Planar maps: bijections and applications

Éric Fusy (CNRS/LIX)

AEC summer school, Hagenberg, 2018

Motivations for bijections

- efficient manipulation of maps (random generation algo.)
- key ingredient to study distances in random maps

typical distances of order $n^{1/4}$ ($\neq n^{1/2}$ in random trees)

Theo: [Le Gall, Miermont'13] $M_n :=$ random quadrangulation n faces Upon rescaling distances by $n^{1/4}$, M_n converges to a continuum random metric space called the Brownian map

today's topic!

(**Rk:** for random trees, rescaling by $n^{1/2}$, convergence to CRT)

The 2-point function

- Let $\mathcal{G} = \bigcup_n \mathcal{G}[n]$ be a family of maps (or trees, or graphs) where n is a size-parameter (# faces, # edges, # vertices,...)
- Let $\mathcal{G}^{\circ\circ} =$ family of objects from \mathcal{G} with 2 marked vertices v_1, v_2 (or one marked vertex and one rooted edge, etc.)

 v_{1}

р

n = 8d = 3

let $\mathcal{G}_d^{\circ\circ} :=$ subfamily of $\mathcal{G}^{\circ\circ}$ where $dist(v_2, v_2) = d$

The counting series $G_d \equiv G_d(t)$ of $\mathcal{G}_d^{\circ\circ}$ with respect to the size is called the 2-point function of \mathcal{G}

The 2-point function

- Let $\mathcal{G} = \bigcup_n \mathcal{G}[n]$ be a family of maps (or trees, or graphs) where n is a size-parameter (# faces, # edges, # vertices,...)
- Let $\mathcal{G}^{\circ\circ} =$ family of objects from \mathcal{G} with 2 marked vertices v_1, v_2 (or one marked vertex and one rooted edge, etc.)

let $\mathcal{G}_d^{\circ\circ} :=$ subfamily of $\mathcal{G}^{\circ\circ}$ where $dist(v_2, v_2) = d$

The counting series $G_d \equiv G_d(t)$ of $\mathcal{G}_d^{\circ\circ}$ with respect to the size is called the 2-point function of \mathcal{G}

• Let $X_n := \operatorname{dist}(v_1, v_2)$ in a random object from $\mathcal{G}^{\circ \circ}[n]$

Then
$$\mathbb{P}(X_n = d) = \frac{[t^n]G_d(t)}{[t^n]G^{\circ\circ}(t)}$$

Consider a random plane tree on n edges with two marked corners

distance d = 3

Consider a random plane tree on n edges with two marked corners

distance d = 3

 $G_d(t) = t^d C(t)^{2d+2}$ where $C(t) = 1 + tC(t)^2$

Consider a random plane tree on n edges with two marked corners

Lagrange inversion
$$\Rightarrow [t^n]G_d(t) = \frac{d+1}{n} \binom{2n+2}{n+d}$$

 $\sim \frac{4^{n+1}}{n\sqrt{\pi}} x e^{-x^2} \quad \text{for } \frac{d}{\sqrt{n}} \to x$

Consider a random plane tree on n edges with two marked corners

Lagrange inversion
$$\Rightarrow [t^n]G_d(t) = \frac{d+1}{n} \binom{2n+2}{n+d}$$

 $\sim \frac{4^{n+1}}{n\sqrt{\pi}} x e^{-x^2} \quad \text{for } \frac{d}{\sqrt{n}} \to x$

and we have $[t^n]G^{\circ\circ}(t) = \operatorname{Cat}_n \cdot (2n-1) \sim \frac{2 \cdot 4^n}{\sqrt{\pi n}}$

Consider a random plane tree on n edges with two marked corners

Lagrange inversion
$$\Rightarrow [t^n]G_d(t) = \frac{d+1}{n} \binom{2n+2}{n+d}$$

 $\sim \frac{4^{n+1}}{n\sqrt{\pi}} x e^{-x^2} \quad \text{for } \frac{d}{\sqrt{n}} \to x$

and we have $[t^n]G^{\circ\circ}(t) = \operatorname{Cat}_n \cdot (2n-1) \sim \frac{2 \cdot 4^n}{\sqrt{\pi n}}$

$$\Rightarrow \mathbb{P}(X_n = d) \sim \frac{1}{d \sim x\sqrt{n}} \frac{1}{\sqrt{n}} 2xe^{-x^2} \quad \text{hence } \frac{X_n}{\sqrt{n}} \xrightarrow{\text{proba}} \quad \text{law of density } 2xe^{-x^2} \quad \text{(Rayleigh law)}$$

Consider a random plane tree on n edges with two marked corners

 $\int dt = dt = 3$ $G_d(t) = t^d C(t)^{2d+2} \quad \text{where } C(t) = 1 + tC(t)^2$ $= C(t)^2 \underbrace{E(t)^d}_{\text{with square-root singularity (also explains <math>\sqrt{n})}$

Lagrange inversion $\Rightarrow [t^n]G_d(t) = \frac{d+1}{n} \binom{2n+2}{n+d}$ $\sim \frac{4^{n+1}}{n\sqrt{\pi}} x e^{-x^2} \quad \text{for } \frac{d}{\sqrt{n}} \to x$

and we have $[t^n]G^{\circ\circ}(t) = \operatorname{Cat}_n \cdot (2n-1) \sim \frac{2 \cdot 4^n}{\sqrt{\pi n}}$

$$\Rightarrow \mathbb{P}(X_n = d) \sim \frac{1}{d \sim x\sqrt{n}} \frac{1}{\sqrt{n}} 2xe^{-x^2} \quad \text{hence } \frac{X_n}{\sqrt{n}} \xrightarrow{\text{proba}} \quad \text{law of density } 2xe^{-x^2} \quad \text{(Rayleigh law)}$$

The Schaeffer bijection

bijection between: - vertex-pointed quadrangulations with n faces

- well-labelled trees with n edges and min-label= 1

Crucial property: the label $\ell(v)$ of a vertex is its distance (in Q) from the pointed vertex

Reexpressing the 2-point function of quadrangulations Let $\mathcal{G} = \bigcup_n \mathcal{G}[n] =$ family of quadrangulations, with n = #(faces)Let $\mathcal{G}^{\circ\circ} = \{ \text{ quadrangulations} + \text{ marked vertex } v + \text{ marked edge } e \}$ $\mathcal{G}_d^{\circ\circ} := \text{subfamily where } \text{dist}(v, e) = d + 1$

Then $G_d(t)$ = generating function (by edges) of rooted well-labelled trees with root-vertex label = d and min-label = 1 Reexpressing the 2-point function of quadrangulations Let $\mathcal{G} = \bigcup_n \mathcal{G}[n] =$ family of quadrangulations, with n = #(faces)Let $\mathcal{G}^{\circ\circ} = \{ \text{ quadrangulations} + \text{ marked vertex } v + \text{ marked edge } e \}$ $\mathcal{G}_d^{\circ\circ} := \text{subfamily where } \text{dist}(v, e) = d + 1$

Then $G_d(t)$ = generating function (by edges) of rooted well-labelled trees with root-vertex label = d and min-label = 1**Rk:** Let $R_i(t) = \text{GF}$ of rooted well-labelled trees where root-label = iand min-label ≥ 1 Then $G_d(t) = R_d(t) - R_{d-1}(t)$

An equation system for the $R_i(t)$

[Bouttier, Di Francesco, Guitter'03]

An equation system for the $R_i(t)$

[Bouttier, Di Francesco, Guitter'03]

Hence the $R_i(t)$ are specified by (infinite!) equation system:

$$R_0 = 0,$$
 $R_i(t) = 1 + tR_i(t) \cdot (R_{i-1}(t) + R_i(t) + R_{i+1}(t))$ for $i \ge 1$

An equation system for the $R_i(t)$

[Bouttier, Di Francesco, Guitter'03]

Hence the $R_i(t)$ are specified by (infinite!) equation system:

$$R_0 = 0, \qquad R_i(t) = 1 + tR_i(t) \cdot \left(R_{i-1}(t) + R_i(t) + R_{i+1}(t)\right) \text{ for } i \ge 1$$

Rk: The series $R(t) = \lim_{i \to \infty} R_i(t)$ satisfies $R(t) = 1 + 3tR(t)^2$ = $\sum_{n \ge 0} 3^n \operatorname{Cat}_n t^n$

Computing the $R_i(t)$ iteratively We have $R_1(t) = \sum \frac{2 \cdot 3^n (2n)!}{2 \cdot 3^n (2n)!} t^n = R - tR^3$

We have
$$R_1(t) = \sum_{n \ge 0} \frac{2 - 3 - (2n)!}{n!(n+2)!} t^n = R - tR^3$$

Computing the $R_i(t)$ iteratively We have $R_1(t) = \sum_{n>0} \frac{2 \cdot 3^n (2n)!}{n!(n+2)!} t^n = R - tR^3$

 $\Rightarrow \text{ compute } R_2, R_3, \dots \text{ iteratively} \\ \text{ each } R_i \text{ has a rational expression in } t \text{ and } R \\ \text{ hence has a rational expression in } R \text{ (since } t = \frac{R-1}{3R^2} \text{)}$

Computing the $R_i(t)$ iteratively We have $R_1(t) = \sum_{n \ge 0} \frac{2 \cdot 3^n (2n)!}{n! (n+2)!} t^n = R - tR^3$

 $\Rightarrow \text{ compute } R_2, R_3, \dots \text{ iteratively} \\ \text{ each } R_i \text{ has a rational expression in } t \text{ and } R \\ \text{ hence has a rational expression in } R \text{ (since } t = \frac{R-1}{3R^2} \text{)}$

this rational expression does not take a nice form by a simple inspection

Approach for finding a nice explicit expression

[Bouttier, Di Francesco, Guitter'03]

First step: ansatz $R_i(t) = R(t) \cdot (1 - c(t) \cdot x(t)^i + O(x^{2i}))$ with x(t) to be determined

Rk: should have $x(t) = \Theta(t)$ as $t \to 0$ since $R(t) - R_i(t) = \Theta(t^i)$

Approach for finding a nice explicit expression

[Bouttier, Di Francesco, Guitter'03]

First step: ansatz
$$R_i(t) = R(t) \cdot (1 - c(t) \cdot x(t)^i + O(x^{2i}))$$

with $x(t)$ to be determined

Rk: should have $x(t) = \Theta(t)$ as $t \to 0$ since $R(t) - R_i(t) = \Theta(t^i)$

Inject into equation $R_i = 1 + tR_i \cdot (R_{i-1} + R_i + R_{i+1})$

$$R \cdot (1 - cx^{i}) = 1 + tR^{2} \cdot (1 - cx^{i})(3 - cx^{i-1} - cx^{i} - cx^{i+1}) + O(x^{2i})$$
$$\begin{subarray}{l} \end{subarray} \\ \end{subarray} \epsilon = cx^{i} \\ R(1 - \epsilon) = 1 + tR^{2} \cdot (1 - \epsilon)(3 - \epsilon(x^{-1} + 1 + x)) + O(\epsilon^{2}) \end{subarray}$$

Approach for finding a nice explicit expression

[Bouttier, Di Francesco, Guitter'03]

First step: ansatz
$$R_i(t) = R(t) \cdot (1 - c(t) \cdot x(t)^i + O(x^{2i}))$$

with $x(t)$ to be determined

Rk: should have $x(t) = \Theta(t)$ as $t \to 0$ since $R(t) - R_i(t) = \Theta(t^i)$

Inject into equation $R_i = 1 + tR_i \cdot (R_{i-1} + R_i + R_{i+1})$

extracting coefficient [ϵ] gives $-R = tR^2 \cdot (-3 - x^{-1} - 1 - x)$

$$\begin{array}{c} \updownarrow \\ R - 3tR^2 = tR^2 \cdot (1 + x^{-1} + x) \\ \uparrow \\ 1 + x + x^{-1} = \frac{1}{tR^2} \end{array}$$

hence R(t) is rational in terms of x(t), we find $R = \frac{x^2 + 4x + 1}{x^2 + x + 1}$

hence R(t) is rational in terms of x(t), we find $R = \frac{x^2 + 4x + 1}{x^2 + x + 1}$

• We then substitute in the expressions of R_1, R_2, R_3, \ldots in terms of R

and recognize the explicit expression

$$R_i = R \frac{(1 - x^i)(1 - x^{i+3})}{(1 - x^{i+1})(1 - x^{i+2})}$$

hence R(t) is rational in terms of x(t), we find $R = \frac{x^2 + 4x + 1}{x^2 + x + 1}$

• We then substitute in the expressions of $R_1, R_2, R_3, ...$ in terms of Rand recognize the explicit expression $R_i = R \frac{(1-x^i)(1-x^{i+3})}{(1-x^{i+1})(1-x^{i+2})}$

• To check that this guessed expression works we have to check that this gives a power series for each $i \ge 0$, (true since $x(t) = tR(t)^2 \cdot (1 + x(t) + x(t)^2)$)

and that $R_0 = 0$, $R_i = 1 + tR_i \cdot (R_{i-1} + R_i + R_{i+1})$ for $i \ge 1$

hence R(t) is rational in terms of x(t), we find $R = \frac{x^2 + 4x + 1}{x^2 + x + 1}$

• We then substitute in the expressions of $R_1, R_2, R_3, ...$ in terms of Rand recognize the explicit expression $R_i = R \frac{(1-x^i)(1-x^{i+3})}{(1-x^{i+1})(1-x^{i+2})}$

• To check that this guessed expression works we have to check that this gives a power series for each $i \ge 0$, $(\text{true since } x(t) = tR(t)^2 \cdot (1 + x(t) + x(t)^2))$ and that $R_0 = 0$, $R_i = 1 + tR_i \cdot (R_{i-1} + R_i + R_{i+1})$ for $i \ge 1$ We let $F(x, y) = R(x) \frac{(1 - y)(1 - yx^3)}{(1 - yx)(1 - yx^2)}$ (y plays the role of x^i)

and check $F(t,x) = 1 + t(x)F(x,y) \cdot (F(x,yx^{-1}) + F(x,y) + F(x,yx))$

Exact expression

[Bouttier, Di Francesco, Guitter'03]

The generating functions $R_i \equiv R_i(t)$ are expressed as

$$R_i = R \frac{(1 - x^i)(1 - x^{i+3})}{(1 - x^{i+1})(1 - x^{i+2})}$$

with $R \equiv R(t)$ given by $R = 1 + 3tR^2$ and $x \equiv x(t)$ given by $x = tR^2(1 + x + x^2)$

References:

- first derivation in BDG'03: 'Geodesic distances in planar graphs'
- combinatorial derivations in

[Bouttier, Guitter'12]: 'planar maps and continued fractions' (+ general determinant expressions for maps with bounded face-degrees)

[Guitter'17]: 'The distance-dependent two-point function of quadrangulations: a new derivation by direct recursion'

Asymptotic considerations

• Two-point function of (plane) trees:

$$\label{eq:Gd} \begin{bmatrix} G_d(t) = (tR^2)^d \\ \text{with } R = 1 + tR^2 = \frac{1 - \sqrt{1 - 4t}}{2t} \end{bmatrix}$$

 G_d is the d th power of a series having a square-root singularity

 $\Rightarrow d/n^{1/2}$ converges in law (Rayleigh law, density $u \exp(-u^2/2)$)

• Two-point function of quadrangulations:

$$\left|G_d(g) \sim_{d \to \infty} a_1 x^d + a_2 x^{2d} + \cdots \right|$$

where x = x(t) has a quartic singularity

 $\Rightarrow d/n^{1/4}$ converges to an explicit law [BDG'03]

Convergence in the two cases "follows" from (proof by Hankel contour) [Banderier, Flajolet, Louchard, Schaeffer'03]: for $0 < \alpha < 1$,

$$x(t) \underset{t \to 1}{\sim} 1 - (1-t)^{\alpha} \Rightarrow [t^n] x^{un^{\alpha}} \sim \frac{1}{2\pi n} \int_0^\infty e^{-s} \operatorname{Im}(\exp(-us^{\alpha} e^{i\pi\alpha})) \mathrm{d}s$$

Recall the classical bijection from (rooted) quadrangulations to maps

Recall the classical bijection from (rooted) quadrangulations to maps

vertex v at face-distance k from the root-vertex

Recall the classical bijection from (rooted) quadrangulations to maps

vertex v at edge-distance 2k from the root-vertex

vertex v at face-distance k from the root-vertex

Hence $R_{2d+1}(t) = GF$ (by edges) of rooted maps + marked vertex vsuch that v is at face-distance $\leq d$ from root-vertex

Recall the classical bijection from (rooted) quadrangulations to maps

vertex v at edge-distance 2k from the root-vertex

vertex v at face-distance k from the root-vertex

Hence $R_{2d+1}(t) = GF$ (by edges) of rooted maps + marked vertex vsuch that v is at face-distance $\leq d$ from root-vertex

What about the 2-point function of maps for the edge-distance?

The Ambjørn-Budd bijection

[Ambjørn-Budd'13]

a different bijection between quadrangulations and maps

Hence $R_d(t) = GF$ (by edges) of rooted maps + marked vertex vsuch that v is at edge-distance $\leq d - 1$ from root-vertex

Example for a 0-gonal source (pointed vertex v_0)

accessible from v_0 no ccw cycle

inverse bijection can be done via growing a cactus from the mobile other way of doing the inverse bijection by labelling the white corners

inverse bijection can be done via growing a cactus from the mobile other way of doing the inverse bijection by labelling the white corners

- every white corner of label $i \ge 2$ throws an edge to next corner i-1in a ccw walk around the tree

inverse bijection can be done via growing a cactus from the mobile other way of doing the inverse bijection by labelling the white corners

- every white corner of label $i \ge 2$ throws an edge to next corner i-1in a ccw walk around the tree
- then every white corner of label 1 throws an edge to new created vertex

cf Schaeffer's bijection

white corner \boldsymbol{c}

[Addario-Berry&Albenque'13]: for G_n a random simple triangulation (or random simple quadrangulation) on n vertices, and e a random edge of G_n , $\operatorname{length}(P(e)) \sim L(e)$ (in their proof that G_n converges to Brownian map)

'Quasi' 2-point function for simple quadrangulations

the 2-point function w.r.t. length of rightmost walk is

$$G_i(s) = r_i(s) - r_{i-1}(s)$$

where $r_i(s) = 1 + s \cdot r_{i-1}(s)r_i(s)r_{i+1}(s)$

similar expression for $r_i(s)$ as for $R_i(t)$ (cf [Bouttier,Guitter'10])

