)

= the drawing is planar




Tutte’s barycentric method
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Tutte’s barycentric method
e QOuter vertices vy,...,vq are fixed at fixed positions (nailed)

e Each inner vertex is at the barycenter of its neighbours

xi:%ij yrg:%Zyj for1 > 4

& ij.x@-—a:j:() and ijwi—xj:() for each 7 > 4

e [his drawing exists and is unique. |t minimizes the energy

P=>.0e)°=>1ner@i —x)° + (¥ —y;)°
under the constraint of fixed z1,...,24,y1,...,Y4

e also called spring embedding (each edge is a spring of energy £(e)?)



Schnyder woods on triangulations [Schnyder'89]

Schnyder wood = choice of a direction and color
(red, green, or blue) for each inner edge, such that:

Local conditions:

at each inner vertex

at the outer vertices

yields a spanning
tree in each color




Schnyder’s face-counting algorithm [Schnyder'90]

Outer vertices: equilateral triangle

Inner vertices: barycentric placement
a1

2 faces in blue area 3 faces in blue area

a2

4 faces In red area

place A at %al + %ag + gag
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Schnyder’s face-counting algorithm [Schnyder'90]

Outer vertices: equilateral triangle
Inner vertices: barycentric placement

3 faces in blue area //\

4 faces in red area

2 faces in blue area

a1 place A at 2 5a1 + a2—|— ag

straight-line
drawing

m n vertices
grid (2n—>5) x (2n—75)

as a2




Proof of planarity

at each inner vertex:

(hence inside the convex hull
of neighbours)




Transversal structures
For T' a triangulation of the 4-gon, a transversal structure is a partition
of the inner edges into 2 transversal Hasse diagrams

N

characterized by local conditions:

E e

Inner vertex

S

' admits a transversal structure iff every 3-cycle is facial



Rectangle tilings and dual triangulation
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Rectangle tilings and dual triangulation
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The dual map is a triangulation of the 4-gon, where every 3-cycle is facial



Rectangle tilings and dual triangulation
The dual is naturally endowed with a transversal structure

dual for vertical edges dual for horizontal edges
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Face-labelling of the two Hasse diagrams

dual for vertical edges dual for horizontal edges
®
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a horizontal segment in each face a vertical segment in each face



Face-labelling of the two Hasse diagrams

dual for vertical edges dual for horizontal edges
@
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Face-labelling of the two Hasse diagrams

dual for vertical edges dual for horizontal edges

” f
0
o
a horizontal segment in each face a vertical segment in each face
J
label the face by the ; label the face by the Y
y-coordinate of segment ; xr-coordinate of segment
J>1 . >k

%z

vertex v < rectangle R(v) bounding z. y-coordinates given by labels



Algorithm by reverse-engineering [Kant, He'92]
For T' a triangulation of the 4-gon without separating 3-cycle
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Algorithm by reverse-engineering [Kant, He'92]
For T' a triangulation of the 4-gon without separating 3-cycle

each vertex — box k

>
where %é_ 1



Rectangfle tilings and electrical networks
other way ot associating a planar map to a rectangle tiling

nice way to visualize Kirchhoff's laws %4
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Rectangfle tilings and electrical networks
other way of associating a planar map to a rectangle tiling

nice way to visualize Kirchhoff's laws %4

0O)

vy,

v

Q.

Rk: aspect ratio of a rectangle <+ resistance of corresponding link in the network

Given a network with resistances = 1 35 | %7
one gets a square tiling representation > I
by solving the Kirchhoff's laws 1:,217 -
2o - 7l g | 24
cf ‘squaring the square’ e

14

33 37 42

112 x 112




Square tilings dual to triangulations

Question: Given 1" a triangulation of the 4-gon, does there always exist
a square tiling whose dual is 1'7
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Square tilings dual to triangulations

Question: Given 1" a triangulation of the 4-gon, does there always exist
a square tiling whose dual is 1'7
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Yes ! up to allowing for degeneracies (empty squares)
solution via computing the ‘optimal metric’ of T°
(no known algorithm by solving linear equation systems)



Circle packing
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The representation is unique if the 3 outer disks have prescribed radius
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Circle packing
[Koebe’36, Andreev’70, Thurston’85]: every planar triangulation
admits a contact representation by disks

The representation is unique if the 3 outer disks have prescribed radius

Exercise: the stereographic projection maps circles to
circles (considering lines as circle of radius +00).

Hence one can lift to a circle packing on the sphere

There is a unique representation where the centre of
the sphere is the barycenter of the contact points




Contact representations with prescribed shapes

Generalized statement: [Schramm’s PHD 1990]

for any triangulation 1" and a prescribed convex shape for each vertex
there exists a contact representation of T’
(possibility of degeneracies if shapes are not smooth)

Example (Eppstein’s blog post)
(; iIsocahedron




