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In the present work, the domains in which ideals are defined are polyno-
mial domains. An ideal will be called given if a basis of the ideal is known,
and computable if a basis can be computed. This work deals with computing
characteristic ideals and polynomials for a given ideal m. The computation is
based on ideal theory and elimination theory as developed by E. Noether and
K. Hentzelt [2,8,9]1. I especially recommend the summary [9, §1] for the basic
ideas used here. Some changes to the definitions and further corollaries will be
given in §1 of this work.

The computational methods below are computations in finitely many steps.
The claim that a computation can be carried out in finitely many steps will
mean here that an upper bound for the number of necessary operations for the
computation can be specified. Thus it is not enough, for example, to suggest
a procedure, for which it can be proved theoretically that it can be executed
in finitely many operations, if no upper bound for the number of operations is
known 2. In particular, the bounds appearing in the present work will depend
only on the number n of variables, the number t of basis elements of the ideal,
and the maximum degree q of these basis elements; they are independent of
the coefficients of the basis elements. Using these bounds, which indicate up to
what degree the variables must be considered, the problems can be reduced to
problems of determinant and elementary divisor theory, which can be settled in
finitely many steps by known methods.

The methods provided in §§6-8, with which all of the characteristic ideals
and polynomials for the ideal m can be computed, must be preceded by some
preparatory theorems in §§2-5. The search for the associated prime ideals of
an ideal m corresponds to, and reduces to, the simpler problem of factoring
a polynomial into prime functions. Thus §2 deals with the factorization of a
polynomial into prime functions. The methods used here were suggested by

∗Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann. 95
(1926), 736-788. Translation by Michael Abramson.

1For useful concepts from field theory, [10] is recommended.
2Macaulay, who indicates a way based on Lasker’s work [6] to compute the associated

prime ideals and the exponents of the associated primary ideals associated of an ideal, has no
such upper bound [7, p. 81].
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Kronecker [5]. Kronecker restricted everything to fields of characteristic zero,
and then only to finite algebraic and transcendental extensions of prime fields.
His methods can be extended directly to fields of arbitrary characteristic, and
specifically to finite algebraic, and finite or infinite transcendental extensions of
prime fields. For the case of infinite algebraic extensions, we need help from
ideas of Steinitz.

The theorems in the paragraphs which follow are ideal theoretic. In §§3-5,
the basics for the computation of the upper bounds are given which make the
later calculations possible. It is of utmost importance to be able to carry out
the simplest computational operations, the formation of products and quotients,
least common multiples, and greatest common divisors in finitely many steps. As
long as the methods for this are not trivial, they appear in §3 as an application of
a theorem of Hilbert [3]3. §§4-5 bring criteria for the divisibility of a polynomial
by an ideal. In particular, the criterion supplied in §4 is purely formal; the
divisibility depends on the solvability of a linear system of equations, which can
be computed from the coefficients of the given polynomials and those of the basis
elements of the ideal. It is not necessary to know the inner structure of the ideal
to apply this criterion. On the other hand, Hentzelt’s Nullstellensatz provides a
criterion in §5, which also gives us substantial insight into the structure of the
ideal. There is of course a bound on the degree to which a polynomial must
vanish, at least at the transcendental zeros of the ideal, in order to be divisible
by the ideal. Because of its theoretic formulation as opposed to the one given
in §4, this criterion is itself of some interest; in the most special case, it reduces
to Noether’s fundamental theorem on algebraic functions. Moreover, it will be
shown that the number computed here is indeed an upper bound for the smallest
exponent of prime ideals which appear in a decomposition of m.

Now as an application of the theorems in §§2-5, the computations of the
important ideals and polynomials are carried out in §§6-8. §6 provides the com-
putation of fundamental ideals, which simultaneously yields the computation of
the norm and elementary divisor form of the ideal. The polynomials essential
for elimination theory are thereby computed, from whose factorization, we ob-
tain the zeros of the ideals. In §7, methods for computing the associated prime
ideals of the ideal m are proposed. This is more complicated when the underly-
ing coefficient domain for the polynomials of the ideal is an imperfect field than
in the case of perfect fields. Finally, by applying Hentzelt’s Nullstellensatz, we
show in §8 how to find a primary ideal for each associated prime ideal of the
ideal m that can appear in a decomposition of m. Of course with these primary
ideals, we also have the isolated components of the ideals.

The theorems of §§4-5, as well as Theorem 6 in §6, were taken from a
manuscript of K. Hentzelt. Hentzelt gave them there using only very com-

3The theorem used here is a part of Theorem 3 on the termination of the syzygy chain.
The same theorem can be found in König [4]. König uses the same methods as Hilbert, but
starts errantly from only one equation, without noticing that the induction step actually leads
to a system of equations.
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plex formulas that lack conceptual meaning. I have replaced this formulation
with a conceptual one, and explicitly specified the bounds, at whose computa-
tion Hentzelt only hinted. Furthermore, it was necessary to extend the claim
in Hentzelt’s Nullstellensatz somewhat by using the concept of transcendental
zeros. Hentzelt spoke only of the set of algebraic zeros of an ideal and thus
did not have the vital partitioning of zeros by dimension of the prime ideals
for what followed. The method used in Hentzelt’s proof of reducing the degree
numbers by a regular determinant, i.e. by a determinant representing a regular
polynomial, was taken by Hentzelt from Hilbert’s proof, which is given in §3 so
that the proofs of the theorems in §§3-5 are completely parallel. With his theo-
rems, Hentzelt intended only to take care of the question of elimination theory
in finitely many steps. He wanted to compute the norm and elementary divisor
form of an ideal, but as the applications §§6-8 show, all of the characteristic
ideals for the ideal can already be computed on the basis of his theorems.

§1. Fundamental Concepts

The definitions of the underlying domain, transformed ideals, module represen-
tation of ideals, its isolated components, the elementary divisor form and norm,
as well as the decomposition theorems valid for ideals are given in [9,§1.1-3,5-
7,9]4.

1. Notation. The degree of a polynomial f(x1, . . . , xn) in all variables will be
denoted by [f ], the degree of f in x1, . . . , x% by [f ]%. f (i), g(i), h(i), etc.
will denote polynomials which are dependent only on xi, . . . , xn.

If P denotes any field and α1, . . . , αr are algebraic or transcendental ele-
ments over P lying in any extension field of P, then P(α1, . . . , αr) is the
field obtained by adjoining α1, . . . , αr to P, and P[α1, . . . , αr] is the ring
of polynomials in α1, . . . , αr with coefficients in P. If P is the underlying
field of the non-transformed ideals, and P is the one for the transformed
ideals, then with the notation of [9, §1.1],

P = P(u11, . . . , unn),

where the uij denote the transformation coefficients, whence the domains
R and R of the non-transformed and transformed ideals can be written
as:

R = P[y1, . . . , yn],
R = P[x1, . . . , xn] = P(u11, . . . , unn)[x1, . . . , xn].

4Translator’s Note: A transformed ideal is the image of an ideal in the domain of a linear
transformation of the variables of a polynomial ring, where the transformation coefficients are
indeterminates added to the underlying field in the image. The module representation of ideals
arises from viewing the polynomial ring P[y1, . . . , yn] as the set of all linear combinations of
power products in yi, . . . , yn with coefficients in the ring P[y1, . . . , yi−1].
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2. In contrast to [9, §1.8], the dimension of a prime ideal not equal to the
unit ideal o may now be defined in the following way: The residue class
ring of R modulo a prime ideal p not equal to o is, by definition, a ring
without zero divisors, so it can be extended to a residue class field R/p
by adjoining pairs of elements. R/p is an extension field of a field (P)
isomorphic to P. The transcendence degree ν of R/p over (P) is called the
transcendence degree or dimension of p, and we have 0 ≤ ν ≤ n. It follows
directly from [9, Theorem 5] that this definition does in fact agree with
the one from [9, §1.8].

3. The definition of fundamental ideal can now be properly tied to the di-
mension of a prime ideal. The isolated component of an ideal m to which
every associated prime ideal of dimension n − % and higher belongs, and
only these belong, is called the %-th fundamental ideal g% of m. It fol-
lows immediately that g%−1 is the (%− 1)-th fundamental ideal of g% and
g% coincides with its %-th fundamental ideal. Ideals, for which the first
fundamental ideal not equal to o equals the ideal, have only associated
prime ideals of a fixed dimension. By [9, Theorems 8,10], this definition
for transformed ideals agrees with the one given in [9, §1.4]5, so we may
refer to that one as well.

4. In addition to transformed ideals, transformed modules and systems of
equations will also appear. A module of linear forms6 with coefficients
in P[x1, . . . , xn] is called transformed if it can be made into a module of
linear forms with coefficients in P[y1, . . . , yn] by the transformation y =
U(x) and the adjoining of indeterminate transformation coefficients to
the field P. Similarly, a system of linear equations with coefficients in
P[x1, . . . , xn] is called transformed if it can be made into a system of linear
equations with coefficients in P[y1, . . . , yn] by the transformation y = U(x).
For transformed modules and systems of equations, the existence of a
nonzero determinant, whose rank agrees with that of the module or system
of equations, can always be assumed to represent a regular polynomial
relative to the xi, i = 1, . . . , n.7. Such a determinant will also be called a
regular determinant.

By [9, Lemma 1], prime and primary ideals are mapped by the transfor-
mation y = U(x) to prime and primary ideals. The converse is also true.
For non-transformed ideals, transformed prime and primary ideals corre-
spond again to prime and primary ideals. Indeed, let q be a transformed
prime ideal, and q the corresponding non-transformed ideal. Let a and b

5Translator’s Note: Noether defines gi as the set of all polynomials G(x) for which there
exists a non-zero polynomial b(i) such that b(i)G(x) ≡ 0 (m). Let E(i) be the greatest common
divisor of all such b(i). Then the elementary divisor form is the product of these E(i).

6Translator’s Note: This is a free module in today’s terminology.
7Translator’s Note: A polynomial of degree d in variables x1, . . . , xn is regular in xi if the

coefficient of xd
i is non-zero. A polynomial is regular if it is regular in every xi.
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be elements of R, and a and b the polynomials obtained from them under
the transformation. Then it follows from ab ≡ 0 (q), b

κ 6≡ 0 (q) for all
κ, and also from ab ≡ 0 (q), bκ 6≡ 0 (q) for all κ, that a ≡ 0 (q) and
consequently a ≡ 0 (q). Therefore, q is a primary ideal. If q is a prime
ideal and we replace κ in this argument with 1 accordingly, then we ob-
tain: q is a prime ideal. Since divisibilities are retained under forward
and backward transformations, associated prime and primary ideals map
to associated ones, respectively. Furthermore, the dimension of a prime
ideal is not changed by the transformation (see [9, footnote 12]). By [9,
Lemma 2], we can transform the individual primary components in the
representation of a non-transformed ideal as the least common multiple
of maximal primary ideals, and thereby obtain a representation of the
transformed ideal as the least common multiple of maximal primary com-
ponents. By the definition of fundamental ideals, since the dimension of
these components remains unchanged, the %-th fundamental ideal of the
transformed ideal is the transformed ideal of the %-th fundamental ideal
of the non-transformed ideal, so corresponding prime ideals map to each
other, and similarly the isolated components of the non-transformed ideal
map to those of the transformed ideals under the transformation.
Since the mapping of transformed to non-transformed ideals can be carried
out in finitely many steps - inverting the transformation, partitioning the
basis elements as power products of transformation coefficients - we can
restrict the computation of basis elements of associated prime, primary
and fundamental ideals and the isolated components of an ideal m to
transformed ideals.Indeed, as long as these ideals are unique, they are
also transformed in m. The primary ideals are the only ones which are
not unique. So for their computation, there is more to prove to obtain
transformed ideals.

5. The elementary divisor form of a prime ideal in perfect and imperfect
fields. The field P is called perfect if every prime function in it factors into
distinct linear factors over a suitable extension field; otherwise it is called
imperfect. We have the theorem: The elementary divisor form of a prime
ideal is a prime function, and that of a primary ideal is a power of a prime
function which is the elementary divisor form of the associated prime ideal
[9, Theorem 1]8. In a perfect field, the converse is true: If the elementary
divisor form of an ideal is a prime function, then the ideal is a prime
ideal [9, Theorem 13]. In imperfect fields, we have only: If the elementary
divisor form of a (proper or improper) ideal is a primary function, then the
(proper or improper) ideal is a primary ideal. In imperfect fields, there are
proper primary ideals whose elementary divisor form is a prime function
[9, §6, Example 2].

8Translator’s Note: A prime function is an irreducible polynomial over P and a primary
function is a power of a prime function.
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§2 Factoring Polynomials in Finitely Many Steps

Let f(x1, . . . , xn) be a polynomial defined over a field P. The factorization of f
into prime factors in an extension field of P will be considered, and in particular,
a factorization in finitely many steps. By the Kronecker substitution [4, Chapter
2, §§3-4]

xλ = ξdn−λ

,

in which d must be chosen greater than the degree of f , a polynomial in only
one variable ξ can be assigned uniquely to f in such a way that every factor of
f corresponds to a factor of this polynomial. Because of the unique assignment
of the polynomials, if the number of factors of the polynomial in ξ is known,
then so is the number of factors of f . Therefore, we can restrict ourselves to
factorization of polynomials in one variable. It will become evident that the
feasibility of factorization depends on the nature of the field over which we wish
to factor. The simplest case is the problem where the extension field is formed
by adjoining finitely many algebraic and transcendental elements to the prime
field. Here Kronecker’s theorem holds9:

Theorem 1. Hypothesis: Let K be a prime field, zk, k = 1, . . . ,m, be tran-
scendental over K(z1, . . . , zk−1, zk+1, . . . , zm, α1, . . . , αl), and αi, i = 1, . . . , l,
be algebraic over K(z1, . . . , zm, α1, . . . , αi−1, αi+1, . . . , αl).
Claim: Every polynomial f(x) can be factored over K(z1, . . . , zm, α1, . . . , αl)
into prime factors in finitely many steps.

Proof (by two applications of induction). 1. l = 0. The case m = 0 must be
treated separately according to when the characteristic of K has the value 0,
or is a prime number p. The proof is very simple in the second case since then
P = K contains only finitely many elements. In the first case, the proof of the
conclusion from n − 1 to n runs completely parallel, so that they both can be
brought together.

(a) First, let m = l = 0. If P = K has characteristic p, then it has only p
elements. Now if f(x) has degree r, then we need only consider factors of poly-
nomials of degree q ≤ r

2 . Since K has only p elements which come into question

as coefficients of these polynomials, there are only p

([
r
2

]
+1

)
polynomials of de-

gree q ≤ r
2 , where

[
r
2

]
denotes the largest integer ≤ r

2 . These polynomials can
be individually tested in finitely many steps to determine whether or not they
are factors of f .

(b) If P contains infinitely many elements, then either it is the prime field
of characteristic 0, or P = K(z1, . . . , zm). If K is of characteristic 0, let [K] be
the ring lying in K which is isomorphic to the ring of integers. Otherwise, let
[K] = K. Let [P] = [K][z1, . . . , zm]. Without loss of generality, we may assume

9See [5]. Kronecker proved this theorem only for the case of characteristic 0, where finitely
many algebraic extensions can be combined into a single one. However, the methods used
there can be carried over immediately to the general case.
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f(x) is an element of [P][x]. Furthermore, by well-known theorems on primitive
functions, we need only consider factors of f which also lie in [P][x].

Let q ≤ r
2 . We investigate the existence of a factor φ(x) of degree q. Let

s0, . . . , sq be any q + 1 distinct elements in [K][z1]. If K has characteristic 0,
then K already contains infinitely many integers, so in this case, s0, . . . , sq are
already elements in [K]. Then

φ(x) = φ(s0)g0(x) + . . . + φ(sq)gq(x),

where

gi(x) =
(x− s0) · · · (x− si−1)(x− si+1) · · · (x− sq)

(si − s0) · · · (si − si−1)(si − si+1) · · · (si − sq)
.

If φ(x) is a factor of f(x), then φ(si) must be a factor of f(si). But only finitely
many values for φ(si), which will be discussed separately, come into question. If
m = 0, then f(si) is an integer whose finitely many divisors can be written down.
Since the theorem was already proved in (1a) for prime fields of characteristic
p, the case m = l = 0 is now completely settled.

Thus we may assume that the factorization of a polynomial in [K][z1, . . . , zm]
can be achieved in finitely many steps. As an element in [K][z1, . . . , zm], f(si)
may now be viewed as a polynomial in zm with coefficients in [K][z1, . . . , zm−1].
Therefore, by hypothesis, it can be factored into irreducible factors in finitely
many steps.

2. We assume the theorem is already proved for l− 1 algebraic extensions.
Let αl be algebraic over K(z1, . . . , zm, α1, . . . , αl−1). By substituting x = y −
u · αl, where u denotes an indeterminate adjoined to the field and which by (1)
does not affect the factorization, we find that f(y − uαl) depends explicitly on
αl. We multiply f(y − uαl) by all polynomials obtained by replacing αl in f
by its conjugates over K(z1, . . . , zm, α1, . . . , αl−1). The product is a polynomial
whose coefficients lie in K(z1, . . . , zm, α1, . . . , αl−1), which then, by hypothesis,
factors over this field into irreducible factors in finitely many steps. The greatest
common divisor of these factors with the polynomial f(y − uαl) are the factors
of f(y − uαl). By substituting y = x + uαi, we obtain the desired factors of
f(x), which can therefore be computed in finitely many steps. 2

The case where infinitely many transcendental elements are adjoined to the
prime field can be immediately reduced to the case just considered. Indeed, the
polynomial can contain only finitely many of these infinitely many elements,
and if we again restrict the factorization to [P][x], no factor can contain any
transcendental element that the polynomial itself does not contain. Thus it
suffices to carry out the factorization in the field formed by adjoining to the
prime field the necessary algebraic elements and the finitely many transcendental
elements that appear in the polynomial.

Otherwise, infinitely many algebraic elements are adjoined to the prime field.
In this case, it is not true that an algebraic element not appearing in the polyno-
mial f(x) cannot appear in a factor of f . The methods of Kronecker’s theorem
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fail here. However, there is a factorization of the polynomial into linear factors
that can be carried out symbolically in the algebraic closure of P.

In any case, it is possible to factor the polynomial into prime factors over
the field specified by its own coefficients, since only finitely many algebraic
elements over the prime field appear among the coefficients. By Steinitz, we can
now introduce symbolically a zero j of such a prime function g(x), so for which
g(j) = 0, since the domain obtained by adjoining such a symbol to the coefficient
field is isomorphic to the residue class field modulo the prime function, itself a
field. If we apply this procedure finitely often, then we obtain a factorization of
the polynomial into linear factors, in which case it is well-known that a finite
extension field is sufficient. If this itself is not isomorphic to a subfield of the
given field in which the factorization occurs, then at least it holds for one of the
finitely many intermediate fields corresponding to the possible combinations of
finitely many factors.

§3. Computational Operations in Ideal Theory

The theorem of §3 will show how to carry out the simplest computational op-
erations of ideal theory in finitely many steps. It deals with the formation of
the least common multiple and greatest common divisor, and of products and
quotients. The set of all basis elements of two ideals forms a basis of the greatest
common divisor of two ideals that can be written down immediately. Similarly,
the basis of the product of two ideals is easily found. It consists of the set of
all products of each basis element of one ideal with each one of the other. The
construction of the basis of least common multiples and quotients is harder.
Hilbert’s theorem10 will provide the additional methods.

Theorem 2 Hypothesis. Let fij be polynomials in x1, . . . , xn with coefficients
in P, that is elements of P[x1, . . . , xn].
Claim: A complete solution for the system of equations

f11z1 + . . . + f1szs = 0
...

ft1z1 + . . . + ftszs = 0,

also consisting of elements of P[x1, . . . , xn], can be computed in finitely many
steps. If q is the maximum degree of the fij, then the degree of the polyno-
mials of the complete solution set does not exceed m(t, q, n), where m satisfies
the reduction formula m(t, q, 0) = 0, m(t, q, n) = qt + m(t2q, q, n − 1). Thus

m(t, q, n) =
n−1∑
i=0

(qt)2
i

.

10Macaulay hints at the possibility of using Hilbert’s theorem to obtain these results.
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By a complete solution, we mean here a set of solutions to the system of
equations, on which every other solution is linearly dependent with coefficients
in P[x1, . . . , xn].

Proof (by induction). 1. n = 0. The coefficients fij and the desired solutions zi

are constants, elements of the field P. As is well-known, the system of equations
can be solved in this case in finitely many steps, the problem is reduced to one
in determinant theory. Since no indeterminates appear at all, the degree of all
polynomials is 0.

2. Assume the theorem is already proved for n = r− 1 (r > 0). Let n = r.
(a) Suppose the system of equations is transformed. Without loss of gen-

erality, we may assume that there are no other linear relations among the equa-
tions, so clearly t ≤ s. If t = s, then z1 = . . . = zs = 0 is the only solution, so
it forms a complete solution, and hence the theorem is proved for this case.

Thus we may assume then that s > t and t is the rank of f11 . . . f1s

...
...

ft1 . . . fts

 .

We set

Di1...it
=

f1i1 . . . f1it

...
...

fti1 . . . ftit

where i1, . . . , it denote any t distinct integers in the sequence 1, . . . , s. Without
loss of generality, we may assume that

D = D1...t =

f11 . . . f1t

...
...

ft1 . . . ftt

6= 0,

and that D has the highest degree µ ≤ qt ≤ m(t, q, r) among all of the Di1...it

which appear. Since the system of equations is assumed to be transformed, we
may assume D is regular in x1, i.e. the coefficient of xµ

1 in D does not vanish.
Then the given system of equations has the solutions

z1 = Dt+1,2...t, . . . , zt = D1...t−1,t+1, zt+1 = D, zt+2 = . . . = zs = 0
...

z1 = Ds2...t, . . . , zt = D1...t−1,s, zt+1 = . . . = zs−1 = 0, zs = D,

which may be called the canonical solutions of the system of equations. The
degree of the polynomials of these solutions do not exceed µ. Because of the
regularity of D in x1, from each solution another ζ1, . . . , ζs is derived, for which

[ζt+1]1 < [D]1 = µ, . . . , [ζs]1 < µ
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and the equations

l1 = f11ζ1 + . . . + f1sζs = 0
...

lt = ft1ζ1 + . . . + ftsζs = 0

hold. Now let Fik denote the (t− 1)-row subdeterminant of D corresponding to
fik. Then

0 = F11l1 + . . . + Ft1lt = Dζ1 + Dt+1,2...t ζt+1 + . . . + Ds2...t ζs

...
...

0 = Ft1l1 + . . . + Fttlt = Dζt + D1...(t−1)(t+1) ζt+1 + . . . + D1...t−1,s ζs

Because of

[Di1...it
]1 ≤ µ

[ζt+λ]1 < µ for λ = 1, . . . , s− t

[D]1 = µ

it follows that
[ζi]1 < µ for i = 1, . . . , t,

so in general
[ζi]1 < µ for i = 1, . . . , s.

Therefore,

ζ1 = ξ
(2)
11 xµ−1

1 + . . . + ξ
(2)
1µ

...
ζs = ξ

(2)
s1 xµ−1

1 + . . . + ξ(2)
sµ ,

where ξ
(2)
ij are elements of P[x2, . . . , r] in accordance with the notation in §1.6.

We put these expressions in the equations l1 = . . . = lt = 0 and arrange them by
powers of x1. Then each of the coefficients of these powers, which still depend
on x2, . . . , xr, must vanish. Thus we obtain equations of the form

φ
(2)
11 ξ

(2)
11 + . . . + φ

(2)
1σ ξ(2)

sµ = 0
...

φ
(2)
τ1 ξ

(2)
11 + . . . + φ(2)

τσ ξ(2)
sµ = 0,

where [φij ] ≤ q and µs = σ > τ = µt ≤ qt2. By hypothesis, since n = r − 1 for
this system of equations, a complete solution, whose elements have degrees not
exceeding m(qt2, q, r − 1), can be computed in finitely many steps.
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If ξ
(2)

11 , . . . , ξ
(2)

sµ is a solution to this system of equations, then

ξ1 = ξ
(2)

11 xµ−1
1 + . . . + ξ

(2)

1µ

...
ξs = ξ

(2)

s1 xµ−1
1 + . . . + ξ

(2)

sµ

is a solution to the original system of equations, and conversely, every solution
of the above system of equations can be brought into the form of the canonical
solution. Therefore, a complete solution to the given system of equations is
constructed from the complete solution of the system of equations independent
of x1 formed by the indicated combinations of powers of x1, together with the
canonical solutions. Hence, this complete solution can be computed in finitely
many steps and the degree of its solutions does not exceed µ+m(qt2, q, r−1) ≤
qt + m(qt2, q, r − 1) = m(t, q, r)

(b) Suppose the system of equations is non-transformed. We transform it
by x = U(x′) and compute the complete solutions of the transformed system
by (a). Since the coefficients of the system of equations for the inverse trans-
formation x′ = U−1(x) are again independent of the indeterminates uµν , the
factors resulting from similar power products of the uµν in the inversely trans-
formed solutions form a complete solution of the given equations. Thus in this
case, they can also be computed in finitely many steps. Since the degrees of
the polynomials do not grow under transformation, the degree restrictions hold
here also. 2

Corollary to Theorem 2. If in the case t = 1, the coefficients fi of the
given equation are homogeneous in x1, . . . , x% (0 ≤ % ≤ n), then the polynomi-
als appearing in the complete solution may be assumed to be homogeneous in
x1, . . . , x%, and the degree restrictions of Theorem 2 remain unchanged.

Proof. Let z1, . . . , zs be any solution to the equation, so

f1z1 + . . . + fszs = 0.

Let

z11 + . . . + z1j1 = z1

...
zs1 + . . . + zsjs = zs

be the partitioning of these polynomials into summands that are homogeneous
in x1, . . . , x%, such that any two summands have different degrees in x1, . . . , x%.
Thus fizik is homogeneous in x1, . . . , x%, but fi(zik1 + zik2) is not for k1 6= k2.
If we split up the equation

f1z1 + . . . + fszs = 0
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into components which are homogeneous in x1, . . . , x%, but which have different
degrees from each other, so that they must each vanish individually, then we
obtain equations of the form

f1z1k1 + . . . + fszsks
= 0,

where there are sufficiently many such equations that each of the summands
zik, k = 1, . . . , ji, i = 1 . . . , s, appears in exactly one equation.

Therefore, the sets z1k1 , . . . , zsks
are solutions of the equation. The solution

z1, . . . , zs is linearly dependent on these; this results from summing over these
solutions. By the appropriate partitioning of the solutions appearing in a com-
plete solution, which can be computed in finitely many steps by the procedure
indicated, we obtain a complete solution of the equation, consisting of polyno-
mials homogeneous in x1, . . . , x% and having the same maximal degree as the
original solution set. 2

Application of Theorem 2

1. Computation of the Least Common Multiple [a, b] of Two Ideals
a = (f1, . . . , ft) and b = (g1, . . . , gs) in Finitely Many Steps.

We have
c ≡ 0 ([a, b])

if and only if
c ≡ 0 (a) and c ≡ 0 (b),

holds, i.e. if
c = d1f1 + . . . + dtft = e1g1 + . . . + esgs.

Thus in this case

d1f1 + . . . + dtft − e1g1 − . . .− esgs = 0.

By Theorem 2, a complete solution of this equation can be computed. Let

d11, . . . , d1t, e11, . . . , e1s

...
dk1, . . . , dkt, ek1, . . . , eks

be such a solution. Then

c1 = d11f1 + . . . + d1tft = e11g1 + . . . + e1sgs

...
...

...
ck = dk1f1 + . . . + dktft = ek1g1 + . . . + eksgs

is a basis of [a, b]. Therefore [a, b] = (c1, . . . , ck).

12



2. Computation of the Quotient a : b.

It is well-known that a : b = [a : (g1), . . . , a : (gs)]. Now

c ≡ 0 (a : (gj))

if and only if
cgj = d1f1 + . . . + dtft,

so when
cgj − d1f1 − . . .− dtft = 0.

By Theorem 2, a complete solution of this equation can be computed. Let
cj1, . . . , cjmj

be the associated factors of gj above. Then

a : (gj) = (cj1, . . . , cjmj
).

By 1, the basis of a : b = [a : (g1), . . . , a : (gs)] can also be computed in finitely
many steps.

§4. Degree Restrictions in Formal Divisibility
Theorems

Theorem 3 now provides a criterion to help determine in finitely many steps
whether or not two ideals are divisible by each other 11.

Theorem 3. Hypothesis: Let M = (l1, . . . , lt) be a module of linear forms
in z1, . . . , zs, whose coefficients are polynomials fij(x1, . . . , xn) in P[x1, . . . , xn]
which are independent of z1, . . . , zs. Let [fij ] ≤ q and

l1 = f11z1 + . . . + f1szs

...
lt = ft1z1 + . . . + ftszs.

Suppose l ≡ 0 (M), so that

l1 = a1l1 + . . . + atlt.

Claim: This representation can be chosen so that

[ai] ≤ [l] + 2m(t, q, n),
11König offered such a criterion by solving the inhomogeneous equation f1z1+. . .+fszs = f

using the solvability of the homogeneous equation, where the induction conclusion had to be
modified according to footnote 4 [Translator’s Note: This is footnote 3 in this translation].
König did not produce the degree restrictions calculated in Theorem 3, which are important
for what follows.
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where m(t, q, n) is defined exactly as in Theorem 2.

Proof (by induction). 1. n = 0. In this case the theorem is clear since every
polynomial in which x appears has degree 0. So certainly [ai] = [l] + 0 = 0.

2. Assume the theorem is already proved for n = r − 1. Let n = r. Let p
be the rank of  f11 . . . f1s

...
...

ft1 . . . fts

 .

Clearly p ≤ t. As in Theorem 2, we set

f1i1 . . . f1ip

...
...

fpi1 . . . fpip

= Di1...ip

and assume
f11 . . . f1p

...
...

fp1 . . . fpp

= D1...p = D 6= 0.

(a) Assume M is transformed so then D can be assumed to be regular in
x1. Then

[D]1 = [D] ≤ qt.

If Fij denotes the (p − 1)-row subdeterminant of D corresponding to fij ,
then M contains the forms

m1 = F11l1 + . . . + F1plp ≡ 0 (M)
...

m1 = Fp1l1 + . . . + Fpplp ≡ 0 (M)

and in particular,

m1 = Dz1 + Dp+1,2...pzp+1 + . . . + Ds2...pzs

...
mp = Dzp + D1...p−1,p+1zp+1 + . . . + D1...p−1,szs.

We have [Fik] ≤ (t − 1)q, [li] ≤ q, so [mi] ≤ qt, and in fact this holds for every
term of the representation by the l’s.

Now let g(z) = g1z1 + . . . + gszs be a linear form in z with coefficients in
P[x1, . . . , xr]. Because of the regularity of D in x1, there exist polynomials Gi

and ji such that
gi = Gi + Dji

14



for i = 1, . . . , p, where
[Gi]1 < [D]

and we will show that
[ji] ≤ [gi] ≤ [g].

To prove this, suppose that [ji] > [gi]. Let ji = ji1 + . . . + jiki be the parti-
tioning of ji into homogeneous summands of different degrees, and in particular
let [ji1] = [ji]. Let j

(2)
i1 (x1, . . . , xr) 6≡ 0 be the coefficient of the highest power of

x1 appearing in ji1. Thus ji1 = j
(2)
i1 xκ

1 + . . . and
[
j
(2)
i1

]
= [ji] − κ. Because of

the regularity of D in x1,
D = bx

[D]
1 + . . .

where b 6= 0 is an element of P. Thus

jiD = f (2)x
κ+[D]
1 + . . . ,

where
f (2) = bj

(2)
i1 + . . .

is a term of smaller degree. Therefore, f (2) 6= 0 and
[
f (2)

]
= [ji] − κ. Since

[Gi]1 < [D], f (2) is the coefficient of x
κ+[D]
1 in gi, and [gi] ≥

[
x

κ+[D]
1 f (2)

]
= [D]+

[ji] > [D] + [gi] ≥ [gi], so the assumption [ji] > [gi] has led to a contradiction.
Therefore, [ji] ≤ [gi] as claimed.

We can set

g(z) = G(z) +
p∑

i=1

miji

where
G(z) = G1z1 + . . . + Gpzp + Gp+1zp+1 + . . . + Gszs

and [
p∑

i=1

miji

]
≤ [g] + qt ≤ [g] + m(t, q, r),

which indeed holds for every term of the representation by the l’s. If g(z) ≡
0 (M), then since mi ≡ 0 (M), G(z) ≡ 0 (M) as well, so by the above, we need
only to prove the theorem for G(z).

It follows from
G(z) ≡ 0 (M)

that
G(z) = a1l1 + . . . + atlt,

so
Gi = a1fi1 + . . . + atftt.
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Since p is the rank of M, lp+λ is linearly dependent on l1, . . . , lp, 0 ≤ λ ≤ t− p,
provided that 1

D is allowed as a multiplier. So

Dlp+λ ≡ 0 (l1, . . . , lp).

Because of the regularity of D in x1, we can choose the a’s such that

[ap+λ]1 < [D] for 0 ≤ λ ≤ t− p.

Now
p∑

i=1

GiFik = Dak +
t∑

τ=p+1

aτ

p∑
π=1

fπτFπk,

where [∑
fπτFπk

]
≤ qt,

[aτ ]1 ≤ [D] for τ = p + 1, . . . , t,

[Gi]1 ≤ [D] for i = 1, . . . , p,

[Fik] ≤ q(t− 1),

so
[ak]1 ≤ qt for k = 1, . . . , t,

i.e.
[ak]1 ≤ 2m(t, q, 1).

Therefore the theorem is proved for r = 1. Let r > 1. Then

G(z) ≡ 0 (B),

where
B = (l1, x1l1, . . . , x

qt
1 l1, l2, . . . , x

qt
1 lt)

is a module of linear forms in z1, x1z1, . . . , x
qt
1 z1, . . . , x

qt
1 zs with coefficients in

P[x2, . . . , xr]. The number T of basis elements of B is qt2. Since the coefficients
of B depend only on r − 1 variables, there is by hypothesis a representation

G(z) = a
(2)
1 l1 + . . . + a

(2)
T xqt

1 lt,

where [
a
(2)
i

]
≤ [G] + 2m(qt2, 1, r − 1)

holds. Now since

g = G +
p∑

i=1

miji
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and [
p∑

i=1

miji

]
≤ [g] + qt,

we have
[G] ≤ [g] + qt.

Therefore, [
a
(2)
i

]
≤ [g] + qt + 2m(qt2, q, r − 1).

If we order the representation of G(z) by the l’s

G(z) = a1l1 + . . . + atlt,

then
[ai] ≤ max

[
a
(2)
k

]
+ qt,

i.e.
[ai] ≤ [g] + 2qt + 2m(qt2, q, r − 1) = [g] + 2m(t, q, r).

(b) Suppose M is non-transformed. The theorem holds for the correspond-
ing transformed module. Since inverting the transformation does not raise the
degrees, the theorem holds for non-transformed modules as well. 2

Application of Theorem 3

Criterion for the Divisibility of Two Ideals by Each Other

If we set s = 1 and drop z1 which appears as a factor in every element of M,
then M reduces to an ideal m = (f1, . . . , ft) of polynomials in x1, . . . , xn, and
the theorem reads: If g ≡ 0 (m), then there is a representation

g = g1f1 + . . . + gtft,

where
[gi] ≤ [g] + 2m(t, q, n).

So if we also assume that the gi are polynomials of degree [g] + 2m(t, q, n)
with indeterminate coefficients, then the equations, which arise by comparing

coefficients from the equation g =
t∑

i=1

figi, must be solvable. Conversely, if they

are solvable, then g ≡ 0 (m). The system of equations in question, on whose
solvability we therefore depend, is now linear in the unknowns. By determinant
theory methods, the solvability can then be decided in finitely many steps. Thus
we can decide in finitely many steps whether or not each individual polynomial
in P[x1, . . . , xn] is divisible by m. Now since for the divisibility of an ideal by
another it is necessary and sufficient that the basis elements of the first be
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divisible by the second, a criterion for the divisibility of an ideal by another is
easily produced.

It will be important later to completely ignore exceeding the degree. Theo-
rem 4 will show that there is in fact an ideal basis, for which this is possible.

Theorem 4. For every ideal m = (f1, . . . , ft), there exists a canonical basis
f%1, . . . , f%t%

, % = 1, . . . , n, such that for every g ≡ 0 (m), there exists a repre-
sentation

g =
t%∑

i=1

gif%i,

where
[gi]% = [g]% − [f%i]%

for gi 6= 0. This basis can be computed in finitely many steps, and [fpi] ≤

m(1, q, n) =
n−1∑
i=1

q2i

.

Proof. We set

fτ (x0, x1, . . . , xn) = x
[fτ ]%
0 fτ

(
x1

x0
, . . . ,

x%

x0
, x%+1, . . . , xn

)
so that fτ is homogeneous in x0, x1, . . . , x%. Let g ≡ 0 (M) and

g(x0, x1, . . . , xn) = x
[g]%
0 g

(
x1

x0
, . . . ,

x%

x0
, x%+1, . . . , xn

)
.

By Theorem 3, there exists a representation

g = c1f1 + . . . + ctft

such that
[ci] ≤ [g] + 2m(t, q, n).

Consequently,

xk
og =

t∑
i=1

xki
0 cif i,

where the ci are formed analogously to f i and gi, and the ki can be chosen so
that the exponent ki = 0 for at least one i, and

k ≤ q + 2m(t, q, n).

Therefore,
x2m+q

0 g ≡ 0 (f1, . . . , f t) in P[x0, x1, . . . , xn].

Conversely, if this congruence holds, then we obtain g ≡ 0 (M) by setting
x0 = 1.
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Hence by the methods presented in Theorem 2, we form a complete solution
to the equation

x2m+q
0 X− c1f1 − . . .− ctf t = 0,

which may be assumed to be homogeneous in x0, x1, . . . , x% by the Corollary to
Theorem 2, and where we let X = f%1, . . . ,X = f%t%

. Thus

[
f%i

]
≤ m(1, q, n) =

n−1∑
i=0

q2i

.

Let
g ≡ 0 (M),

so

g =
t%∑

i=1

gif%i,

where, without loss of generality, we may assume that the gi are homogeneous in
x1, . . . , x%. Since all members of this equation are homogeneous in x0, x1, . . . , x%,
the gi can be chosen such that

[gi]% = [g]% − [f%i]%

provided gi 6= 0.
Now if we set x0 = 1, and thereby derive f%i from f%i, then

m = (f%1, . . . , f%t%
)

with

[f%i] ≤
n−1∑
i=0

q2i

,

and it follows from
g ≡ 0 (m)

that

g =
t%∑

i=1

gif%i,

where
[gi]% = [g]% − [f%i]%

provided gi 6= 0. 2
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§5. The Hentzelt Nullstellensatz

In contrast to the purely formal divisibility criterion of Theorem 3, Hentzelt’s
Nullstellensatz brings a criterion which indicates how strongly a polynomial
must vanish at the zeros of an ideal in order to be divisible by the ideal. To
prove this theorem, three lemmas are needed.

In the lemmas, it must be assumed that the underlying field P [§1.1], in which
the ideals and modules appear, have infinitely many elements. This condition
is certainly satisfied if we replace P with P(s), where s is transcendental over
P. Therefore in the lemmas, P will contain infinitely many elements. It will be
shown that adjoining s is not a restriction of Hentzelt’s Nullstellensatz.

Lemma 1. Hypothesis: Let m = (l1, . . . , lt) be a module of linear forms

l1 = f11z1 + . . . + f1szs

...
lt = ft1z1 + . . . + ftszs

with [fij ] ≤ q. Let p be the rank of m.
Claim: After a homogeneous linear transformation x = U ′(x′) of x1, . . . , xn with
transformation coefficients in P, and having a nonzero determinant, we have: If
Gn is the set of all linear forms g for which there exists a polynomial k(x′

n) 6= 0
dependent only on x′

n such that k(x′
n)g ≡ 0 (M), then there exists a polynomial

K(x′
n) 6= 0 dependent only on x′

n such that

1. K(x′
n)Gn ≡ 0 (M)

2. [K(x′
n)] ≤ M(t, q, n)

where

M(t, q, 1) = qt

M(t, q, n) = M(qt2, q, n− 1).

Therefore,
M(t, q, n) = (qt)2

n−1
.

Proof (by induction.) 1. n = 1. G1 = G is the fundamental module for M 12.
Let

D =

f11 . . . f1p

...
...

fp1 . . . fpp

6= 0.

12The definition of fundamental module is given in [9,§1.5].
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By [2, Theorem 3],
DG ≡ 0 (M)

so
[D]1 ≤ [D] ≤ qt = M(t, q, 1).

2. Suppose the theorem is already proved for n = r − 1. Let n = r > 1.
Since P consists of infinitely many elements, we can always cause D to be regular
in x′

1 by a transformation that satisfies the conditions specified in the claim. In
order to simplify notation in what follows, the accents on x will be omitted. Let

k(xr)g ≡ 0 (M).

As in Theorem 3, we set
g = g1z1 + . . . + gszs

and
gi = Gi + Dji,

so that
[Gi]1 ≤ [D] ≤ qt

[ji] ≤ [gi] ≤ [g].

Then

g = G +
p∑

i=1

miji,

where the mi have the same meaning as in Theorem 3. Because mi ≡ 0 (M),

k(xr)G ≡ 0 (M).

Thus
[k(xr)Gi]1 ≤ qt for i = 1, . . . , p.

Let
k(xr)G = a1l1 + . . . + atlt.

Then we can show, just as in Theorem 3, that

[ai]1 ≤ qt for i = 1, . . . , t.

Thus
k(xr)G ≡ 0 (B),

where B again denotes the module of linear forms (l1, . . . , lt, . . . , x
qt
1 lt) whose

coefficients are polynomials in x2, . . . , xr. Therefore, after a transformation of
x2, . . . , xr which can be combined with the first, there exists, by hypothesis, a
polynomial K(xr) independent from the choice of g, such that

K(xr)G ≡ 0 (B)
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and
[K(xr)] ≤ M(qt2, q, r − 1).

Furthermore,
K(xr)G ≡ 0 (M),

so
K(xr)g ≡ 0 (M).

Hence
K(xr)Gr ≡ 0 (M),

so
[K(xr)] ≤ M(qt2, q, r − 1) = M(t, q, r). 2

Corollary 1 to Lemma 1. If M is transformed, then the claim holds without
applying the specific transformation.

Proof. Let M be the result of y = U(x) to M. M maps on M′ by x = U ′(x′).
Thus M′ is the result of the composite transformation y = UU ′(x′) = V (x′) on
M. Hence the equations

V = UU ′, U = V U ′−1

hold between the transformation matrices, so since U ′ has a nonzero deter-
minant, the transformation is uniquely invertible. Using these equations, the
elements of V and those of U can be expressed linearly with coefficients in P
in terms of each other. So the elements of U , as well as the elements of V are
indeterminates, and the fields P(u) and P(v) coincide. Therefore, M′ is also the
associated transformed module of M, so M′ and M are isomorphic and they
differ only in notation. If we replace x′ by x in M′ and V by U , then M′ maps
to M. Since the theorem is proved for M′, it is also true for M. 2

Corollary 2 to Lemma 1. For transformed ideals in the special case s = 1,
the theorem provides an upper bound on the degree of the n-th level elementary
divisors.13

Proof. In this case M maps to an ideal m because the factor z1, which appears
unnecessarily in every element, can be cancelled. Let M and hence m be trans-
formed. Then Gn maps to the (n − 1)-th fundamental ideal gn−1 of m. Now
if E(xn) is an n-th level elementary divisor of m, then E(xn) is the greatest
common divisor of every K(xn) for which

K(xn)gn−1 ≡ 0 (m)

holds [9, §1.5]. Therefore, by Lemma 1 and the first corollary,

[E(xn)] ≤ M(t, q, n). 2

13Translator’s Note: This is just E(n) as defined in footnote 5.
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Lemma 2. Hypothesis: Let ξ%+1, . . . , ξn be any elements lying in an extension
field of P, perhaps adjoined to the field P. Let the following ideals be defined:

m = (f1, . . . , ft), q ≥ [fi] for i = 1, . . . , t

d =
(
(x%+1 − ξ%+1)e%+1 , . . . , (xn − ξn)en

)
a = (m, d)

Claim: After a homogeneous linear transformation x = U ′(x′) of the form

x1 = u11x
′
1 + . . . + u1%x

′
%

...
...

x% = u%1x
′
1 + . . . + u%%x

′
%

x%+1 = x′
%+1

...
...

. . .
xn = x′

n

with coefficients from P and a nonzero determinant: If g% denotes the set of all
polynomials g for which there exists a polynomial k(x′

%) dependent only on x′
%

such that k(x′
%)g ≡ 0 (a), k 6= 0, then there exists a polynomial K(x′

%) dependent
only on x′

%, such that

1. K(x′
%)g% ≡ 0 (a)

2. [K(x′
%)] ≤ N

(
t, q, %,

n∏
i=%+1

ei

)
,

where

N

(
t, q, %,

n∏
i=%+1

ei

)
= M

(
t

n∏
i=%+1

ei, q, %

)
=

(
qt

n∏
i=%+1

ei

)2%−1

.

Proof. Let Xµ, µ = 1, . . . , S, S =
∏

ei, be the power products of (x%+1 −
ξ%+1), . . . , (xn − ξn) where the exponent of (xi − ξi) is less than ei. Set

fκXµ ≡
S∑

σ=1

Xσfστκµ
(x1, . . . , x%) (d)

κ = 1, . . . , t
µ = 1, . . . , S
τκµ = 1, . . . , tS.

If i is one of the numbers 1, . . . , tS, then let

li = X1f1i + . . . + XSfSi.

Then M = (l1, . . . , ltS) is the module of linear forms which maps to m modulo
d. M will be transformed in the manner indicated by Lemma 1. The accent
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on the x’s will again be omitted. Since the coefficients M are just polynomials
in x1, . . . , x%, the transformation applies only to x1, . . . , x%. Using the identity
transformation on x%+1, . . . , xn, it can be extended to x = U ′(x′). Then by
Lemma 1, there exists a polynomial K(x%) dependent only on x% such that

K(x%)G% ≡ 0 (M)

and
[K(x%)] ≤ M(tS, q, %) = N(t, q, %, S).

If we again view the elements of G% and M as polynomials in x1, . . . , xn, then

(G%, d) = (g%, d)
(M, d) = (m, d) = a.

Thus
K(x%)(g%, d) ≡ 0 (a),

so
K(x%)g% ≡ 0 (a)

all the more. 2

Corollary to Lemma 2. If m is transformed, then the claim is true without
applying the specific transformation.

Proof. Let m be the result of the transformation y = U(x) on m. Let m′, a′,
and d′ come from m, a, and d via x = U ′(x′), a′ = (m′, d′). Now since, in the
basis elements of d′, only x%+1, . . . , xn appear , which are simply transformed
by the identity, d and d′ are isomorphic. The same is true for m and m′ because
m is transformed, as was proved in the Corollary to Lemma 1. Furthermore,
since the isomorphism in both cases consists of interchanging x with x′ and
the elements of U with those of UU ′, a and a′ are also isomorphic. Since the
theorem is already proved for a′, it holds for a as well. 2

Lemma 3. Hypothesis: Let

m =
(
f1(x1, . . . , xn, y), . . . , ft(x1, . . . , xn, y)

)
be an ideal in P(y)[x1, . . . , xn], where y is transcendental over P[x1, . . . , xn].
Let mξ =

(
f1(x1, . . . , xn, ξ), . . . , ft(x1, . . . , xn, ξ)

)
be the ideal in P[x1, . . . , xn]

formed by substituting an element ξ in P for y in m. Let k(x1, . . . , xn, y) 6≡ 0 (m).
Without loss of generality, the polynomials fi, i = 1, . . . , t, and k may be as-
sumed to be integral in y, so that for all ξ in P, the polynomials fi(x1, . . . , xn, ξ)
and k(x1, . . . , xn, ξ) are defined.
Claim: There exists ξ in P such that

k(x1, . . . , xn, ξ) 6≡ 0 (mξ).
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Proof. 1. The connection between questions of divisibility and rank.
Let

g(x1, . . . , xn, y) ≡ 0 (m).

By Theorem 3, there exists a representation

g(x1, . . . , xn, y) = φ1(x1, . . . , xn, y)f1(x1, . . . , xn, y) + . . .

+ φt(x1, . . . , xn, y)ft(x1, . . . , xn, y)

such that [φi] ≤ [g] + 2m(t, q, n), where q is again the maximal degree of the
fi(x1, . . . , xn, y) in x1, . . . , xn.

Let zσ, σ = 1, . . . , s, be the distinct power products of x1, . . . , xn for which
[zσ] ≤ [g] + q + 2m(t, q, n). Let ζ%, % = 1, . . . , r, be the distinct power products
for which [ζ%] ≤ [g] + 2m(t, q, n).

Because of the degree restrictions on the individual terms of the representa-
tion of g, we can bring this representation into the form

G(z1, . . . , zs, y) = φ1(y)F1(z1, . . . , zs, y) + . . . + φtr(y)Ftr(z1, . . . , zs, y),

where G(z1, . . . , zs, y) = g(x1, . . . , xn, y), the Fi(z1, . . . , zs, y) are of the form
ζ%fk(x1, . . . , xn, y), and the Fi and G are linear in z1, . . . , zs. Now since G
depends linearly on the Fi, the matrices

A =

 g1(y) f11(y) . . . f1,tr(y)
...

... . . .
...

gs(y) fs1(y) . . . fs,tr(y)

 and B =

 f11(y) . . . f1,tr(y)
... . . .

...
fs1(y) . . . fs,tr(y)


have the same rank, where gi and fij denote the coefficients of zi in G and Fj ,
respectively.

On the other hand, if both of these matrices have the same rank, then G is
linearly dependent on the Fi. If we again replace the zσ in G and Fi by the power
products of x1, . . . , xn, then we get g ≡ 0 (m). Therefore, the two matrices have
the same rank if and only if g is divisible by m. These same observations hold if
we set y equal to an element ξ of P. Then polynomials φξi(x1, . . . , xn) satisfying
the same degree restrictions in x1, . . . , xn take the place of φi(x1, . . . , xn, y).
Therefore, it is also true that g(x1, . . . , xn, ξ) is divisible by mξ if and only if the
two matrices formed by the substitution y = ξ in A and B have the same rank.

2. Because k(x1, . . . , xn, y) 6≡ 0 (m), the matrices A′ and B′, formed from
k(x1, . . . , xn, y) analogously to the matrices A and B , have different rank. Thus
there is a non-zero determinant in A′ whose rank is 1 higher than that of B′.
Now since P consists of infinitely many elements, y can be specialized to ξ in P
in such a way that these determinants remain nonzero. If we replace y by this
ξ in A′ and B′, then they retain different ranks. Therefore,

k(x1, . . . , xn, ξ) 6≡ 0 (m). 2
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With Lemmas 2 and 3, Hentzelt’s Nullstellensatz can now be proved.

Definition 1. By a complete zero-set of an ideal m, we mean a set of one zero
of each transcendence degree from each associated prime ideal of m.

Definition 2. If ξ
(i)
1 , . . . , ξ

(i)
n , i = 1, . . . ,m, is a complete zero-set of m, then

oi =
(
x1 − ξ

(i)
1 , . . . , xn − ξ

(i)
n

)
is called the associated zero-set ideal of m.

It follows from the definition that oi is a prime ideal in

Ri = R
(
ξ
(i)
1 , . . . , ξ(i)

n

)
= P

(
ξ
(i)
1 , . . . , ξ(i)

n

)
[x1, . . . , xn].

Theorem 5 (Hentzelt’s Nullstellensatz). Hypothesis: Let ξ
(i)
1 , . . . , ξ

(i)
n , i =

1, . . . ,m, be a complete zero set of m = (f1, . . . , ft). Let oi, i = 1, . . . ,m, be the
corresponding zero-set ideal. Let q be the maximal degree of f1, . . . , ft. Let

κ(t, q, n) = q +
n∏

λ=1

[
(qt)

2λ−1
n−λ∏
i=1

(2n−i+1)

− 1
]

= q + v(t, q, n).

Claim: It follows from

g ≡ 0 (m, oκ
i ) in Ri = R

(
ξ
(i)
1 , . . . , ξ(i)

n

)
(for i = 1, . . . ,m)

that
g ≡ 0 (m).

In the following second version, Hentzelt states the theorem only for algebraic
zeros.

Theorem 5a. Hypothesis: Let ξ1, . . . , ξn be an arbitrary set of values in the
algebraic closure of P. Let

a = (x1 − ξ1, . . . , xn − ξn).

Claim: It follows from
g ≡ 0 (m, oκ

i )

that for every such set of values,

g ≡ 0 (m).

If ξ1, . . . , ξn is not an algebraic zero of m, then (m, aκ) = o, so clearly g ≡
0 (m, oκ

i ). So instead of the condition ”for every arbitrary set of values”, we can
also use ”for every algebraic zero of m”.

Proof. Both versions of the theorem will be proved. A few preparatory remarks
are needed for the proof.

26



1. Without loss of generality, it may be assumed that the underlying field P
has infinitely many elements. The theorem will be proved for this specific
case. Let m be defined in R = P[x1, . . . , xn] = P(u11, . . . , unn)[x1, . . . , xn],
where P contains only finitely many elements. Suppose P′

= P(s), where
s is transcendental over P. Let m′ be defined in R′ = P′[x1, . . . , xn] =
P′

(u11, . . . , unn)[x1, . . . , xn] with the same basis as m. Then the zeros of
m and m′ coincide. Thus a polynomial g in R that satisfies the hypothesis
of Theorems 5 and 5a for m satisfies it for m′ as well. So by hypothesis

g ≡ 0 (m′).

Therefore, there exists a polynomial k(s) in P(s) whose lowest coefficient
may be assumed to be the identity E of P, such that

k(s)g = g1f1 + . . . + gtft,

where the gi are integral in s. By comparing coefficients of the smallest
power of s appearing in k, we obtain

g = g′1f1 + . . . + g′tft

with g′i ≡ 0 (R). But that means g ≡ 0 (m).

2. We already have
κ(t, q, n) ≥ κ(t, q, n− 1).

In particular, if t = q = 1, then

v(1, 1, n) = v(1, 1, n− 1) = 0,

so
κ(1, 1, n) = κ(1, 1, n− 1) = 1.

Let qt ≥ 2. If we separate the last factor of v(t, q, n), then we obtain the
equation

v(t, q, n) =
n∏

λ=1

[
(qt)

2λ−1
n−λ∏
i=1

(2n−i+1)

− 1
] [

(qt)2
n−1

− 1
]

= v1(t, q, n)
[
(qt)2

n−1
− 1

]
≥ v1(t, q, n)

since qt ≥ 2. Furthermore, because

n−λ∏
i=1

(2n−i + 1) ≥
n−λ−1∏

i=1

(2n−i−1 + 1),
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it follows that
v1(t, q, n) ≥ v1(t, q, n− 1).

Hence
v(t, q, n) ≥ v(t, q, n− 1),

so
κ(t, q, n) ≥ κ(t, q, n− 1).

3. Let l ≥
n∏

λ=1

(lλ − 1), then

al ≡ 0
(
(x1 − ξ1)l1 , . . . , (xn − ξn)ln

)
.

In particular,

al =
(

(x1 − ξ1)l, . . . ,
n∏

λ=1
ε1+...+εn=l

(xλ − ξλ)ελ , . . . , (xn − ξn)l

)
.

For
n∑

λ=1

ελ = l in general,

n∏
λ=1

(xλ − ξλ)ελ ≡ 0
(
(x1 − ξ1)l1 , . . . , (xn − ξn)ln

)
.

For the proof, some further notation must be defined.

4. Let En(xn) be the n-th level elementary divisor of m [9, §1.6] and ln be
an integer ≥ [En(xn)]. By Corollary 2 of Lemma 1, we can set

ln = (qt)2
n−1

for transformed ideals, to which we first restrict the proof. Furthermore,
let

lλ = N

(
t, q, λ,

n∏
i=λ+1

li

)
=

(
tq

n∏
i=λ+1

li

)2λ−1

.

Then
n∏

λ=1

(lλ − 1) = v(t, q, n) < κ(t, q, n).

By the third remark, the representation of v leads to the conclusion: It
follows from

g ≡ 0 (m, aκ)
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that
g ≡ 0

(
m, (x1 − ξ1)l1 , . . . , (xn − ξn)ln

)
.

For brevity, set

di =
(
(xi − ξi)li , . . . , (xn − ξn)ln

)
for i = 1, . . . , n.

Thus it follows from
g ≡ 0 (m, aκ)

that
g ≡ 0 (m, d1).

5. Let


ξ1
1 . . . ξ1

n
...

ξp
1 . . . ξp

n

 be the zeros of the associated 0-dimensional prime

ideal of m. The roots of En(xn) belong to the row ξp
1 , . . . , ξp

n [9, §1.9].

The proof of the theorem can now be carried out by induction.
1. n = 1. m = (f(x)) is a principal ideal. Both formulations of the theorem

assert precisely the same thing, that every zero has transcendence degree 0, and
is therefore algebraic. Let

f(x) = (x− ξ1)c1 · · · (x− ξm)cm .

Then ξ1, . . . , ξm are the only zeros of m and

κ(1, q, 1) ≥ q ≥ max
i=1,...,m

ci.

Let
g ≡ 0

(
m, (x− ξi)κ

)
for i = 1, . . . ,m.

Then
g = hi1 + hi2(x− ξi)κ for i = 1, . . . ,m.

Therefore,

g ≡ 0
( n∏

i=1

(x− ξi)ci

)
,

i.e.
g ≡ 0 (m).

2. Assume the theorem is already proved for n = r − 1. Let n = r.
(a) Assume m is transformed. Now according to the hypotheses of the

second formulation of the theorem, let

g ≡ 0 (m, aκ)
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for every set of values ξ1, . . . , ξr. By the substitution xr = ξr, m is mapped to
m, g to g, a to a = (x1 − ξ1, . . . , xr−1 − ξr−1), and

g ≡ 0 (m, aκ).

By hypothesis, this congruence holds for every ξr lying in P. Therefore by
Lemma 3, it also holds if ξr is replaced by a transcendental element over P, e.g.
by xr, adjoined to P. But then g = g, and m is formed from m by adjoining
xr to P. The polynomials of m that are integral in xr form then the (r − 1)-th
fundamental ideal gr−1 of m because m is transformed. Therefore,

g ≡ 0
(
m, aκ(t,q,r)

)
.

Since κ(t, q, r) ≥ κ(t, q, r − 1), it follows that

g ≡ 0
(
m, aκ(t,q,r−1)

)
for every set of values ξ1, . . . , ξr−1. Since t is the number of basis elements in m
and q is an upper bound for its degree, it follows by hypothesis that

g ≡ 0 (m).

Since g is integral in xr,
g ≡ 0 (gr−1).

The same holds under the hypothesis of the first version of this theorem.
Let g ≡ 0 (m, oκ

i ) for i = 1, . . . ,m accordingly. By adjoining xr to the field
P, the zero-set ideals oi corresponding to the zeros of transcendence degree 0
map into the unit ideal o. The other zero-set ideals, in which ξr is a parameter
that can be set equal to xr, consist of ideals oi formed by deleting the last basis
element from oi. Since the zeros of gr−1 are formed by deleting the zeros of
transcendence degree 0 from m, these oi are the associated zero-set ideals of the
ideal m. As above, it follows therefore from

g ≡ 0 (m, oκ
i ) for i = 1, . . . ,m

that
g ≡ 0 (gr−1).

If m contains no 0-dimensional prime ideal, then gr−1 = m, so g ≡ 0 (m),
and the theorem is proved.

It may be assumed therefore that m has a 0-dimensional prime ideal with
zeros ξj

1, . . . , ξ
j
r , j = 1, . . . , p. Instead of entire sets of values, it suffices for the

additional proof of the second version of the theorem that we consider only
sets ξi1

1 , . . . , ξir
r , where i1, . . . , ir are any r identical or distinct numbers of the

sequence 1, . . . , p.
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Up to now, we have:
1. g ≡ 0 (gr−1). Thus Er(xr)g ≡ 0 (m), where the roots of Er(xr) belong

to the sequence ξ1
r , . . . , ξp

r . Since m is transformed, there exists, by reasons of
symmetry, polynomials Ei(xi), i = 1, . . . , r, such that Ei(xi)gr−1 ≡ 0 (m), so
Eig ≡ 0 (m). The roots of Ei(xi) belong to the sequence ξ1

i , . . . , ξp
i .

2. g ≡ 0 (m, d1). It will be shown that the divisibility of g by m follows
easily. Assume it has already been shown that

g ≡ 0 (m, dν),

i.e.
g ≡ 0 (m, (xν − ξiν

ν )lν , dν+1),

so
g ≡ h(x1, . . . , xr)(xν − ξiν

ν )lν (m, dν+1).

By 1,
Eν(xν)g ≡ 0 (m).

Therefore,
Eνh(xν − ξiν

ν )lν ≡ 0 (m, dν+1).

By the Corollary to Lemma 2, there exists a polynomial Kiν+1···ir (xν) such
that

Kiν+1···ir (xν)h ≡ 0 (m, dν+1)

and

[Kiν+1···ir (xν)] ≤ N

(
t, q, ν,

r∏
i=ν+1

li

)
= lν .

Both (xν −ξiν
ν )lν Eν(xν) and Kiν+1···ir (xν) have the property that their product

with h is divisible by (m, dν+1). Thus the same is true for their greatest common
divisor, whose roots are clearly all those which are also roots of both of these
polynomials, and which does not have higher degree than them. Thus for

Eiν iν+1···ir (xν) =
(
Kiν+1···ir (xν), Eν(xν)(xν − ξiν

ν )lν
)
,

1. Eiν ···ir (xν)h(x1, . . . , xr) ≡ 0 (m, dν+1).

2. [Eiν ···ir (xν)] ≤ lν , since the same is true for Kiν+1···ir (xν).

3. The roots of Eiν ···ir (xν) belong to the sequence ξ1
ν , . . . , ξp

ν , since the same
is true for Eν(xν)(xν − ξiν

ν )lν .

Let
Eiν ···ir (xν) = (xν − ξiν

ν )diν ···ir Diν ···ir (xν),

where ξiν
ν are not roots of Diν ···ir (xν) and

diν ···ir
≤ lν .
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Since all of the polynomials E1iν ···ir (xν), . . . , Epiν ···ir (xν) have only roots in the
sequence ξ1

ν , . . . , ξp
ν , the polynomials D1iν ···ir (xν), . . . , Dpiν ···ir (xν) are relatively

prime. Thus
d =

(
D1iν ···ir (xν), . . . , Dpiν ···ir (xν)

)
= o.

Now

Diν ···ir (xν)g ≡ (xν − ξiν
ν )lν h(x1, . . . , xr)Diν ···ir (xν)

= (xν − ξiν
ν )lν−diν ···ir Eiν ···ir (xν)h(x1, . . . , xr) ≡ 0 (m, dν+1).

This holds for iν = 1, . . . , p, so

dg ≡ 0 (m, dν+1).

Now since d = o contains the identity element,

g ≡ 0 (m, dν+1).

If we set ν to the values 1, . . . , r successively, then we obtain

g ≡ 0 (m).

Therefore, the second version of the theorem is proved for transformed ideals.
For the full proof of the first version, it suffices to show that

g ≡ 0 (m, oκ)

for every zero-set ideal of m implies

g ≡ 0 (m, aκ)

for every
a = (x1 − ξ1, . . . , xr − ξr).

Therefore, let
g ≡ 0 (m, oκ)

for every zero-set ideal of m, and ξ1, . . . , ξr be an arbitrary set of values with

a = (x1 − ξ1, . . . , xr − ξr).

It must be shown that g ≡ 0 (m, aκ). There are three cases to consider.

1. ξ1, . . . , ξr is not an algebraic zero of m. Then (m, aκ) = o, so clearly

g ≡ 0 (m, aκ).

2. ξ1, . . . , ξr is a zero of one of the associated 0-dimensional prime ideals of
m. Then a belongs to the set of zero set ideals, so again

g ≡ 0 (m, aκ).
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3. ξ1, . . . , ξr is an algebraic zero of m, but not a zero of an associated 0-
dimensional prime ideal of m.

Now (m, aκ) is a 0-dimensional prime ideal, so (m, aκ) ≡ 0 (a) because
m ≡ 0 (a). On the other hand aκ ≡ 0 (m, aκ). Therefore, all of the associated
prime ideals of (m, aκ) are divisors of the prime ideal a, and this itself is an
associated prime ideal of (m, aκ). However, as a 0-dimensional prime ideal, a
has no proper divisor except for o, so it is the only associated prime ideal of
(m, aκ). Therefore, (m, aκ) is a primary ideal and is associated to a. Now let t
be the least common multiple of the 0-dimensional primary ideals which appear
in a decomposition of m. Then

m = [gr−1, t].

By hypothesis
t 6≡ 0 (a).

Since a is a prime ideal,
tλ 6≡ 0 (a)

for all λ. Because (m, aκ) ≡ 0 (a), it follows that

tλ 6≡ 0 (m, aκ)

for all λ. On the other hand,

m = [gr−1, t] ≡ 0 (m, aκ),

so
gr−1t ≡ 0 (m, aκ).

Since (m, aκ) is a primary ideal it follows that

gr−1 ≡ 0 (m, aκ).

But as already proved in the inductive conclusion, it now follows by the
hypothesis g ≡ 0 (m, oκ

i ) for every zero-set ideal and by the assumption that the
theorem is already proved for r − 1 variables, that

g ≡ 0 (gr−1).

Therefore,
g ≡ 0 (m, aκ)

for every a. Since the second version of the theorem is already proved, it follows
that

g ≡ 0 (m).

The first version of the theorem is now proved for transformed ideals.
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2. Suppose m is not transformed. The theorem is true for the associated
transformed ideal m′ of m. The transcendental zeros of m map to those in m′

under the transformation. Thus the zero-set ideals oi map to zero-set ideals o′i
of m′. The polynomial g maps to g′. Let

g ≡ 0 (m, oκ
i ) for i = 1, . . . ,m.

Consequently,
g′ ≡ 0 (m′, o

′κ
i ) for i = 1, . . . ,m.

Therefore,
g′ ≡ 0 (m′).

Since g′ is transformed, it can be be inversely transformed:

g ≡ 0 (m).

The same is true if we consider the ideals a from the second version instead
of the oi, for then the algebraic zeros of the non-transformed ideals, as well as
those of the transformed ideals, map to each other under the transformation.
Both versions of the theorem are now completely proved. 2

§6. Fundamental Ideals

In the next paragraphs, the characteristic ideals and polynomials for an ideal
will be computed. This deals mainly with the formation of the fundamental ideal
as well as the norm and elementary divisor form. To do this, it will be necessary
to pass to the module M∗

%−1 defined in [9, §1.5] which consists precisely of the
polynomials of m whose degree in x1, . . . , x%−1 does not exceed a fixed degree
n%−1 when viewed as linear forms in the power products of x1, . . . , x%−1. The
computation of the number n%−1 is given in Theorem 6.

Theorem 6. Hypothesis: Let m be a transformed ideal in P[x1, . . . , xn] =
P(u11, . . . , unn)[x1, . . . , xn] and q the maximal degree of the given basis of m.
Claim: For the set of residue classes g%/m, there are residue class representatives
which do not exceed a fixed degree n% in the power products of x1, . . . , x%, where
n% is given by the recursive formula

n0 = 0; n% = n%−1 +
[
1 +

(
n%−1 + %− 1

%− 1

)] n−1∑
i=0

q2i

.

Proof (by induction). 1. % = 0. The theorem places absolutely no restric-
tions on the representatives of the set of residue classes, so this is clear.

2. Assume the theorem is already proved for % = 0, . . . , λ− 1.
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(a) Assume that P has infinitely many elements. Let

m = (fλ−1,1, . . . , fλ−1,tλ−1)

be the (λ− 1)-th canonical ideal basis for m which exists and is computable by

Theorem 4, and whose basis elements do not exceed the degree q =
n−1∑
i=0

q2i

by

Theorem 4. For simplicity, the index λ − 1 in this basis will be omitted in the
proof that follows. Thus we write

m = (f1, . . . , ftλ−1).

Let zσ, σ = 1, . . . , s, be the power products of x1, . . . , xλ−1 whose degrees do

not exceed nλ−1. Hence s =
(

nλ−1 + λ− 1
λ− 1

)
. Let ζµκ

, µκ = 1, . . . ,mκ, be

the power products of x1, . . . , xλ−1 whose degrees do not exceed nλ−1 − [f ]λ−1.
Hence mκ ≤ s.

Let M∗
λ−1 =

(
f1, . . . , ftλ−1 , ζ1f1, . . . , ζmtλ−1

ftλ−1

)
= (l1, . . . , lt). Then t <

tλ−1s, and M∗
λ−1 can be viewed as a module of linear forms in the zσ with

coefficients in P[xλ, . . . , xn]. Since it is formed from the canonical ideal basis
defined in Theorem 4, it consists precisely of those elements of m whose degree
does not exceed nλ−1.

The methods of Theorem 3 will be applied to the module M∗
λ−1, so the

existence of a regular determinant of the rank of the module must be verified.
Since P has infinitely many elements, the transformation x = V (y)

x1 = y1

...
xλ−1 = yλ−1

xλ = vλλyλ + . . . + vλnyn

...
xn = vnλyλ + . . . + vnnyn

maps M∗
λ−1 to a module M∗′

λ−1 which has a regular determinant in yλ, where vij

are elements of P and V has a nonzero determinant. Since the transformation
leaves the zσ unchanged, that is nothing changes in the construction of the
module, M∗′

λ−1 can also be formed by first applying the transformation x = V (y)
and then constructing the module in the way indicated. m is transformed, hence
is formed from an ideal m in P[x1, . . . , xn] under the transformation x = U(x)
and the adjoining of the elements uij of U to the field P. m maps to m′ under
x = V (y). Now x = UV (y) = W (y). The elements wij of the matrix W are
therefore linear combinations of the uij with coefficients in P. Furthermore,
since V has a nonzero determinant, U = WV −1, so conversely, the elements
of U can be expressed as linear combinations of the wij with coefficients in P.
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Like the uij , the wij are also indeterminates, and the fields P(uij) and P(wij)
are identical. Thus the correspondence uij ∼ wij and xk ∼ yk establishes an
isomorphism between m and m′ as well as between M∗

λ−1 and M∗′
λ−1, since both

of these modules are formed from isomorphic ideals in entirely analogous ways.
Since the existence of the regular determinant for M∗′

λ−1 was verified, it is also
true therefore for M∗

λ−1.
Let

l1 = f11z1 + . . . + f1szs

...
lt = ft1z1 + . . . + ftszs.

Let p ≤ s be the rank of M∗
λ−1. The polynomials Di1···ip

, specifically D1···p = D,
Fij and mi are defined relative to M∗

λ−1 exactly as in Theorem 3. This is possible
since M∗

λ−1 has a regular determinant.
Now let

k ≡ 0 (gλ).

Then since m is transformed, there exists only one polynomial K(λ+1) 6= 0
dependent on xλ+1, . . . , xn such that

K(λ+1)k ≡ 0 (m).

Furthermore since yλ ≡ 0 (gλ),

k ≡ 0 (gλ−1).

Then by hypothesis,
k ≡ g (m),

so
K(λ+1)g ≡ 0 (m),

where
[g]λ−1 ≤ nλ−1.

Thus [
K(λ+1)g

]
λ−1

≤ nλ−1,

so therefore
K(λ+1)g ≡ 0 (M∗

λ−1).

As in Theorem 3, we set

g = g
(λ)
1 z1 + . . . + g(λ)

s zs

g
(λ)
i = G

(λ)
i + Dj

(λ)
i for i = 1, . . . , p,

so that [
G

(λ)
i

]
λ

< [D]λ = [D] for i = 1, . . . , p
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and [
j
(λ)
i

]
< [g] for i = 1, . . . , p.

Then as in Theorem 3,

g = G +
p∑

i=1

mij
(λ)
i

G = G
(λ)
1 z1 + . . . + G(λ)

p zp + G
(λ)
p+1zp+1 + . . . + G(λ)

s zs.

Since K(λ+1) is independent of xλ, we obtain the corresponding factorizations
of K(λ+1)g by multiplying g, g

(λ)
i , G

(λ)
i and j

(λ)
i by K(λ+1) in these equations

and inequalities. So it remains that[
K(λ+1)G

(λ)
i

]
λ

< [D].

Because g ≡ G (M∗
λ−1),

K(λ+1)G ≡ 0 (M∗
λ−1),

i.e.
K(λ+1)G = a1l1 + . . . + atlt
K(λ+1)Gi = a1fi1 + . . . + atfit

Here, as in Theorem 3, we can set

[ai]λ ≤ [D] for i = 1, . . . , p,

and can easily show,14 as we did there, that

[ai]λ ≤ qp for i = 1, . . . , t,

i.e.

[ai]λ < q

(
nλ−1 + λ− 1

λ− 1

)
for i = 1, . . . , t.

Hence it follows that

[Gi]λ ≤ q + q

(
nλ−1 + λ− 1

λ− 1

)
for i = 1, . . . , t,

[G]λ ≤ nλ−1 + q

[
1 +

(
nλ−1 + λ− 1

λ− 1

)]
= nλ.

Moreover, since k ≡ g (m) and g ≡ G (m),

k ≡ G (m)
14In Theorem 3, the number t of basis elements of the module is used instead of p. But

we only needed this number to be no smaller than the rank of the module. Hence the rank p
does the same thing in this inequality.
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as well. Therefore, G is a representative of the residue class k in gλ/m that is
bounded in x1, . . . , xλ.

(b) Suppose P contains only finitely many elements. Let s be transcen-
dental over P. Then clearly P(s) contains infinitely many elements. Let m′ be
the ideal in P(u11, . . . , unn, s)[x1, . . . , xn], whose basis coincides with that of m.
The theorem holds for m′ by (a). Then the %-th fundamental ideal g′% of m′ is
the ideal formed by adjoining s in g% to the %-th fundamental ideal of m.15

Let g ≡ 0 (g%). Then g ≡ 0 (g′%) as well, so there exists k′(s) such that

g ≡ k′ (m′) and [k′]% ≤ n%.

Therefore,
g = k′ + c′1f1 + . . . + c′tft.

By multiplying by a polynomial κ(s) in P(u11, . . . , unn)[s], this equation can be
made integral in s. Hence, without loss of generality, we may assume that the
identity E of P is the smallest coefficient in κ(s) appearing in κ(s). If we split
up the equation

κg = k
′′

+ c
′′

1f1 + . . . + c
′′

t ft

by powers of s and set the coefficients of the lowest power appearing in κ(s)
equal, then we obtain on the right and left

g = k + c1f1 + . . . + ctft.

Thus k, c1, . . . , ct are the corresponding coefficients of k
′′
, c

′′

1 , . . . , c
′′

t . Therefore

g ≡ k (m) and [k]% ≤ n%. 2

Lemma 4. Hypothesis: Let M be a module of linear forms in z1, . . . , zs with
coefficients in P[x%, . . . , n]. Let G be the corresponding fundamental module.
Let M′ and G′ be modules of linear forms in z1, . . . , zs with coefficients in
P[x%](x%+1, . . . , n), whose basis elements coincide with those of M and G, re-
spectively.
Claim: G′ is the fundamental module of M′.

Proof. Let c′g′(z) ≡ 0 (M′), where c′ 6= 0 is an element of P[x%](x%+1, . . . , n)
and g′(z) is a linear form in z1, . . . , zs with coefficients in P[x%](x%+1, . . . , n).
Then there exists a polynomial d(%+1) 6= 0 in P[x%+1, . . . , n] such that

d(%+1)c′g′(z) ≡ 0 (M),

and
d(%+1) = e(%+1)f (%+1),

15See §1.4: Adjoining indeterminates to the field does not change the property of an ideal
being a fundamental ideal of another.
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where
e(%+1)c′ = c and f (%+1)g′(z) = g(z)

are integral in x%+1, . . . , xn. Therefore,

cg(z) ≡ 0 (M) c 6= 0,

so
g(z) ≡ 0 (G).

Hence

g′(z) =
g(z)

f (%+1)
≡ 0 (G′).

Thus the fundamental ideal of M′ is divisible by G′. On the other hand,

g′(z) ≡ 0 (G′),

so there exists a polynomial f (%+1) 6= 0 such that

f (%+1)g′ = g ≡ 0 (G).

Thus there exists a c in P[x%, . . . , xn] such that

cg ≡ 0 (M)

and consequently
cg′ ≡ 0 (M′).

Therefore, g′, and hence G′ as well, are divisible by the fundamental module of
M′. So G′ is the fundamental ideal of M′. 2

Corollary to Theorem 6. g% has a basis mod m consisting of elements whose
degree in x1, . . . , x% does not exceed n%. Now since the degree in x1, . . . , x% of
the basis elements of m does not exceed q already, and since n% ≥ q for % > 0,
g% has a basis for % > 0 consisting of elements whose degree in x1, . . . , x% does
not exceed n%.

As noted in the proof of Theorem 6, the module M∗
% consists of all elements of

m whose degree in x1, . . . , x% does not exceed n%. We now stipulate accordingly:

Definition.

1. Let G∗
% be the module of linear forms in the power products zσ of x1, . . . , x%

consisting of all elements of g% whose degree in x1, . . . , x% does not exceed
n%. Then by the Corollary to Theorem 6, G∗

% contains a basis of g%.

2. Let M% and G% be modules of linear forms in the power products zσ of
x1, . . . , x% consisting of all elements contained in m and g%. So infinitely
many zσ appear in M% and G%, even though each individual linear form
contains only finitely many zσ.
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For what follows, assume m, and hence g% as well, are transformed [§1.4].
Then clearly G% is the fundamental ideal of M. For the modules M∗

%−1, G∗
%−1,

M%−1, and G%−1, we have:

Theorem 7.

1. G∗
%−1 is the fundamental ideal of M∗

%−1.

2. The set of residue classes G∗
%−1/M∗

%−1 of G∗
%−1 modulo M∗

%−1 is isomorphic
to that of G%−1 modulo M%−1. Notationally,

G∗
%−1/M∗

%−1 ∼ G%−1/M%−1.

3. M%−1 has only finitely many elementary divisors not equal to the identity
E, namely those in M∗

%−1.

Proof. 1. Let G
∗
%−1 be the fundamental ideal of M∗

%−1. Let g ≡ 0 (G∗
%−1).

Then g ≡ 0 (g%−1) and [g]%−1 ≤ n%−1. Consequently, there exists a polynomial
f (%) 6= 0 such that f (%)g ≡ 0 (m). [f (%)g]%−1 ≤ n%−1, so f (%)g ≡ 0 (M∗

%−1), and
hence g ≡ 0 (G

∗
%−1).

On the other hand, if g ≡ 0 (G∗
%−1), then there exists a f (%) 6= 0 such that

f (%)g ≡ 0 (M∗
%−1). Hence, [f (%)g]%−1 ≤ n%−1, so [g]%−1 ≤ n%−1 also. Moreover,

g ≡ 0 (g%−1). Therefore, g ≡ 0 (G∗
%−1), and thus

G∗
%−1 = G

∗
%−1.

2. Let {g} be a residue class of G%−1/M%−1. By Theorem 6, g may be
chosen so that [g]%−1 ≤ n%−1, hence g ≡ 0 (G∗

%−1). Therefore,

G%−1/M%−1 ∼ G∗
%−1/M%−1.

Now let {g} be the residue class of zero in G∗
%−1/M%−1, i.e.

g ≡ 0 (G∗
%−1) and g ≡ 0 (M%−1),

so
[g]%−1 ≤ n%−1 and g ≡ 0 (m).

Hence it follows that
g ≡ 0 (M∗

%−1).

Thus {g} is also the residue class of zero in G∗
%−1/M∗

%−1. On the other hand,
if {g} is the residue class of zero in G∗

%−1/M∗
%−1, then since M∗

%−1 ≡ 0 (M%−1),
the residue class {g} is also the residue class of zero in G∗

%−1/M∗
%−1.Therefore,

G∗
%−1/M%−1 ∼ G∗

%−1/M∗
%−1.
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So then
G%−1/M%−1 ∼ G∗

%−1/M∗
%−1.

3. For the proof of the third claim, let x%+1, . . . , xn be adjoined to the un-
derlying field. By Lemma 4, the property of G∗

%−1 and G%−1 being fundamental
modules of M∗

%−1 and M%−1, respectively, remains valid. Therefore, the coef-
ficient domain of these modules is now the ring P[x%](x%+1, . . . , xn), in which
every ideal is a principal ideal. The modules can then be viewed as generalized
abelian groups under addition whose operator domain is the coefficient ring of
the module. The theorem on the unique representation up to isomorphism of
an abelian group of finite order as a direct sum of finitely many cyclic groups,
whose orders are divisible by each other, is also valid here, since for its proof, we
need only assume that every ideal in the operator domain is a principal ideal.
The order of a group Γ is defined here as an element a of the operator domain
such that aΓ vanishes, and that a is the greatest common divisor of all elements
having this property.

Now there exists a representation

M∗
%−1 = (e1η1, . . . , erηr) G∗

%−1 = (η1, . . . , ηr)
M%−1 = (e′1η

′
1, . . . , e

′
r′η

′
r′ , ζ1, . . .) G%−1 = (η′1, . . . , η

′
r′ , ζ1, . . .) [9, §1.5]

where
e1 6= E, . . . , es 6= E, es+1 = . . . = er = E,
e′1 6= E, . . . , e′s′ 6= E, e′s′+1 = . . . = e′r′ = E,

E is the identity of the field, and ηi, η′j , and ζk are linearly independent from
each other. Group theoretically, it follows then that

G∗
%−1/M∗

%−1 = {η1}+ . . . + {ηs} G%−1/M%−1 = {η′1}+ . . . + {η′s′}.

These sums are direct, {ηi} and {η′j} are cyclic groups of order ei and e′j .
Since this representation is unique up to isomorphism and since G∗

%−1/M∗
%−1 ∼

G%−1/M%−1, it follows that r = r′ and ei = e′i. Therefore, the elementary
divisors of M∗

%−1 and M%−1 not equal to the identity E coincide. 2

Theorem 8. The basis of the %-th fundamental ideal g% of m = (f1, . . . , ft) can
be computed in finitely many steps.

Proof (by induction). 1. % = n. Then g% = m = (f1, . . . , ft).
2. Assume the theorem is already proved for % ≥ λ. Let % = λ − 1. The

proof is composed of two parts.
(a) Module computations.
In these paragraphs, define M∗

λ−1 and G∗
λ−1 to be the modules of linear

forms in the power products z of x1, . . . , xλ−1 with coefficients in P[xλ, . . . , xn].
As shown in Theorem 6, a basis for M∗

λ−1 can be computed in finitely many
steps. Let M∗′

λ−1 and G∗′
λ−1 be the modules of linear forms in the power products

z in with coefficients in P[xλ](xλ+1, . . . , xn), which have the same basis as M∗
λ−1
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and G∗
λ−1, respectively. Thus they are formed by adjoining xλ+1, . . . , xn to the

field P. By Theorem 7.1 and Lemma 4, G∗′
λ−1 is the fundamental ideal of M∗′

λ−1.
We first consider the computation of a basis for G∗′

λ−1.
Let A be the matrix of the computed module basis of M∗′

λ−1. Let p be
the rank of this module. Then by elementary divisor theory, there exists two
matrices R and S of rank t, which have a nonzero t-row determinant independent
of xλ, such that

RAS =


eλ−1,1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 eλ−1,p

 .

R and S can be computed in finitely many steps (e.g. using Bôcher’s method [1,
Chap. 20]). If we set l′ = R(l), then the l′ form a new basis for M∗′

λ−1, since, due
to the nonzero t-row determinant of R independent of xλ, the transformation is
invertible. This new module basis has the matrix RA. Moreover, if we transform
the variables zσ of the linear forms by S, that is set z = S(z′), then the matrix
of M∗′

λ−1 achieves the form RAS, i.e.

M∗′
λ−1 = (eλ−1,1 z′1, . . . , eλ−1,p z′p).

Thus we obtain immediately a basis of the corresponding fundamental ideal

G∗′
λ−1 = (z′1, . . . , z

′
p).

By back-substitution of the transformation, which is permitted because S has
a nonzero determinant independent of xλ, we obtain a basis for G∗′

λ−1 in the
primal variable z

G∗′
λ−1 = (k1, . . . , kp),

where the ki can be viewed as linear forms in the z’s with coefficients in
P[xλ, . . . , xn].

(b) Computation of gλ−1 in G∗′
λ−1.

Since G∗′
λ−1 and G∗

λ−1 were formed by adjoining xλ−1, . . . , xn, the linear
forms in G∗′

λ−1, whose coefficients belong to P[xλ, . . . , xn], are divisible by the
λ-th fundamental ideal of gλ−1, which is identical to gλ−1. Thus they consist of
all g for which

1. g ≡ 0 (gλ−1) 2. [g] ≤ nλ−1.

Therefore, ki ≡ 0 (gλ−1) and [ki] ≤ nλ−1, where ki may still be assumed to be
integral in the transformation coefficients. Let

|U |γki = Upki1 + . . . + Unkin,
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where the Uj are power products of the transformation coefficients uµν , while
the kij will be independent of the uµν after the inverse transformation. Since
gλ−1 is transformed, kij ≡ 0 (gλ−1) and [kij ] ≤ nλ−1. Therefore,

(k11, . . . , kpn) ≡ 0 (G∗′
λ−1).

On the other hand,
(G∗′

λ−1) ≡ 0 (k11, . . . , kpn),

so
(G∗′

λ−1) = (k11, . . . , kpn).

Now we again set the power products x1, . . . , xλ−1 equal to the zσ and view
t = (k11, . . . , kpn) as the ideal in P[x1, . . . , xn] which is transformed after con-
struction of its basis.

Let
g ≡ 0 (gλ−1).

Since by the Corollary to Theorem 6, G∗
λ−1, and hence (G∗′

λ−1) as well, already
contains a basis for gλ−1, there exists a(λ+1) 6= 0 such that

a(λ+1)g ≡ 0 (t).

Conversely, if
a(λ+1)g ≡ 0 (t),

then
g ≡ 0 (gλ−1).

This means therefore that since t is transformed, gλ−1 is the λ-th fundamental
ideal of t. Now by hypothesis, the λ-th fundamental ideal can be computed in
finitely many steps. Therefore, gλ−1, and hence every fundamental ideal of m
as well, can be computed in finitely many steps. 2

Corollary to Theorem 8. Set

E
(%)
%−1 = e%−1,p, R

(%)
%−1 =

p∏
i=1

e%−1,i.

Without loss of generality, we may assume that E
(%)
%−1 and R

(%)
%−1 are integral and

primitive16 in x%−1, . . . , xn. Then

E =
n∏

i=1

E
(%)
%−1

16Translator’s Note: The coefficients are relatively prime.
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is the elementary divisor form of m and

R =
n∏

i=1

R
(%)
%−1

is the norm of m.

These are both important polynomials to recover for characterizing ideals
by their zeros.

By [9, Theorem 11], the norm of m can be factored

R =
∏
i,v

(xi − t1iy1v − . . .− tniynv)δ

=
∏
i,v

[t1i(y1 − y1v) + . . . + tni(yn − ynv)]δ ,

where the tij denote coefficients of the inverse transformation U−1, and the
y1v, . . . , ynv run through a complete zero-set of the non-transformed ideal m
that is independent of the tij . By §2, the above factorization of the norm, and
hence the computation of the complete set of zeros, can be carried out in finitely
many steps.

§7. Prime Ideals

Although the methods up to now, with the exception of the factoring of polyno-
mials in §2, have required absolutely no consideration of the special properties
of the original field, whether the field is perfect or imperfect is essential for com-
puting the associated prime ideals of m. The reason for this lies in the theorems
cited in §1.5, by which we can conclude from the fact that if the original field is
perfect then the elementary divisor form is a prime function, that the ideal is
prime, whereas this conclusion is not permissible in imperfect fields. Now since
by previous computations, the elementary divisor forms of the desired prime
ideals are known to be prime factors of the norm [9, Theorem 10], but we know
nothing else about these prime ideals, the computation of their basis must orig-
inate from their elementary divisor form, and here a distinction will be made in
the computation of prime ideals between perfect and imperfect fields. Theorem
9 gives the methods which will be applied in both cases. For perfect fields, this
takes care of everything, but for imperfect fields, one further calculation that is
given in Theorem 10 will be necessary. Theorem 11 then ties both together and
applies the discovered methods to specific prime ideals of the given ideal.

Theorem 9. Hypothesis: Let the prime function P (%) be the elementary divisor
form of the transformed prime ideal p of dimension n − % in P[x1, . . . , xn] =
P(u)[x1, . . . , xn]. Let P be the polynomial obtained by the inverse transformation
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x = U−1(y) and multiplication by |U |γ = |uµν |γ , which is integral in the uµν .
Let

P =
l∑

λ=1

UλPλ,

where Uλ are power products of the transformation coefficients uµν and the Pλ

are elements of P[y1, . . . , yn]. Then

r = (P1, . . . , Pl)

is an ideal in P[y1, . . . , yn]. Let r be its transformed ideal resulting from the
transformation, and p′ the %-th fundamental ideal of r.
Claim: p = p′ if P is a perfect field. Otherwise, p′ is only an associated primary
ideal of p.

Proof. Since P (%) ≡ 0 (r), the 1st to (%− 1)-th fundamental ideal of r are equal
to the unit ideal o. The same is true for p′ because r ≡ 0(p′). But since p′

is the %-th fundamental ideal of r, it is identical to its %-th fundamental ideal.
Therefore, only one of the highest level elementary divisors of p′ is not the
identity, and all of the associated prime ideals of p′ have dimension n− %.

Now since P (%) ≡ 0 (p′), P (%) is a multiple of the elementary divisor form of
p′, which is either P (%) or the identity E because P (%) is a prime function.

Suppose the elementary divisor form of p′ were E. Then p′ = o;, i.e. there
exists a polynomial

G(%+1) 6= 0

such that
G(%+1) ≡ 0 (r).

By definition of r, it follows clearly from P (%) ≡ 0 (p) that r ≡ 0 (p), where p
is the associated non-transformed ideal of p. Thus, r ≡ 0 (p) as well. Therefore,

G(%+1) ≡ 0 (p).

Thus p would have dimension at most n − % − 1, contradicting the hypothesis.
Hence the assumption was false and P (%) is the elementary divisor form of p′.

Now if P is a perfect field, then by [9, Theorem 13], p′ is a prime ideal
whose elementary divisor form coincides with p. Since the zeros of the ideal are
determined from the elementary divisor form, both prime ideals have the same
zeros, so they are identical. If P is imperfect, then we can conclude that p′ is a
primary ideal. Since p′ has the same zeros as p, p is the associated prime ideal
of p′. 2

Example. The example at the end of [9, §6] shows that p′ can be a proper
primary ideal in the case of imperfect fields.

Let P be the residue class field mod 2, to which the indeterminate λ is
adjoined. n = 2. Let p = (y2

1 + λ, y1 + y2) be the non-transformed ideal.
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Then p = ((u11x1 + u12x2)2 + λ, x1(u11 + u21) + x2(u12 + u22)). The resulting
elementary divisor form is

P (2) = x2
2 + λ(t212 + t222),

where tij are the coefficients of the inverse transformation U−1. Since n = 2,
ideals which have P (2) as the first elementary divisor not equal to the identity
have P (2) as the only elementary divisor. Since P (2) is a prime function, these
ideals are primary ideals. Thus in the notation of Theorem 9, r = p′. Using
x = U−1y, we obtain from P (2)

P = t212(y
2
1 + λ) + t222(y

2
2 + λ).

Therefore using y = U(x), p′ corresponds to the ideal

(y2
1 + λ, y2

2 + λ) =
(
y2
1 + λ, (y1 + y2)2

)
.

But this is easily seen to be a proper, associated primary ideal of p, since it
contains (y1 + y2)2, but not (y1 + y2). Of course, the corresponding result holds
for the transformed ideal.

Now to prove Theorem 10, two lemmas are necessary.

Lemma 5. Hypothesis: Suppose q is an ideal in R = P[x1, . . . , xn], where
xi is algebraic or transcendental over P[x1, . . . , xi−1]. Let q′ be the ideal in
P(xn)[x1, . . . , xi−1] whose basis elements agree with those of q. The elements
of P[x1, . . . , xn] belonging to q′ are divisible by q. Then q and q′ are uniquely
determined from each other.
Claim: If q is a prime or primary ideal, then so is q′, and conversely.

Proof.
1. Suppose q is a primary ideal.
Suppose a′b′ ≡ 0 (q′), but b

′κ 6≡ 0 (q′) for every κ. Then there exist polyno-
mials f(xn) and g(xn) such that

fa′ ≡ 0 (P[x1, . . . , xn]) and gb′ ≡ 0 (P[x1, . . . , xn]).

Thus
fa′gb′ ≡ 0 (q).

But since it follows directly from

gκb
′κ ≡ 0 (q)

that b
′κ ≡ 0 (q′),

(gb′)κ 6≡ 0 (q)

for every κ. Since q is primary, it follows that

fa′ ≡ 0 (q),
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and thereby
a′ ≡ 0 (q′),

i.e. q′ is primary.
2. Suppose q′ is a primary ideal.
It follows from

ab ≡ 0 (q) bκ 6≡ 0 (q)

for every κ that
ab ≡ 0 (q′) bκ 6≡ 0 (q′)

for every κ. Thus by hypothesis,

a ≡ 0 (q′),

and hence
a ≡ 0 (q)

as well, i.e. q is a primary ideal.
If we set κ equal to 1 in this proof, we obtain: if q is a prime ideal, then so

is q′, and conversely. 2

Lemma 6. Hypothesis: Let q be an ideal in P[x1, . . . , xn], where xi, i = 1, . . . , n,
are transcendental over P[x1, . . . , xi−1]. Let P (n)(xn) be a prime function such
that

P (n)(xn) ≡ 0 (q).

Let ξn be algebraic over P, and in particular, let

P (n)(ξn) = 0.

Then P[x1, . . . , xn, ξn] is a ring without zero divisors. Let q′ be the ideal in
P[x1, . . . , xn, ξn] whose basis elements are formed from those of q by substituting
ξn for xn. Then conversely, the basis elements of q are formed from those of q′

by substituting xn for ξn and adding P (n)(xn) to the basis.
Claim: If q is a prime or primary ideal, then so is q′, and conversely.

Proof. The proof is carried out exactly like the proof of Lemma 5. However, it
results from the following additional consideration: q is prime or primary if and
only if the same is true for the ring o/q, i.e. if it has no zero divisors, or if a
power of every zero divisor vanishes, respectively. The substitution of ξn for xn

means passage to the residue class mod
(
P (n)(xn)

)
. Therefore

o

/ (
P (n)(xn)

)
= o′ q

/ (
P (n)(xn)

)
= q′.

Now it is known that o/q and o′/q′ are isomorphic. (Both residue classes of zero
contain the same elements when reduced by elements in o.) Therefore, if o/q is
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prime or primary, then so is o′/q′, i.e. if q is a prime or primary ideal, then so
is q′, and conversely. 2

Theorem 10. Hypothesis: Let q be a prime ideal in P[x1, . . . , xn] whose ele-
mentary divisor form is a prime function P (%). Thus q is a prime ideal if P is
perfect.
Claim: A basis of the associated prime ideals p of q can be computed in finitely
many steps.

Proof (by induction). 1. n = 1. q is a principal ideal, q = (Q). It follows
from P (%) ≡ 0 (q) that P (%) ≡ 0 (Q). Then since P (%) is a prime function,
either Q = P (%) or Q = E. But Q 6= E, since otherwise q = o, contradicting
the hypothesis that P (%) 6= E is the elementary divisor form. Thus q =

(
P (%)

)
.

Therefore, since P (%) is a prime function, q is also a prime ideal.
2. Assume the theorem is already proved for n = r − 1. Let n = r. As

shown in §1, it suffices to prove the theorem for transformed ideals, because the
unique calculation of prime ideals for non-transformed ideals is given with it.
So in what follows, let q be transformed.

(a) Suppose q has dimension greater than 0. % 6= r. Let q′ be the ideal
in P(xr)[x1, . . . , xr−1] formed by adjoining xr to q. Then the polynomials in
q′ belonging to P[x1, . . . , xr] form the (r − 1)-th fundamental ideal of q, which
coincides with q since q has dimension at least 1. By Lemma 5, q′ is a prime ideal
in P(xr)[x1, . . . , xr−1]. Since the zeros of q agree with those of q′, the elementary
divisor form of q′ is a primary function corresponding to P (%), which is identical
to P (%) because P (%) ≡ 0 (q′). Then by hypothesis, the basis elements of
the associated prime ideals of q can be computed in finitely many steps. Let
p′ = (p1, . . . , pv), where the pi, i = 1, . . . , v, may be assumed to be elements of
P[x1, . . . , xr].

p contains precisely the polynomials in p′ belonging to P[x1, . . . , xr]. By
Lemma 5, p is a prime ideal. It follows from

q′ ≡ 0 (p′) and p
′κ ≡ 0 (p′)

that
q ≡ 0 (p) and pκ ≡ 0 (p).

Then divisibility remains unchanged when xr is adjoined, and if the ideal t
consists of all polynomials of p

′κ lying in P[x1, . . . , xr], then certainly pκ ≡ 0 (t)
since every polynomial divisible by p is also divisible by p′.

Thus p is the associated prime ideal of q, so p is transformed. Now a ba-
sis for p can be computed from the basis elements of p′. If p ≡ 0 (p), and
|U |γp = U1p1 + . . .+Uµpµ is a decomposition of p into transformed components
pi such that the Ui are power products of the transformation coefficients and
the pi will be independent of these after the inverse transformation, then since
p is transformed, pi ≡ 0 (p), and hence pi ≡ 0 (p′) as well. Then the basis ele-
ments (p1, . . . , pv) of p′ can be chosen so that they will be independent from the

48



transformation coefficients after the inverse transformation. Thus (p1, . . . , pv) is
a transformed ideal in P[x1, . . . , xr] consisting of all polynomials in p′ belonging
to P[x1, . . . , xr]. Thus the elements of p form the (r − 1)-th fundamental ideal
of (p1, . . . , pv), which can be computed in finitely many steps by Theorem 8.

(b) Suppose q has dimension 0. Then the prime function P (r)(xr) is a
function of xr alone. Let ξr be an element algebraically dependent on P by the
equation P (r)(ξr) = 0. Let q′ be the ideal in P[x1, . . . , xr−1, ξr] formed from q
by passing to the set of residue classes modulo P (r)(xr), in which ξr and xr are
interchanged in q. By Lemma 6, q′ is a primary ideal. By adjoining ξr to the
field P, q′ is mapped to an ideal q′′. The set of all polynomials in q′′ which are
integral in ξr is divisible by q′. In particular, if

g(x1, . . . , xr−1, ξr) ≡ 0 (q′′),

then it follows that

F (ξr)g(x1, . . . , xr−1, ξr) ≡ 0 (q′),

where
F (ξr) 6= 0.

Hence it follows that

F (xr)g(x1, . . . , xr−1, xr) ≡ 0 (q)

and
F (xr) 6≡ 0

(
P (r)(xr)

)
.

Since P (r)(xr) is a prime function, it follows that Fκ(xr) 6≡ 0
(
P (r)(xr)

)
for

every κ. Since P (r)(xr) is, as the elementary divisor form of q, the great-
est common divisor of all polynomials in q dependent only on xr, it follows
that Fκ(xr) 6≡ 0 (q) for every κ. Thus g(x1, . . . , xr−1, xr) ≡ 0 (q), and hence
g(x1, . . . , xr−1, ξr) ≡ 0 (q′) as well. Thus by Lemma 5, q′′ is a primary ideal.

The elementary divisor form of q′′ is a power of a prime function, and in fact
not always the first power. By Theorem 1, the corresponding prime function can
be computed in finitely many steps, and by Theorem 9, we can find the basis of
a primary ideal q′′′ whose elementary divisor form is this prime function, which
therefore belongs to the same prime ideal as q′′. By hypothesis, the associated
prime ideal p′′ of q′′′ , and hence of q′′, can be computed in finitely many steps.

Let p′′ = (p1(x1, . . . , xr−1, ξr), . . . , pv(x1, . . . , xr−1, ξr)). Without loss of gen-
erality, the pi can be assumed to be integral in ξr. Let

|U |γipi(x1, . . . , xr−1, xr) = U1pi1(x1, . . . , xr) + . . . + Uµpiµ(x1, . . . , xr)
|U |γP (r)(xr) = U1P1(x1, . . . , xr) + . . . + UµPµ(x1, . . . , xr)

be the decomposition of these polynomials into transformed components. Let
p′ = (p11(x1, . . . , xr), . . . , pvµ(x1, . . . , xr), P1(x1, . . . , xr), . . . , Pµ(x1, . . . , xr)) be
an ideal in P[x1, . . . , xr]. By construction, p′ is clearly a transformed ideal. We
must still show that p′ is the desired associated prime ideal p of q. In particular:
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1. p′ ≡ 0 (p), for it follows from

pi(x1, . . . , xr−1, ξr) ≡ 0 (p′′)

that
pκ

i (x1, . . . , xr−1, ξr) ≡ 0 (q′′).

By what was proved about q′′, it follows from

pκ
i (x1, . . . , xr−1, xr) ≡ 0 (q)

that
pi(x1, . . . , xr−1, xr) ≡ 0 (p).

Furthermore, since P (r)(xr) ≡ 0 (p), and since as a transformed ideal, p
contains a polynomial and also its transformed components, p ≡ 0 (p′).

2. p′ is a primary ideal. Indeed, since p′ is transformed, it follows from
P (r)(xr) ≡ 0 (p′) that p′ has dimension at most 0, and from p 6= o and
p′ ≡ 0 (p) that it has dimension exactly equal to 0. So since P (r)(xr) is a
prime function, it is the elementary divisor form of p′. Thus p′ is a primary
ideal, and P (r)(xr) is the greatest common divisor of all polynomials in p′

dependent only on xr.

3. p ≡ 0 (p′). In particular, suppose p(x1, . . . , xr−1, xr) ≡ 0 (p). Then either
p(x1, . . . , xr−1, xr) ≡ 0

(
P (r)(xr)

)
, so then clearly pi(x1, . . . , xr−1, xr) ≡

0 (p′); or p(x1, . . . , xr−1, xr) 6≡ 0
(
P (r)(xr)

)
, so p(x1, . . . , xr−1, ξr) ≡

0 (p′′). But then there exists an F (xr) such that F (x)p(x1, . . . , xr−1, xr) ≡
0 (p′) and F (xr) 6≡ 0

(
P (r)(xr)

)
. Therefore, Fκ(xr) 6≡ 0 (P (r)(xr)) for

every κ, and as remarked in 2, P (r)(xr) 6≡ 0 (p′) for every κ. Since p′ is
a primary ideal, it follows that p(x1, . . . , xr−1, xr) ≡ 0 (p′), and therefore
p ≡ 0 (p′).

1 and 3 yield p = p′. Therefore, since the basis of p′ is known, so is the basis
of p. 2

Theorem 11. The associated prime ideals of an ideal m can be computed in
finitely many steps.

Proof. By [9, Theorem 10], the elementary divisor forms of the associated prime
ideals of m are the prime functions which belong to the primary factors of the
individual norms R(i) of m. Theorem 8 permits the computation of the R(i) in
finitely many steps and §2 gives methods for calculating the corresponding prime
factors. By Theorem 9, an ideal can be computed for each such prime function,
which is an associated prime ideal of m in perfect fields, and is, at the very
least, an associated primary ideal of this prime ideal in imperfect fields, whose
elementary divisor form is a prime function. By Theorem 10, the corresponding
prime ideal can also be computed in the latter case. Thus Theorems 9 and 10
produce the methods by which we can find the prime ideals in finitely many
steps. 2
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§8. Primary Ideals and Isolated Components

The primary ideals, which appear in a representation of m as the least common
multiple of the largest primary components, are not unique. So we can deal
only with the computation of any one possible set of primary ideals in such a
representation.

Let p%σ be an associated (n−%)-dimensional prime ideal of m. If λ is greater
than the exponent of any associated primary ideal q of p%σ that can appear
in a representation of m, then the %-th fundamental ideal of (m, pλ

%σ) is also
such an ideal. Thus to compute the primary ideal, it suffices to find an upper
bound for λ. It will be shown that the number κ(t, q, n) computed in Hentzelt’s
Nullstellensatz is such a bound.

This bound certainly reaches much higher than is necessary. This is shown
in the simple example

m = (x2, xy) = [(x), (x2, y)].

The associated prime ideals of m are (x), and (x, y). Hence the exponents of
the primary ideal that can appear are all at most 2. Thus λ = 2 suffices for the
present case, whereas Theorem 5 produces κ(2, 2, 2) = 256.

Theorem 12 Hypothesis: Let p%1, . . . , p%m%
, % = 1, . . . , n, be the associated

(n−%)-dimensional prime ideals of m. Let κ = κ(t, q, n) be the number computed
in Theorem 5. Let q%σ be the %-th fundamental ideal of (m, pκ

%σ). Thus q%σ is an
associated prime ideal of p%σ. As a fundamental ideal of a transformed ideal, it
is itself transformed.
Claim: m = [q11, . . . , qnmn

].

Proof. Let ξ1
%σ, . . . , ξn

%σ be zeros of the prime ideal p%σ of transcendence degree
n− %. So ξ%+1

%σ , . . . , ξn
%σ are transcendental over P.

Then o%σ = (x1 − ξ1
%σ, . . . , xn − ξn

%σ) is the associated zero-set ideal of these
zeros. It is a 0-dimensional prime ideal in P(ξ1

%σ, . . . , ξn
%σ)[x1, . . . , xn], and

p%σ ≡ 0 (o%σ),

so
(m, pκ

%σ) ≡ 0 (m, oκ
%σ).

In order to apply Theorem 5, we need only show that the fundamental ideal
q%σ is divisible by (m, oκ

%σ).
Since (m, oκ

%σ) ≡ 0 (o%σ) and oκ
%σ ≡ 0 (m, oκ

%σ), and since o%σ has dimension
0, (m, oκ

%σ) is an associated primary ideal of o%σ.
(m, oκ

%σ) contains no nonzero polynomials free of x1, . . . , x%. In particu-
lar, if G(%+1)(x%+1, . . . , xn) 6≡ 0, then since ξ%+1

%σ , . . . , ξn
%σare transcendental

over P, G(%+1)(ξ%+1
%σ , . . . , ξn

%σ) 6= 0, i.e. G(%+1)(x%+1, . . . , xn) 6≡ 0 (o%σ), so
G(%+1)(x%+1, . . . , xn) 6≡ 0 (m, oκ

%σ).
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Now let g ≡ 0 (q%σ). Then there exists an f (%+1) 6= 0 such that f (%+1)g ≡
0 (m, pκ

%σ). Then f (%+1)g ≡ 0 (m, oκ
%σ). But now since every power of f (%+1)

is independent of x1, . . . , x% and therefore not divisible by the primary ideal
(m, oκ

%σ), g ≡ 0 (m, oκ
%σ) and hence

q%σ ≡ 0 (m, oκ
%σ).

Therefore,
[q11, . . . , qnmn

] ≡ 0 (m, oκ
ij),

where oij denotes an arbitrary associated zero-set ideal of m. Then by Theorem
5,

[q11, . . . , qnmn
] ≡ 0 (m).

On the other hand,
m ≡ 0 (q%σ).

Hence it follows that
m ≡ 0 ([q11, . . . , qnmn ]).

Therefore,
m = [q11, . . . , qnmn ]. 2

The isolated components of m are now found by combining associated pri-
mary ideals of isolated groups under the prime ideals, where an isolated group
consists of associated prime ideals of m, and for any associated prime ideal p of
m, contains all associated prime ideals of m that are also multiples of p. Since
by Theorem 3, we can determine in finitely many steps whether an ideal is di-
visible by another, we can compute these isolated groups in finitely many steps.
If we divide the ideal m by the product of κ-th powers of prime ideals of the
complementary group, then we obtain the corresponding isolated components
also, since by Theorem 12, κ is indeed an upper bound for the exponent of the
primary ideals which appear.
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[1] Bôcher. Einführung in die hohere Algebra [Introduction to Higher Algebra].

[2] K. Hentzelt, E. Noether. Zur Theorie der Polynomideale und Resultanten [On the
Theory of Polynomial Ideals and Resultants]. Math. Ann. 88 (1922): 53-79.
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