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Geometric representation of planar maps
Various methods can be used to draw a map on the plane/sphere
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Existence question
planar map (with outer face) = equivalence class of planar drawings of

graphs up to continuous deformation

=

Question: Does there always exist an equivalent planar drawing
such that all edges are drawn as segments ?

=

(such as drawing is called a (planar) straight-line drawing)

Remark: For such a drawing to exist, the map needs to be simple
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Straight-line drawing algorithms
We present two classical algorithms

• Tutte’s barycentric method

• Schnyder’s face-counting algorithm
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Planarity criterion for straight-line drawings

planar non-planar

Theorem: a straight-line drawing is planar iff every inner vertex is inside
the convex hull of its neighbours

(works for triangulations and more generally for 3-connected planar graphs)
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Proof idea
• For each corner c ∈ T let θ(c) be the angle of c in the drawing

• For each vertex v, let Θ(v) =
∑
c∈v

θ(c)

• Whatever the drawing we always have
∑

v Θ(v) = 2π|V |

• If convex hull condition holds, then Θ(v) ≥ 2π for each v

and since
∑

v Θ(v) = 2π|V |, must have Θ(v) = 2π for each v

Hence locally planar at each vertex

(no “folding” of triangles at a vertex)

⇒ the drawing is planar

Euler relation
from the



Tutte’s barycentric method
• Outer vertices v1, . . . , vd are fixed at fixed positions (nailed)

• Each inner vertex is at the barycenter of its neighbours

xi =
1

∆i

∑
j∼i

xj yi =
1

∆i

∑
j∼i

yj for i ≥ 4



Tutte’s barycentric method
• Outer vertices v1, . . . , vd are fixed at fixed positions (nailed)

• Each inner vertex is at the barycenter of its neighbours

xi =
1

∆i

∑
j∼i

xj yi =
1

∆i

∑
j∼i

yj for i ≥ 4

⇔
∑

j∼i xi − xj = 0 and
∑

j∼i xi − xj = 0 for each i ≥ 4



Tutte’s barycentric method
• Outer vertices v1, . . . , vd are fixed at fixed positions (nailed)

• Each inner vertex is at the barycenter of its neighbours

xi =
1

∆i

∑
j∼i

xj yi =
1

∆i

∑
j∼i

yj for i ≥ 4

⇔
∑

j∼i xi − xj = 0 and
∑

j∼i xi − xj = 0 for each i ≥ 4

• This drawing exists and is unique. It minimizes the energy

P =
∑

e `(e)
2 =

∑
{i,j}∈T (xi − xj)2 + (yi − yj)2

under the constraint of fixed x1, . . . , xd, y1, . . . , yd



Tutte’s barycentric method
• Outer vertices v1, . . . , vd are fixed at fixed positions (nailed)

• Each inner vertex is at the barycenter of its neighbours

xi =
1

∆i

∑
j∼i

xj yi =
1

∆i

∑
j∼i

yj for i ≥ 4

⇔
∑

j∼i xi − xj = 0 and
∑

j∼i xi − xj = 0 for each i ≥ 4

• This drawing exists and is unique. It minimizes the energy

P =
∑

e `(e)
2 =

∑
{i,j}∈T (xi − xj)2 + (yi − yj)2

under the constraint of fixed x1, . . . , xd, y1, . . . , yd

• also called spring embedding (each edge is a spring of energy `(e)2)



Schnyder woods on triangulations

at each inner vertex

at the outer vertices

yields a spanning
tree in each color

[Schnyder’89]

Schnyder wood = choice of a direction and color
(red, green, or blue) for each inner edge, such that:

Local conditions:
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Schnyder’s face-counting algorithm

4 faces in red area
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sheer
n vertices

grid (2n−5)× (2n−5)

[Schnyder’90]



Proof of planarity

at each inner vertex:

(hence inside the convex hull
of neighbours)



Transversal structures

N

W E

S

For T a triangulation of the 4-gon, a transversal structure is a partition
of the inner edges into 2 transversal Hasse diagrams

characterized by local conditions:

inner vertex

T admits a transversal structure iff every 3-cycle is facial
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Rectangle tilings and dual triangulation

The dual map is a triangulation of the 4-gon, where every 3-cycle is facial



dual for vertical edges dual for horizontal edges
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Rectangle tilings and dual triangulation
The dual is naturally endowed with a transversal structure
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Face-labelling of the two Hasse diagrams

a horizontal segment in each face a vertical segment in each face
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label the face by the
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vertex v ↔ rectangle R(v)

`k

bounding x, y-coordinates given by labels



Algorithm by reverse-engineering [Kant, He’92]

For T a triangulation of the 4-gon without separating 3-cycle
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Rectangle tilings and electrical networks

nice way to visualize Kirchhoff’s laws V
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other way of associating a planar map to a rectangle tiling



Rectangle tilings and electrical networks

nice way to visualize Kirchhoff’s laws V
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Rk: aspect ratio of a rectangle ↔ resistance of corresponding link in the network

Given a network with resistances = 1
one gets a square tiling representation
by solving the Kirchhoff’s laws

cf ‘squaring the square’

other way of associating a planar map to a rectangle tiling
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Square tilings dual to triangulations
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Question: Given T a triangulation of the 4-gon, does there always exist
a square tiling whose dual is T?

Yes ! up to allowing for degeneracies (empty squares)

W

N

S

E

[Schramm’93]

solution via computing the ‘optimal metric’ of T

(no known algorithm by solving linear equation systems)
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Circle packing
[Koebe’36, Andreev’70, Thurston’85]: every planar triangulation
admits a contact representation by disks

The representation is unique if the 3 outer disks have prescribed radius

Exercise: the stereographic projection maps circles to
circles (considering lines as circle of radius +∞).

Hence one can lift to a circle packing on the sphere

There is a unique representation where the centre of
the sphere is the barycenter of the contact points



Contact representations with prescribed shapes
Generalized statement:

for any triangulation T and a prescribed convex shape for each vertex
there exists a contact representation of T

(possibility of degeneracies if shapes are not smooth)

[Schramm’s PHD 1990]

Example (Eppstein’s blog post)

isocahedron


