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Context
A famous attack

Context : cryptographic protocols

Widely used : web (SSH, SSL, ...), pay-per-view, electronic
purse, mobile phone, ...

Should ensure : confidentiality, authenticity, integrity,
anonymity, ...
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Context
A famous attack

Context : cryptographic protocols

Widely used : web (SSH, SSL, ...), pay-per-view, electronic
purse, mobile phone, ...

Should ensure : confidentiality, authenticity, integrity,
anonymity, ...

Presence of an attacker

may read every message sent on
the net,

may intercept and send new
messages.
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Example : Credit Card Payment Protocol

The waiter introduces the credit card.

The waiter enters the amount m of the transaction on the
terminal.

The terminal authenticates the card.

The customer enters his secret code.
If the amount m is greater than 100 euros
(and in only 20% of the cases)

The terminal asks the bank for authentication of the card.
The bank provides authentication.
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More details

4 actors : Bank, Customer, Card and Terminal.

Bank owns

a signing key K−1
B , secret,

a verification key KB , public,
a secret symmetric key for each credit card KCB ,
secret.

Card owns

Data : last name, first name, card’s number,
expiration date,
Signature’s Value VS = {hash(Data)}K−1

B
,

secret key KCB .

Terminal owns the verification key KB for bank’s signatures.
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Credit card payment Protocol (in short)

The terminal reads the card :

1. Ca → T : Data, {hash(Data)}K−1
B
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A famous attack

Credit card payment Protocol (in short)

The terminal reads the card :

1. Ca → T : Data, {hash(Data)}K−1
B

The terminal asks for the secret code :

2. T → Cu : secret code?
3. Cu → Ca : 1234
4. Ca → T : ok
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Context
A famous attack

Credit card payment Protocol (in short)

The terminal reads the card :

1. Ca → T : Data, {hash(Data)}K−1
B

The terminal asks for the secret code :

2. T → Cu : secret code?
3. Cu → Ca : 1234
4. Ca → T : ok

The terminal calls the bank :

5. T → B : auth?
6. B → T : Nb

7. T → Ca : Nb

8. Ca → T : {Nb}KCB

9. T → B : {Nb}KCB

10. B → T : ok
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Some flaws

The security was initially ensured by :

the cards were very difficult to reproduce,

the protocol and the keys were secret.

But

cryptographic flaw : 320 bits keys can be broken (1988),

logical flaw : no link between the secret code and the
authentication of the card,

fake cards can be build.
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Context
A famous attack

Some flaws

The security was initially ensured by :

the cards were very difficult to reproduce,

the protocol and the keys were secret.

But

cryptographic flaw : 320 bits keys can be broken (1988),

logical flaw : no link between the secret code and the
authentication of the card,

fake cards can be build.

→ “YesCard” build by Serge Humpich
(1998).
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How does the “YesCard” work ?

Logical flaw

1. Ca → T : Data, {hash(Data)}K−1
B

2. T → Ca : secret code?
3. Cu → Ca : 1234
4. Ca → T : ok
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Context
A famous attack

How does the “YesCard” work ?

Logical flaw

1. Ca → T : Data, {hash(Data)}K−1
B

2. T → Ca : secret code?
3. Cu → Ca′ : 2345
4. Ca′ → T : ok
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Context
A famous attack

How does the “YesCard” work ?

Logical flaw

1. Ca → T : Data, {hash(Data)}K−1
B

2. T → Ca : secret code?
3. Cu → Ca′ : 2345
4. Ca′ → T : ok

Remark : there is always somebody to debit.
→ creation of a fake card (Serge Humpich).
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Context
A famous attack

How does the “YesCard” work ?

Logical flaw

1. Ca → T : Data, {hash(Data)}K−1
B

2. T → Ca : secret code?
3. Cu → Ca′ : 2345
4. Ca′ → T : ok

Remark : there is always somebody to debit.
→ creation of a fake card (Serge Humpich).

1. Ca′ → T : XXX, {hash(XXX)}K−1
B

2. T → Cu : secret code?
3. Cu → Ca′ : 0000
4. Ca′ → T : ok
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Outline of the talk

1 Introduction
Context
A famous attack

2 Formal models
Intruder
Protocol
Solving constraint systems
A survey of results

3 Adding equational theories
Motivation
Intruder problem
Some results

4 Towards more guarantees
Cryptographic models
Linking Formal and cryptographic models
Conclusion
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Motivation : Cryptography does not suffice to ensure security !

Example : Commutative encryption (RSA)
{pin : 3443}

kalice−−−−−−−−−−−→
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Motivation : Cryptography does not suffice to ensure security !

Example : Commutative encryption (RSA)
{pin : 3443}

kalice−−−−−−−−−−−→


{pin : 3443}
kalice

ff

kbob←−−−−−−−−−−−−−−−
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Motivation : Cryptography does not suffice to ensure security !

Example : Commutative encryption (RSA)
{pin : 3443}

kalice−−−−−−−−−−−→


{pin : 3443}
kalice

ff

kbob←−−−−−−−−−−−−−−−
{pin : 3443}

kbob−−−−−−−−−−−→

Since
{

{pin : 3443}kalice

}

kbob

=
{

{pin : 3443}kbob

}

kalice
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Motivation : Cryptography does not suffice to ensure security !

Example : Commutative encryption (RSA)
{pin : 3443}

kalice−−−−−−−−−−−→


{pin : 3443}
kalice

ff

kbob←−−−−−−−−−−−−−−−
{pin : 3443}

kbob−−−−−−−−−−−→

→ It does not work ! (Authentication problem)
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Motivation : Cryptography does not suffice to ensure security !

Example : Commutative encryption (RSA)
{pin : 3443}

kalice−−−−−−−−−−−→


{pin : 3443}
kalice

ff

kbob←−−−−−−−−−−−−−−−
{pin : 3443}

kbob−−−−−−−−−−−→

→ It does not work ! (Authentication problem)

{pin : 3443}
kalice−−−−−−−−−−−→



{pin : 3443}
kalice

ff

kintruder←−−−−−−−−−−−−−−−−−
{pin : 3443}

kintruder−−−−−−−−−−−−→
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Messages

Messages are abstracted by terms.

Agents : a, b, . . . Nonces : n1, n2, . . . Keys : k1, k2, . . .

Cyphertext : {m}k Concatenation : 〈m1, m2〉

Example : The message {A, Na}K is represented by :

K〈〉

{}

A Na
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Intruder abilities

Composition rules

T ⊢ u T ⊢ v

T ⊢ 〈u , v〉

T ⊢ u T ⊢ v

T ⊢ enc(u, v)

T ⊢ u T ⊢ v

T ⊢ enca(u, v)
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Intruder abilities

Composition rules

T ⊢ u T ⊢ v

T ⊢ 〈u , v〉

T ⊢ u T ⊢ v

T ⊢ enc(u, v)

T ⊢ u T ⊢ v

T ⊢ enca(u, v)

Decomposition rules

u ∈ T
T ⊢ u

T ⊢ 〈u , v〉

T ⊢ u

T ⊢ 〈u , v〉

T ⊢ v

T ⊢ enc(u, v) T ⊢ v

T ⊢ u

T ⊢ enca(u, pub(v)) T ⊢ priv(v)

T ⊢ u
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Intruder abilities

Composition rules

T ⊢ u T ⊢ v

T ⊢ 〈u , v〉

T ⊢ u T ⊢ v

T ⊢ enc(u, v)

T ⊢ u T ⊢ v

T ⊢ enca(u, v)

Decomposition rules

u ∈ T
T ⊢ u

T ⊢ 〈u , v〉

T ⊢ u

T ⊢ 〈u , v〉

T ⊢ v

T ⊢ enc(u, v) T ⊢ v

T ⊢ u

T ⊢ enca(u, pub(v)) T ⊢ priv(v)

T ⊢ u

Deducibility relation

A term u is deducible from a set of terms T , denoted by T ⊢ u, if
there exists a prooftree witnessing this fact.
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A simple protocol

〈Bob, k〉

〈Alice, enc(s, k)〉
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A simple protocol

〈Bob, k〉

〈Alice, enc(s, k)〉

Question ?

Can the attacker learn the secret s ?
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A simple protocol

〈Bob, k〉

〈Alice, enc(s, k)〉

Answer : Of course, Yes !

〈Alice, enc(s, k)〉

enc(s, k)

〈Bob, k〉

k

s
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Decision of the intruder problem

Given A set of messages S and a message m

Question Can the intruder learn m from S that is S ⊢ m ?

This problem is decidable in polynomial time
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Decision of the intruder problem

Given A set of messages S and a message m

Question Can the intruder learn m from S that is S ⊢ m ?

This problem is decidable in polynomial time

Lemma (Locality)

If there is a proof of S ⊢ m then there is a proof that only uses the

subterms of S and m.
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Protocol description

Protocol : A→ B : {pin}ka

B → A : {{pin}ka}kb

A→ B : {pin}kb

A protocol is a finite set of roles :

role Π(1) corresponding to the 1st participant played by a

talking to b :

init
ka→ enc(pin, ka)

enc(x , ka) → x .
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Protocol description

Protocol : A→ B : {pin}ka

B → A : {{pin}ka}kb

A→ B : {pin}kb

A protocol is a finite set of roles :

role Π(1) corresponding to the 1st participant played by a

talking to b :

init
ka→ enc(pin, ka)

enc(x , ka) → x .

role Π(2) corresponding to the 2nd participant played by b

with a :

x
kb→ enc(x , kb)

enc(y , kb) → stop.
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Secrecy via constraint solving

Constraint systems are used to specify secrecy preservation under a
particular, finite scenario.

Scenario

rcv(u1)
N1→ snd(v1)

rcv(u2)
N2→ snd(v2)
. . .

rcv(un)
Nn→ snd(vn)

Constraint System

C =















T0 
 u1

T0, v1 
 u2

...

T0, v1, .., vn 
 s

Remark : Constraint Systems may be used more generally for
trace-based properties, e.g. authentication.
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Secrecy via constraint solving

Constraint systems are used to specify secrecy preservation under a
particular, finite scenario.

Scenario

rcv(u1)
N1→ snd(v1)

rcv(u2)
N2→ snd(v2)
. . .

rcv(un)
Nn→ snd(vn)

Constraint System

C =















T0 
 u1

T0, v1 
 u2

...

T0, v1, .., vn 
 s

Solution of a constraint system

A substitution σ such that

for every T 
 u ∈ C, uσ is deducible from Tσ, that is

uσ ⊢ Tσ.
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How to solve constraint system ?

Given C =















T0 
 u1

T0, v1 
 u2

...

T0, v1, .., vn 
 un+1

Question Is there a solution σ of C ?
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How to solve constraint system ?

Given C =















T0 
 u1

T0, v1 
 u2

...

T0, v1, .., vn 
 un+1

Question Is there a solution σ of C ?

Advertisement :
Lecture of Hubert Comon-Lundh at
ISR 2008 next week
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An easy case : “solved constraint systems”

Given C =















T0 
 x1

T0, v1 
 x2

...

T0, v1, .., vn 
 xn+1

Question Is there a solution σ of C ?
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An easy case : “solved constraint systems”

Given C =















T0 
 x1

T0, v1 
 x2

...

T0, v1, .., vn 
 xn+1

Question Is there a solution σ of C ?

Of course yes !
Consider e.g. σ(x1) = · · · = σ(xn+1) = t ∈ T0.
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Decision procedure [Millen / Comon-Lundh]

Goal : Transformation of the constraints in order to obtain a solved
constraint system.

C =

8

>

>

<

>

>

:

T0 
 u1
T0, v1 
 u2

...

T0, v1, .., vn 
 un+1

SOLVED ⊥⊥

C1 C2 C3

C4

C has a solution iff C  C′ with C′ in solved form.
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Intruder step

The intruder can built messages

R5 : C ∧ T 
 f (u, v)  C ∧ T 
 u ∧ T 
 v

for f ∈ {〈〉, enc, enca}
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Intruder step

The intruder can built messages

R5 : C ∧ T 
 f (u, v)  C ∧ T 
 u ∧ T 
 v

for f ∈ {〈〉, enc, enca}

Example :

a, k 
 enc(〈x , y〉, k)  

a, k 
 k

a, k 
 x

a, k 
 y
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Eliminating redundancies

k 
 x

enc(s, x) 
 s

The constraint enc(s, x) 
 s will be satisfied as soon as k 
 x is
satisfied.
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Eliminating redundancies

k 
 x

enc(s, x) 
 s

The constraint enc(s, x) 
 s will be satisfied as soon as k 
 x is
satisfied.

R1 : C ∧ T 
 u  C if T ∪ {x | T ′

 x ∈ C, T ′ ( T} ⊢ u
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Unsolvable constraints

R4 : C ∧ T 
 u  ⊥ if var(T , u) = ∅ and T 6⊢ u

Example :
. . .

a, enc(s, k) 
 s

. . .

 ⊥
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Guessing equalities

1 Example : k , enc(enc(x , k ′), k) 
 enc(a, k ′)

R2 : C ∧ T 
 u  σ Cσ ∧ Tσ 
 uσ u′ ∈ st(T )
if σ = mgu(u, u′), u, u′ 6∈ X , u 6= u′
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Guessing equalities

1 Example : k , enc(enc(x , k ′), k) 
 enc(a, k ′)

R2 : C ∧ T 
 u  σ Cσ ∧ Tσ 
 uσ u′ ∈ st(T )
if σ = mgu(u, u′), u, u′ 6∈ X , u 6= u′

2 Example : enc(s, 〈a, x〉), enc(〈y , b〉, k), k 
 s

R3 : C ∧ T 
 v  σ Cσ ∧ Tσ 
 vσ u, u′ ∈ st(T )
if σ = mgu(u, u′), u, u′ 6∈ X , u 6= u′
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NP-procedure for solving constraint systems

C =

8

>

>

<

>

>

:

T0 
 u1
T0, v1 
 u2

...

T0, v1, .., vn 
 un+1

SOLVED ⊥⊥

C1 C2 C3

C4

Theorem

C has a solution iff C  C′ with C′ in solved form.

 is terminating in polynomial time.

23/45 Véronique Cortier Verification techniques for cryptographic protocols



Introduction
Formal models

Adding equational theories
Towards more guarantees

Intruder
Protocol
Solving constraint systems
A survey of results

What formal methods allow to do ?

In general, secrecy preservation is undecidable.
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What formal methods allow to do ?

In general, secrecy preservation is undecidable.

For a bounded number of sessions, secrecy is co-NP-complete
[RusinowitchTuruani CSFW01]
→ numerous tools for detecting attacks (Casper, Avispa
platform... )
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What formal methods allow to do ?

In general, secrecy preservation is undecidable.

For a bounded number of sessions, secrecy is co-NP-complete
[RusinowitchTuruani CSFW01]
→ numerous tools for detecting attacks (Casper, Avispa
platform... )

For an unbounded number of sessions

for one-copy protocols, secrecy is DEXPTIME-complete
[CortierComon RTA03] [SeildVerma LPAR04]

for message-length bounded protocols, secrecy is
DEXPTIME-complete [Durgin et al FMSP99] [Chevalier et al
CSL03]

→ some tools for proving security (ProVerif, EVA Platform)
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Tools

Many tools for a bounded number of sessions (search for attacks) :
Casper, Avispa platform, ...

Some tools for an unbounded number of sessions (security proof) :
ProVerif, EVA platform

new attacks have been discovered (e.g. the man-in-the-middle
attack on the Needham-Schroeder protocol)

hundreds protocols analyzed in few minutes or few seconds for
most of them

real-world applications (IETF, ...)
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Example of tool : Avispa Platform

Collaborators

Cassis
project,
Loria

DIST,
Italy

ETHZ,
Swiss

Siemens,
Germany

www.avispa-project.org
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Motivation

Back to our running example :

A→ B : {pin}ka

B → A : {{pin}ka}kb

A→ B : {pin}kb

We need the equation for the commutativity of encryption

{{z}x}y = {{z}y}x
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Some other examples

Encryption-Decryption theory

dec(enc(x , y), y) = x π1(〈x , y〉) = x π2(〈x , y〉) = y

EXclusive Or

x ⊕ (y ⊕ z) = z x ⊕ y = y ⊕ x

x ⊕ x = 0 x ⊕ 0 = x

Diffie-Hellmann

exp(exp(z , x), y) = exp(exp(z , y), x)
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E-voting protocols

First phase :

V → A : sign(blind(vote, r), V )
A→ V : sign(blind(vote, r), A)

Voting phase :

V → C : sign(vote, A)

...
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Equational theory for blind signatures

[Kremer Ryan 05]

checksign(sign(x , y), pk(y)) = x

unblind(blind(x , y), y) = x

unblind(sign(blind(x , y), z), y) = sign(x , z)
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Deduction

M ∈ T
T ⊢E M

T ⊢E M1 · · · T ⊢E Mk
f ∈ Σ

T ⊢E f (M1, . . . ,Mk)

T ⊢ M
M =E M ′

T ⊢ M ′
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Deduction

M ∈ T
T ⊢E M

T ⊢E M1 · · · T ⊢E Mk
f ∈ Σ

T ⊢E f (M1, . . . ,Mk)

T ⊢ M
M =E M ′

T ⊢ M ′

Example : E := dec(enc(x , y), y) = x and T = {enc(secret, k), k}.

T ⊢ enc(secret, k) T ⊢ k
f ∈ Σ

T ⊢ dec(enc(secret, k), k)
dec(enc(x, y), y) = x

T ⊢ secret
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Rewriting systems

For analyzing equational theories, we (try to) associate to E a
finite convergent rewriting system R such that :

u =E v iff u ↓= v ↓

Definition (Characterization of the deduction relation)

Let t1, . . . tn and u be terms in normal form.

{t1, . . . tn} ⊢ u iff ∃C s.t. C [t1, . . . , tn]→
∗ u

(Also called Cap Intruder problem [Narendran et al])
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Some results with equational theories

Security problem

Bounded number of sessions Unbounded number of sessions

Commutative

encryption

co-NP-complete
[CKRT04]

Ping-pong protocols :

co-NP-complete [Turuani04]

Exclusive Or
Decidable [CS03,CKRT03]

One copy - No nonces :

Decidable [CLC03]
Two-way automata - No nonces :

Decidable [Verma03]

Abelian Groups Decidable [Shmatikov04]
Two-way automata - No nonces :

Decidable [Verma03]
Prefix

encryption
co-NP-complete [CKRT03]

Abelian Groups

and Modular

Exponentiation

General case :

Decidable [Shmatikov04]
Restricted protocols :

co-NP-complete [CKRT03]

AC properties of

the Modular Exponentiation

No nonces :

Semi-Decision Procedure [GLRV04]
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Outline of the talk

1 Introduction
Context
A famous attack

2 Formal models
Intruder
Protocol
Solving constraint systems
A survey of results
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Motivation
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Some results
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Specificity of cryptographic models

Messages are bitstrings

Real encryption algorithm

Real signature algorithm

General and powerful adversary

→ very little abstract model
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Encryption nowadays

→ Based on algorithmically hard problems.

RSA Function n = pq, p et q primes.
e : public exponent

x 7→ xe mod n easy (cubic)

y = xe 7→ x mod n difficult
x = yd où d = e−1 mod φ(n)
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→ Based on algorithmically hard problems.

RSA Function n = pq, p et q primes.
e : public exponent

x 7→ xe mod n easy (cubic)

y = xe 7→ x mod n difficult
x = yd où d = e−1 mod φ(n)

Diffie-Hellman Problem

Given A = ga and B = gb,

Compute DH(A, B) = gab
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Encryption nowadays

→ Based on algorithmically hard problems.

RSA Function n = pq, p et q primes.
e : public exponent

x 7→ xe mod n easy (cubic)

y = xe 7→ x mod n difficult
x = yd où d = e−1 mod φ(n)

Diffie-Hellman Problem

Given A = ga and B = gb,

Compute DH(A, B) = gab

→ Based on hardness of integer factorization.
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Setting for cryptographic protocols

Protocol :

Message exchange program

using cryptographic primitives

Adversary A : any probabilistic polynomial Turing
machine, i.e. any probabilistic polynomial program.

polynomial : captures what is feasible

probabilistic : the adversary may try to guess
some information
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Definition of secrecy preservation

→ Several notions of secrecy :

One-Wayness : The probability for an adversary A to compute the
secret s against a protocol P is negligible (smaller than any inverse
of polynomial).

∀p polynomial ∃η0 ∀η ≥ η0 Prηm,r [A(PK ) = s] ≤
1

p(η)

η : security parameter = key length
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Not strong enough !

The adversary may be able to compute half of the secret
message.

There is no guarantee in case that some partial information on
the secret is known.
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Not strong enough !

The adversary may be able to compute half of the secret
message.

There is no guarantee in case that some partial information on
the secret is known.

→ Introduction of a notion of indistinguishability.
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Indistinguishability

The secrecy of s is defined through the following game :

Two values n0 and n1 are randomly generated instead of s ;

The adversary interacts with the protocol where s is replaced
by nb, b ∈ {0, 1} ;

We give the pair (n0, n1) to the adversary ;

The adversary gives b′,

The data s is secret if Pr[b = b′]− 1
2 is a negligible function.
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Formal and Cryptographic approaches

Formal approach Cryptographic approach

Messages terms bitstrings

Encryption idealized algorithm

Adversary idealized
any polynomial

algorithm

Secrecy property
reachability-based

property
indistinguishability

Guarantees unclear strong

Protocol
complex,

several sessions
simple,

one session
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Formal and Cryptographic approaches

Formal approach Cryptographic approach

Messages terms bitstrings

Encryption idealized algorithm

Adversary idealized
any polynomial

algorithm

Secrecy property
reachability-based

property
indistinguishability

Guarantees unclear strong

Protocol
complex,

several sessions
simple,

one session

Proof automatic
by hand, tedious
and error-prone

Link between the two approaches ?
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Composition of the two approaches

Automatic cryptographically sound proofs

Ideal
protocol

protocol
Implemented

of the cryptographic primitives

of idealized protocols
Formal approach: verification

encryption

algorithmalgorithm

signature
Cryptographers: verification

→ Currently implemented in the Avispa platform.
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Example : correspondence of secrecy properties

Theorem

Symbolic secrecy implies cryptographic indistinguishability.

For protocols with only public key encryption, signatures and
nonces

Provided the public key encryption and the signature
algorithms verify strong existing cryptographic properties
(IND-CCA2, existentially unforgeable),
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Conclusion

Formal methods, including of course rewriting techniques, form a
very powerful approach for analyzing security protocols

Many automatic tools (ProVerif, Avispa, ...)

Cryptographic guarantees
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Conclusion

Formal methods, including of course rewriting techniques, form a
very powerful approach for analyzing security protocols

Many automatic tools (ProVerif, Avispa, ...)

Cryptographic guarantees

Some current directions of research :

Considering more equational theories (e.g. theories for
e-voting protocols)

Combining formal and cryptographic models

Adding more complex structures for data (list, XML, ...)

...
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