Planar maps: bijections and applications

Éric Fusy (CNRS/LIX)

AEC summer school, Hagenberg, 2018

Motivations for bijections

- efficient manipulation of maps (random generation algo.)
- key ingredient to study distances in random maps
typical distances of order $n^{1 / 4}\left(\neq n^{1 / 2}\right.$ in random trees $)$ today's
Theo: [Le Gall, Miermont'13] $\quad M_{n}:=$ random quadrangulation n faces Upon rescaling distances by $n^{1 / 4}, M_{n}$ converges to a continuum random metric space called the Brownian map
($\mathbf{R k}$: for random trees, rescaling by $n^{1 / 2}$, convergence to CRT) large tree

The 2-point function

- Let $\mathcal{G}=\cup_{n} \mathcal{G}[n]$ be a family of maps (or trees, or graphs) where n is a size-parameter (\# faces, \# edges, \# vertices,...)
- Let $\mathcal{G}^{\circ \circ}=$ family of objects from \mathcal{G} with 2 marked vertices v_{1}, v_{2}
(or one marked vertex and one rooted edge, etc.)
let $\mathcal{G}_{d}^{\circ \circ}:=$ subfamily of $\mathcal{G}^{\circ \circ}$ where $\operatorname{dist}\left(v_{2}, v_{2}\right)=d$

The counting series $G_{d} \equiv G_{d}(t)$ of $\mathcal{G}_{d}^{\circ \circ}$ with respect to the size is called the 2 -point function of \mathcal{G}

The 2-point function

- Let $\mathcal{G}=\cup_{n} \mathcal{G}[n]$ be a family of maps (or trees, or graphs) where n is a size-parameter (\# faces, \# edges, \# vertices,...)
- Let $\mathcal{G}^{\circ \circ}=$ family of objects from \mathcal{G} with 2 marked vertices v_{1}, v_{2}
(or one marked vertex and one rooted edge, etc.)
let $\mathcal{G}_{d}^{\circ \circ}:=$ subfamily of $\mathcal{G}^{\circ \circ}$ where $\operatorname{dist}\left(v_{2}, v_{2}\right)=d$

The counting series $G_{d} \equiv G_{d}(t)$ of $\mathcal{G}_{d}^{\circ \circ}$ with respect to the size is called the 2 -point function of \mathcal{G}

- Let $X_{n}:=\operatorname{dist}\left(v_{1}, v_{2}\right)$ in a random object from $\mathcal{G}^{\circ \circ}[n]$

Then $\mathbb{P}\left(X_{n}=d\right)=\frac{\left[t^{n}\right] G_{d}(t)}{\left[t^{n}\right] G^{\circ \circ}(t)}$

The 2-point function of plane trees

Consider a random plane tree on n edges with two marked corners

$$
\text { distance } d=3
$$

The 2-point function of plane trees

Consider a random plane tree on n edges with two marked corners

$$
\text { distance } d=3
$$

$$
G_{d}(t)=t^{d} C(t)^{2 d+2} \quad \text { where } C(t)=1+t C(t)^{2}
$$

The 2-point function of plane trees

Consider a random plane tree on n edges with two marked corners

$$
\text { distance } d=3
$$

$$
G_{d}(t)=t^{d} C(t)^{2 d+2} \quad \text { where } C(t)=1+t C(t)^{2}
$$

Lagrange inversion $\Rightarrow\left[t^{n}\right] G_{d}(t)=\frac{d+1}{n}\binom{2 n+2}{n+d}$

$$
\sim \frac{4^{n+1}}{n \sqrt{\pi}} x e^{-x^{2}} \quad \text { for } \frac{d}{\sqrt{n}} \rightarrow x
$$

The 2-point function of plane trees

Consider a random plane tree on n edges with two marked corners

$$
\text { distance } d=3
$$

$$
G_{d}(t)=t^{d} C(t)^{2 d+2} \quad \text { where } C(t)=1+t C(t)^{2}
$$

Lagrange inversion $\Rightarrow\left[t^{n}\right] G_{d}(t)=\frac{d+1}{n}\binom{2 n+2}{n+d}$

$$
\sim \frac{4^{n+1}}{n \sqrt{\pi}} x e^{-x^{2}} \quad \text { for } \frac{d}{\sqrt{n}} \rightarrow x
$$

and we have $\left[t^{n}\right] G^{\circ \circ}(t)=\operatorname{Cat}_{n} \cdot(2 n-1) \sim \frac{2 \cdot 4^{n}}{\sqrt{\pi n}}$

The 2-point function of plane trees

Consider a random plane tree on n edges with two marked corners

$$
\text { distance } d=3
$$

$$
G_{d}(t)=t^{d} C(t)^{2 d+2} \quad \text { where } C(t)=1+t C(t)^{2}
$$

Lagrange inversion $\Rightarrow\left[t^{n}\right] G_{d}(t)=\frac{d+1}{n}\binom{2 n+2}{n+d}$

$$
\sim \frac{4^{n+1}}{n \sqrt{\pi}} x e^{-x^{2}} \quad \text { for } \frac{d}{\sqrt{n}} \rightarrow x
$$

and we have $\left[t^{n}\right] G^{\circ \circ}(t)=\operatorname{Cat}_{n} \cdot(2 n-1) \sim \frac{2 \cdot 4^{n}}{\sqrt{\pi n}}$
$\Rightarrow \mathbb{P}\left(X_{n}=d\right) \underset{d \sim x \sqrt{n}}{\sim} \frac{1}{\sqrt{n}} 2 x e^{-x^{2}} \quad$ hence $\frac{X_{n}}{\sqrt{n}} \xrightarrow[\text { proba }]{ } \quad$ law of density $2 x e^{-x^{2}} \begin{gathered}\text { (Rayleigh law) }\end{gathered}$

The 2-point function of plane trees

Consider a random plane tree on n edges with two marked corners

$$
\text { distance } d=3
$$

$$
\begin{array}{rlr}
G_{d}(t) & =t^{d} C(t)^{2 d+2} & \quad \begin{array}{l}
\text { where } C(t)=1+t C(t)^{2} \\
\end{array} \\
& =C(t)^{2} E(t)^{d} & \begin{array}{l}
d \text { th power of series } E(t)=C(t)-1=\frac{1-2 t-\sqrt{1-4 t}}{2 t} \\
\end{array} \quad \begin{array}{l}
\text { with square-root singularity (also explains } \sqrt{n})
\end{array}
\end{array}
$$

Lagrange inversion $\Rightarrow\left[t^{n}\right] G_{d}(t)=\frac{d+1}{n}\binom{2 n+2}{n+d}$

$$
\sim \frac{4^{n+1}}{n \sqrt{\pi}} x e^{-x^{2}} \quad \text { for } \frac{d}{\sqrt{n}} \rightarrow x
$$

and we have $\left[t^{n}\right] G^{\circ \circ}(t)=\operatorname{Cat}_{n} \cdot(2 n-1) \sim \frac{2 \cdot 4^{n}}{\sqrt{\pi n}}$
$\Rightarrow \mathbb{P}\left(X_{n}=d\right) \underset{d \sim x \sqrt{n}}{\sim} \frac{1}{\sqrt{n}} 2 x e^{-x^{2}} \quad$ hence $\frac{X_{n}}{\sqrt{n}} \xrightarrow[\text { proba }]{ } \quad$ law of density $2 x e^{-x^{2}} \begin{gathered}\text { (Rayleigh law) }\end{gathered}$

The Schaeffer bijection

bijection between: - vertex-pointed quadrangulations with n faces - well-labelled trees with n edges and min-label $=1$

Local rule in each face:

Crucial property: the label $\ell(v)$ of a vertex is its distance (in Q) from the pointed vertex

Let $\mathcal{G}=\cup_{n} \mathcal{G}[n]=$ family of quadrangulations, with $n=\#$ (faces)
Let $\mathcal{G}^{\circ \circ}=\{$ quadrangulations + marked vertex $v+$ marked edge $e\}$ $\mathcal{G}_{d}^{\circ \circ}:=\operatorname{subfamily}$ where $\operatorname{dist}(v, e)=d+1$

Then $G_{d}(t)=$ generating function (by edges) of rooted well-labelled trees with root-vertex label $=d$ and min-label $=1$

Let $\mathcal{G}=\cup_{n} \mathcal{G}[n]$ = family of quadrangulations, with $n=\#$ (faces)
Let $\mathcal{G}^{\circ \circ}=\{$ quadrangulations + marked vertex $v+$ marked edge $e\}$ $\mathcal{G}_{d}^{\circ \circ}:=\operatorname{subfamily}$ where $\operatorname{dist}(v, e)=d+1$

Then $G_{d}(t)=$ generating function (by edges) of rooted well-labelled trees with root-vertex label $=d$ and min-label $=1$
Rk: Let $R_{i}(t)=$ GF of rooted well-labelled trees where root-label $=i$ and min-label ≥ 1
Then $G_{d}(t)=R_{d}(t)-R_{d-1}(t)$

An equation system for the $R_{i}(t)$

[Bouttier, Di Francesco, Guitter'03]

$R_{i}(t)$ counts

$$
=\frac{1}{1-t\left(R_{i-1}(t)+R_{i}(t)+R_{i+1}(t)\right)}
$$

An equation system for the $R_{i}(t)$

[Bouttier, Di Francesco, Guitter'03]

$R_{i}(t)$ counts

$$
=\frac{1}{1-t\left(R_{i-1}(t)+R_{i}(t)+R_{i+1}(t)\right)}
$$

Hence the $R_{i}(t)$ are specified by (infinite!) equation system:

$$
R_{0}=0, \quad R_{i}(t)=1+t R_{i}(t) \cdot\left(R_{i-1}(t)+R_{i}(t)+R_{i+1}(t)\right) \text { for } i \geq 1
$$

An equation system for the $R_{i}(t)$

[Bouttier, Di Francesco, Guitter'03]

$R_{i}(t)$ counts

$$
=\frac{1}{1-t\left(R_{i-1}(t)+R_{i}(t)+R_{i+1}(t)\right)}
$$

Hence the $R_{i}(t)$ are specified by (infinite!) equation system:

$$
R_{0}=0, \quad R_{i}(t)=1+t R_{i}(t) \cdot\left(R_{i-1}(t)+R_{i}(t)+R_{i+1}(t)\right) \text { for } i \geq 1
$$

$\mathbf{R k}$: The series $R(t)=\lim _{i \rightarrow \infty} R_{i}(t)$ satisfies $R(t)=1+3 t R(t)^{2}$

$$
=\sum_{n \geq 0} 3^{n} \operatorname{Cat}_{n} t^{n}
$$

Computing the $R_{i}(t)$ iteratively

We have $R_{1}(t)=\sum_{n \geq 0} \frac{2 \cdot 3^{n}(2 n)!}{n!(n+2)!} t^{n}=R-t R^{3}$
and for $i \geq 1$ we have $R_{i}=1+t R_{i} \cdot\left(R_{i-1}+R_{i}+R_{i+1}\right)$
\Downarrow

$$
R_{i+1}=\frac{R_{i}-1}{t R_{i}}-R_{i-1}-R_{i}
$$

Computing the $R_{i}(t)$ iteratively

We have $R_{1}(t)=\sum_{n \geq 0} \frac{2 \cdot 3^{n}(2 n)!}{n!(n+2)!} t^{n}=R-t R^{3}$
and for $i \geq 1$ we have $R_{i}=1+t R_{i} \cdot\left(R_{i-1}+R_{i}+R_{i+1}\right)$
\Downarrow

$$
R_{i+1}=\frac{R_{i}-1}{t R_{i}}-R_{i-1}-R_{i}
$$

\Rightarrow compute R_{2}, R_{3}, \ldots iteratively
each R_{i} has a rational expression in t and R hence has a rational expression in R (since $t=\frac{R-1}{3 R^{2}}$)

Computing the $R_{i}(t)$ iteratively

We have $R_{1}(t)=\sum_{n \geq 0} \frac{2 \cdot 3^{n}(2 n)!}{n!(n+2)!} t^{n}=R-t R^{3}$
and for $i \geq 1$ we have $R_{i}=1+t R_{i} \cdot\left(R_{i-1}+R_{i}+R_{i+1}\right)$
\Downarrow

$$
R_{i+1}=\frac{R_{i}-1}{t R_{i}}-R_{i-1}-R_{i}
$$

\Rightarrow compute R_{2}, R_{3}, \ldots iteratively each R_{i} has a rational expression in t and R hence has a rational expression in R (since $t=\frac{R-1}{3 R^{2}}$)
this rational expression does not take a nice form by a simple inspection
[Bouttier, Di Francesco, Guitter'03]
First step: ansatz $R_{i}(t)=R(t) \cdot\left(1-c(t) \cdot x(t)^{i}+O\left(x^{2 i}\right)\right)$ with $x(t)$ to be determined
Rk: should have $x(t)=\Theta(t)$ as $t \rightarrow 0$ since $R(t)-R_{i}(t)=\Theta\left(t^{i}\right)$
[Bouttier, Di Francesco, Guitter'03]
First step: ansatz $R_{i}(t)=R(t) \cdot\left(1-c(t) \cdot x(t)^{i}+O\left(x^{2 i}\right)\right)$ with $x(t)$ to be determined
Rk: should have $x(t)=\Theta(t)$ as $t \rightarrow 0$ since $R(t)-R_{i}(t)=\Theta\left(t^{i}\right)$

Inject into equation $R_{i}=1+t R_{i} \cdot\left(R_{i-1}+R_{i}+R_{i+1}\right)$

$$
\begin{aligned}
R \cdot\left(1-c x^{i}\right) & =1+t R^{2} \cdot\left(1-c x^{i}\right)\left(3-c x^{i-1}-c x^{i}-c x^{i+1}\right)+O\left(x^{2 i}\right) \\
& \hat{\Downarrow} \epsilon=c x^{i} \\
R(1-\epsilon) & =1+t R^{2} \cdot(1-\epsilon)\left(3-\epsilon\left(x^{-1}+1+x\right)\right)+O\left(\epsilon^{2}\right)
\end{aligned}
$$

[Bouttier, Di Francesco, Guitter'03]
First step: ansatz $R_{i}(t)=R(t) \cdot\left(1-c(t) \cdot x(t)^{i}+O\left(x^{2 i}\right)\right)$ with $x(t)$ to be determined
Rk: should have $x(t)=\Theta(t)$ as $t \rightarrow 0$ since $R(t)-R_{i}(t)=\Theta\left(t^{i}\right)$

Inject into equation $R_{i}=1+t R_{i} \cdot\left(R_{i-1}+R_{i}+R_{i+1}\right)$

$$
\begin{gathered}
R \cdot\left(1-c x^{i}\right)=1+t R^{2} \cdot\left(1-c x^{i}\right)\left(3-c x^{i-1}-c x^{i}-c x^{i+1}\right)+O\left(x^{2 i}\right) \\
\hat{\mathbb{I}} \epsilon=c x^{i} \\
R(1-\epsilon)=1+t R^{2} \cdot(1-\epsilon)\left(3-\epsilon\left(x^{-1}+1+x\right)\right)+O\left(\epsilon^{2}\right)
\end{gathered}
$$

extracting coefficient $[\epsilon]$ gives $\quad-R=t R^{2} \cdot\left(-3-x^{-1}-1-x\right)$

$$
\begin{gathered}
R-3 t R^{2}=t R^{2} \cdot\left(1+x^{-1}+x\right) \\
\mathbb{\Downarrow} \\
1+x+x^{-1}=\frac{1}{t R^{2}}
\end{gathered}
$$

Expressing the $R_{i}(t)$ in terms of $x(t)$

[Bouttier, Di Francesco, Guitter'03]

- We have $1+x+x^{-1}=\frac{1}{t R^{2}}=\frac{3}{R-1}$
hence $R(t)$ is rational in terms of $x(t)$, we find $\quad R=\frac{x^{2}+4 x+1}{x^{2}+x+1}$
[Bouttier, Di Francesco, Guitter'03]
- We have $1+x+x^{-1}=\frac{1}{t R^{2}}=\frac{3}{R-1}$
hence $R(t)$ is rational in terms of $x(t)$, we find $\quad R=\frac{x^{2}+4 x+1}{x^{2}+x+1}$
- We then substitute in the expressions of $R_{1}, R_{2}, R_{3}, \ldots$ in terms of R
and recognize the explicit expression $\quad R_{i}=R \frac{\left(1-x^{i}\right)\left(1-x^{i+3}\right)}{\left(1-x^{i+1}\right)\left(1-x^{i+2}\right)}$
[Bouttier, Di Francesco, Guitter'03]
- We have $1+x+x^{-1}=\frac{1}{t R^{2}}=\frac{3}{R-1}$
hence $R(t)$ is rational in terms of $x(t)$, we find $\quad R=\frac{x^{2}+4 x+1}{x^{2}+x+1}$
- We then substitute in the expressions of $R_{1}, R_{2}, R_{3}, \ldots$ in terms of R
and recognize the explicit expression

$$
R_{i}=R \frac{\left(1-x^{i}\right)\left(1-x^{i+3}\right)}{\left(1-x^{i+1}\right)\left(1-x^{i+2}\right)}
$$

- To check that this guessed expression works
we have to check that this gives a power series for each $i \geq 0$,
(true since $\left.x(t)=t R(t)^{2} \cdot\left(1+x(t)+x(t)^{2}\right)\right)$
and that $R_{0}=0, \quad R_{i}=1+t R_{i} \cdot\left(R_{i-1}+R_{i}+R_{i+1}\right)$ for $i \geq 1$
[Bouttier, Di Francesco, Guitter'03]
- We have $1+x+x^{-1}=\frac{1}{t R^{2}}=\frac{3}{R-1}$
hence $R(t)$ is rational in terms of $x(t)$, we find $\quad R=\frac{x^{2}+4 x+1}{x^{2}+x+1}$
- We then substitute in the expressions of $R_{1}, R_{2}, R_{3}, \ldots$ in terms of R and recognize the explicit expression

$$
R_{i}=R \frac{\left(1-x^{i}\right)\left(1-x^{i+3}\right)}{\left(1-x^{i+1}\right)\left(1-x^{i+2}\right)}
$$

- To check that this guessed expression works
we have to check that this gives a power series for each $i \geq 0$,
(true since $\left.x(t)=t R(t)^{2} \cdot\left(1+x(t)+x(t)^{2}\right)\right)$
and that $R_{0}=0, \quad R_{i}=1+t R_{i} \cdot\left(R_{i-1}+R_{i}+R_{i+1}\right)$ for $i \geq 1$
We let $F(x, y)=R(x) \frac{(1-y)\left(1-y x^{3}\right)}{(1-y x)\left(1-y x^{2}\right)} \quad\left(y\right.$ plays the role of $\left.x^{i}\right)$ and check $F(t, x)=1+t(x) F(x, y) \cdot\left(F\left(x, y x^{-1}\right)+F(x, y)+F(x, y x)\right)$

Exact expression

[Bouttier, Di Francesco, Guitter'03]

The generating functions $R_{i} \equiv R_{i}(t)$ are expressed as

$$
R_{i}=R \frac{\left(1-x^{i}\right)\left(1-x^{i+3}\right)}{\left(1-x^{i+1}\right)\left(1-x^{i+2}\right)}
$$

with $R \equiv R(t)$ given by $R=1+3 t R^{2}$
and $x \equiv x(t)$ given by $x=t R^{2}\left(1+x+x^{2}\right)$

References:

- first derivation in BDG'03: 'Geodesic distances in planar graphs'
- combinatorial derivations in
[Bouttier, Guitter'12]: 'planar maps and continued fractions'
(+ general determinant expressions for maps with bounded face-degrees)
[Guitter'17]: 'The distance-dependent two-point function of quadrangulations: a new derivation by direct recursion'

Asymptotic considerations

- Two-point function of (plane) trees:

$$
\begin{gathered}
G_{d}(t)=\left(t R^{2}\right)^{d} \\
\text { with } R=1+t R^{2}=\frac{1-\sqrt{1-4 t}}{2 t}
\end{gathered}
$$

$d=5$
G_{d} is the d th power of a series having a square-root singularity
$\Rightarrow d / n^{1 / 2}$ converges in law (Rayleigh law, density $u \exp \left(-u^{2} / 2\right)$)

- Two-point function of quadrangulations:

$$
G_{d}(g) \sim_{d \rightarrow \infty} a_{1} x^{d}+a_{2} x^{2 d}+\cdots
$$

where $x=x(t)$ has a quartic singularity
$\Rightarrow d / n^{1 / 4}$ converges to an explicit law
[BDG'03]
Convergence in the two cases "follows" from (proof by Hankel contour) [Banderier, Flajolet, Louchard, Schaeffer'03]: for $0<\alpha<1$,

$$
x(t) \underset{t \rightarrow 1}{\sim 1}-(1-t)^{\alpha} \Rightarrow\left[t^{n}\right] x^{u n^{\alpha}} \sim \frac{1}{2 \pi n} \int_{0}^{\infty} e^{-s} \operatorname{Im}\left(\exp \left(-u s^{\alpha} e^{i \pi \alpha}\right)\right) \mathrm{d} s
$$

vertex v at edge-distance $2 k$ from the root-vertex

vertex v at face-distance k from the root-vertex

vertex v at edge-distance $2 k$ from the root-vertex

Hence $R_{2 d+1}(t)=$ GF (by edges) of rooted maps + marked vertex v such that v is at face-distance $\leq d$ from root-vertex

vertex v at edge-distance $2 k$ from the root-vertex

vertex v at face-distance k from the root-vertex

Hence $R_{2 d+1}(t)=$ GF (by edges) of rooted maps + marked vertex v such that v is at face-distance $\leq d$ from root-vertex

What about the 2-point function of maps for the edge-distance?
[Ambjørn-Budd'13]
a different bijection between quadrangulations and maps

'opposite’ Schaeffer rules

Hence $R_{d}(t)=$ GF (by edges) of rooted maps + marked vertex v such that v is at edge-distance $\leq d-1$ from root-vertex

Distances from the meta-bijection Φ ?

Example for a 0-gonal source (pointed vertex v_{0})
accessible from v_{0}
accessible from v_{0}
no ccw cycle

Distances from the meta-bijection Φ ? inverse bijection can be done via growing a cactus from the mobile other way of doing the inverse bijection by labelling the white corners

Distances from the meta-bijection Φ ?

 inverse bijection can be done via growing a cactus from the mobile other way of doing the inverse bijection by labelling the white corners

- every white corner of label $i \geq 2$ throws an edge to next corner $i-1$ in a ccw walk around the tree

Distances from the meta-bijection Φ ?

 inverse bijection can be done via growing a cactus from the mobile other way of doing the inverse bijection by labelling the white corners

- every white corner of label $i \geq 2$ throws an edge to next corner $i-1$ in a ccw walk around the tree
- then every white corner of label 1 throws an edge to new created vertex
cf Schaeffer's bijection

Distances from the meta-bijection Φ ?

white corner c

recover the orientation
edge e

Distances from the meta-bijection Φ ?

white corner c label of c

edge e
length of 'rightmost walk $P(e)$ starting from e

Distances from the meta-bijection Φ ?

white corner c label of c

edge e
length of 'rightmost walk $P(e)$ starting from e

Distances from the meta-bijection Φ ?

white corner c label of c

edge e
length of 'rightmost walk $P(e)$ starting from e
(at least geodesic length $L(e)$)

Distances from the meta-bijection Φ ?

white corner c label of c

edge e
length of 'rightmost walk $P(e)$ starting from e (at least geodesic length $L(e)$)
[Addario-Berry\&Albenque'13]: for G_{n} a random simple triangulation (or random simple quadrangulation) on n vertices, and e a random edge of G_{n},

$$
\text { length }(P(e)) \sim L(e)
$$

(in their proof that G_{n} converges to Brownian map)
‘Quasi’ 2-point function for simple quadrangulations

the 2-point function w.r.t. length of rightmost walk is

$$
G_{i}(s)=r_{i}(s)-r_{i-1}(s)
$$

where $r_{i}(s)=1+s \cdot r_{i-1}(s) r_{i}(s) r_{i+1}(s)$

similar expression for $r_{i}(s)$ as for $R_{i}(t)$ (cf [Bouttier,Guitter'10])

