Towards an Effective Version of a Theorem of Stafford

ANDRE HILLEBRAND AND WILAND SCHMALE
Carl von Ossietzky Universität, FB Mathematik, D-26111 Oldenburg, Germany

Abstract

A classical theorem of Stafford says: every left ideal of partial differential operators with rational or even polynomial coefficients in n variables can be generated by two elements. The highly involved proof of this theorem is reorganized and completed for rational coefficients in order to yield a procedure which guarantees the computability in finitely many steps. Consequences for an eventual normal form for matrices of such operators are discussed.

(C) 2001 Academic Press

1. Introduction

Simplifying a matrix of differential operators by elementary row and column operations is quite a fundamental task. If one considers matrices whose entries are ordinary timevarying differential operators with rational function coefficients (or more generally meromorphic functions) then a classical theorem tells you that by elementary row and column operations an analogue to the Smith form can be achieved (see, for example, Cohn, 1971, Chapter 8.1; Guralnick et al., 1988, the results going back to Jacobson, Nakayama and Teichmüller). In addition, by the simplicity of our ring of entries at most one diagonal entry can be different from 1 or 0 . Thus time-varying differential matrices have a "simpler" diagonal form than constant ones.

If one considers matrices whose entries are partial differential operators with rational function coefficients (now in finitely many variables x_{1}, \ldots, x_{n}) then the ring of entries is still a simple one and one wonders what kind of simple form could be obtained by elementary row and column operations in this case.
This question is obviously related to the following question: how many generators are necessary to generate a left or a right ideal in the ring of the entries? An astonishing theorem of J.T. Stafford from 1978 tells us that always two generators will be sufficient and even more: given three operators a, b, c then there must exist operators λ, μ s.t. $a+\lambda c$ and $b+\mu c$ generate the same left ideal as a, b, and c. Thus the column ${ }^{t}[a, b, c]$ can be transformed to the column ${ }^{t}[a+\lambda c, b+\mu c, 0]$ by four elementary row operations provided you are in possession of the according multiplicators.

Stafford's proof (see Stafford, 1978; Björk, 1979) is involved and does not indicate at every stage how one could determine in finitely many steps all the intermediate operators which are necessary to finally obtain two generators for an ideal. In what follows we will give in the main Section 3 a modified proof of this result which is (if at all) only slightly less involved, but which shows that Stafford's approach can be made effective. To prove this we give an algorithmic procedure to find rather simply structured operators λ and μ which will do the job as described above. We will not give complexity bounds but it will
become obvious that the procedures will break down rapidly when increasing the degrees of the operator polynomials.

While the computation of a minimal set of generators for a left ideal is of interest on its own, simplifying matrices via such a complex procedure seems not advantageous. Therefore, in a short concluding Section 4, matrix simplification under an extended equivalence notion is considered.
In the differential algebra literature it seems that traditionally more often the situation is considered where the coefficients of the operators are polynomials (Weyl algebras) or power series rather than rational functions. But the latter represent an interesting case; see Cohn (1971, Chapter 8). Further motivation for us comes also from control theory, see, for example, Ilchmann et al. (1984) and Cotroneo (1999) for a recent source.
We also want to emphasize that the present work proves effectivity in the sense of Cohen et al. (1999). To be more precise: we will show how one can compute two generators as stated in Stafford's Theorem in finitely many steps if the differential operators have their coefficients from an effective rational function field (e.g. over \mathbb{Q}.) This is of course only the first and theoretical step towards computation in reasonable time and a detailed complexity analysis. Realistic algorithms may well proceed in a very different way. Such a situation seems common in computer algebra, one of various examples being the computation of Galois groups over the rationals, where the general proof of effectiveness (see, for example, van der Waerden, 1964) gives a correct algorithm but of extremely high complexity and has not so much to do with actual procedures for rapid computation up to order 9 say.

We begin with an introductory Section 2 where basic definitions and some fundamental properties are displayed (mostly without proofs).

2. Basic Notions

The following definitions and properties are fundamental. The latter are stated without proofs. We refer to Cohn (1971), Dauns (1982), Adams and Loustaunau (1996) and direct verification. n and r will always be fixed natural numbers. Our main object of investigation is described as follows:

Definition 2.1. Let K be a skew field of characteristic zero.
By $R_{r}=K\left(x_{1}, \ldots, x_{n}\right)\left[D_{1}, \ldots, D_{r}\right]$ we denote a ring with the following properties for $i, j \in\{1, \ldots, r\}, l, m \in\{1, \ldots, n\}$ and $k \in K$:
(a) $K\left(x_{1}, \ldots, x_{n}\right)$ is a quotient skew field of the polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$ s.t.: $x_{l} k=k x_{l}$ and $x_{m} x_{l}=x_{l} x_{m}$.
(b) R is generated as an algebra over $K\left(x_{1}, \ldots, x_{n}\right)$ by D_{1}, \ldots, D_{r}.
(c) $D_{i} x_{i}=1+x_{i} D_{i}$ and in the case $i \neq m: D_{i} x_{m}=x_{m} D_{i}$.
(d) $D_{i} D_{j}=D_{j} D_{i}$ and $k D_{i}=D_{i} k$.
(e) $\left\{D^{\alpha} \in R \mid \alpha \in \mathbb{N}^{r}\right\}$ is a commutative monoid (see (c)) and left-linear independent over $K\left(x_{1}, \ldots, x_{n}\right)$, where as usual $D^{\alpha}=D_{1}^{\alpha_{1}} \cdots D_{r}^{\alpha_{r}}$ for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in \mathbb{N}^{r}$ and $x^{\beta}=x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}$ for $\beta \in \mathbb{Z}^{n}$.

REmark 2.2. Given $K\left(x_{1}, \ldots, x_{n}\right)$ the rings R_{r} can be constructed as iterated skewpolynomial rings. (See, for example, Cohn, 1971 or Dauns, 1982.) For $n=0$ the ring
$R=K\left[D_{1}, \ldots, D_{r}\right]$ is just an ordinary polynomial ring in r commuting variables over a skew field K. The Weyl algebra $A_{n}=K\left[x_{1}, \ldots, x_{n} ; D_{1}, \ldots, D_{n}\right], K$ a commutative field, is of course a subring of R_{n}. Recall also that R_{r} has no zero-divisors and that its group of units is $K\left(x_{1}, \ldots, x_{n}\right) \backslash\{0\}$.

Corollary 2.3. For $f \in K\left[x_{1}, \ldots, x_{n}\right]$ and $k \leq n$ let $\frac{\partial f}{\partial x_{k}}$ be the formal derivative of f with respect to x_{k}. Then (in R) one has for $k \leq r: D_{k} f=f D_{k}+\frac{\partial f}{\partial x_{k}}$.

Let $r \leq n$ from now on. By \leq we also denote a monomial order on \mathbb{N}^{r} or equivalently on $\left\{D^{\alpha} \in R \mid \alpha \in \mathbb{N}^{r}\right\}$. By \leq_{0} resp. $<_{0}$ we denote the weak order on $\mathbb{N}^{r} \times \mathbb{N}^{r}$ with the following properties for $\alpha, \beta \in \mathbb{N}^{r}: \alpha \leq_{0} \beta$, if for all $i \leq r$ one has $\alpha_{i} \leq \beta_{i}$ and $\alpha<_{0} \beta$, if $\alpha \leq_{0} \beta$ and $\beta \neq \alpha$.

Corollary 2.4. (a) $R_{r}=\left\{\sum_{\alpha \in N} a_{\alpha} D^{\alpha} \in R_{r} \mid a_{\alpha} \in K\left(x_{1}, \ldots, x_{n}\right), N \subset \mathbb{N}^{r}\right.$ finite $\}$ $=\left\{\sum_{\alpha \in N} D^{\alpha} b_{\alpha} \in R \mid b_{\alpha} \in K\left(x_{1}, \ldots, x_{n}\right), N \subset \mathbb{N}^{r}\right.$ finite $\}$.
(b) According to (a) every $f \in R \backslash\{0\}$ has a (left-)representation as $f=\sum_{\alpha \leq \alpha_{0}} a_{\alpha} D^{\alpha}$, where $a_{\alpha} \in K\left(x_{1}, \ldots, x_{n}\right), \alpha_{0} \in \mathbb{N}^{r}$ and $a_{\alpha_{0}} \neq 0$. From this, one obtains a (right-) representation: $f=\sum_{\alpha \leq \alpha_{0}} D^{\alpha} b_{\alpha}$, where $a_{\alpha_{0}}=b_{\alpha_{0}}$ and with some unique b_{α}. Usually one does not have $a_{\alpha}=\bar{b}_{\alpha}$ for $\alpha<\alpha_{0}$. Take $D_{1} x_{1}=1+x_{1} D_{1}$ as an example.

Definition 2.5. Let f be represented as in Corollary $2.4(\mathrm{~b})$, then $L M(f):=D^{\alpha_{0}} \in R$ is the leading monomial and $L K(f):=a_{\alpha_{0}}=b_{\alpha_{0}} \in K\left(x_{1}, \ldots, x_{n}\right)$ the leading coefficient of f with respect to the monomial order \leq. This definition is independent of left or right representation of f

One has the familiar rules for $L M$ and $L K$. Note also that R_{1} is a left-(right-) Euclidean ring with respect to $\operatorname{deg}: R_{1} \backslash\{0\} \rightarrow \mathbb{N}$ where $\operatorname{deg}(f)=m$, if $L M(f)=D^{m}$.

We will tacitly use the fact that standard Gröbner basis theory for commutative polynomial rings over a field K (see, for example, Adams and Loustaunau, 1996) extends without difficulty to a (left-/right-) Gröbner basis theory together with a Buchberger algorithm for submodules of R_{r}^{k} and syzygy-based computation of intersections of submodules. The effectivity (in the sense of Cohen et al., 1999) of Gröbner bases for leftideals, modules and intersections (e.g. with rational constants) is assumed to be well known. We will also have to apply a corresponding Hilbert basis theorem. There are various references where "classical" Gröbner basis theory is extended at least partly to more general scenarios. We only mention Chyzak (1998), Pesch (1998), Briançon and Maisonobe (1984) and Castro (1987) as examples. The last two have been pointed out to us by a referee and treat the case of power series and Weyl algebras.
Definition 2.6. Let $f \in R_{r}$ and $k \leq r$, then we set $f^{\left(e_{k}\right)}:=f x_{k}-x_{k} f \in R_{r}$ and iteratively for $m \in \mathbb{N}$ we set $f^{\left((m+1) e_{k}\right)}:=\left(f^{\left(m e_{k}\right)}\right)^{\left(e_{k}\right)}$ where $f^{(0, \ldots, 0)}:=f . f^{\left(m e_{k}\right)}$ is called the m-th derivative of f with respect to D_{k}. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in \mathbb{N}^{r}$, then $f^{(\alpha)}:=\left(\left(f^{\left(\alpha_{1} e_{1}\right)}\right)^{\cdots}\right)^{\left(\alpha_{r} e_{r}\right)}$ is called the α-th derivative of f.

Corollary 2.7. For $f \in R_{r}$ and $k \leq r$:
(a) $f^{(\alpha)}$ is independent from its specific iterative definition.
(b) $f^{\left(m e_{k}\right)}$ is the m th formal derivative of f with respect to D_{k}.
(c) $f^{(\alpha)} \in \sum_{\beta \leq_{0} \alpha} R_{r} f x_{1}^{\beta_{1}} \cdots x_{r}^{\beta_{r}}$ for $\alpha \in \mathbb{N}^{r}$.
(d) if $L M(f)=D^{\alpha}$, then $f^{(\alpha)} \in K\left(x_{1}, \ldots, x_{n}\right) \backslash\{0\}$.
(e) R_{r} is a simple ring, i.e. R_{r} does not possess nontrivial two-sided ideals.

Corollary 2.8. R_{r} is a left (and right) Ore-ring, i.e. for all $a, b \in R_{r} \backslash\{0\}$ one has $R_{r} a \cap R_{r} b \neq\{0\} \quad\left(a R_{r} \cap b R_{r} \neq\{0\}\right)$. In other words, we have non-trivial common leftand right-multiples for non-trivial a, b.

REMARK 2.9. For $r \geq 2$ the intersection of two left-principal ideals usually is no longer a principal ideal. Therefore one does not always have a least common left-multiple in the usual sense. R_{r} is not a left-principal ideal ring for $r \geq 2$.

Example 2.10. For $g=D_{2} \in R_{2}$ and $f=\left(D_{1}+x_{2}\right) \in R_{2}$ the intersection $R_{2} g \cap R_{2} f$ is not a principal ideal as is easily verified.

REMARK 2.11. It is worthwhile to recall also, that unless $r=1$ the ring R_{r} is atomic but not factorial (see Cohn, 1971 for the corresponding definitions). The latter can be illustrated by the following example:

Example 2.12. $a:=D_{1} D_{2}^{2}+x_{2} D_{2}^{2}+2 D_{2} \in R_{2}$ has the following two atomic(!) decompositions: $a=\left(D_{1} D_{2}+x_{2} D_{2}+2\right) D_{2}=D_{2} D_{2}\left(D_{1}+x_{2}\right)$.

Remark 2.13. Since R_{r} is an Ore-ring without zero-divisors, it is possible to form a quotient ring $\mathcal{R}_{r}=K\left(x_{1}, \ldots, x_{n}\right)\left(D_{1}, \ldots, D_{r}\right)$ of the form

$$
\mathcal{R}_{r}=\left\{f g^{-1} \mid f, g \in R_{r}, g \neq 0\right\}=\left\{g^{-1} f \mid f, g \in R_{r}, g \neq 0\right\} .
$$

The tedious proof is given in Dauns (1982).

Definition 2.14. We call $c=\operatorname{lclm}(a, b) \in R_{r}$ (resp. $\left.c=\operatorname{lcrm}(a, b)\right)$ a least common left- (resp. right-) multiple of $a, b \in R_{r} \backslash\{0\}$ with respect to \leq if c has the following properties: (a) c is a common left- (right-) multiple of $a, b,(\mathrm{~b}) L K(c)=1$ and (c) $L M(c)$ is minimal with respect to \leq.

If c is a $\operatorname{lclm}(a, b)$, then it is unique, for if $d \in R_{r} \backslash\{c\}$ satisfies also (a),(b),(c) in 2.14, then set $e=\frac{1}{L K(d-c)}(d-c) \in R_{r}$. Now e is a normed common left-multiple, but at the same time $L M(e)=L M(d-c)<L M(d)=L M(c)$ contradicting (c).

REmARK 2.15. (a) Note that a $l c l m$ in R_{r} with $r \geq 2$ is in general not a right divisor of all left-multiples. "Least" just means that its leading monomial with respect to the given monomial order is minimal.
(b) Let $a, b \in R_{r} \backslash\{0\}$ and $G=\left\{g_{1}, \ldots, g_{m}\right\}$ be the reduced left Gröbner basis of $R_{r} a \cap R_{r} b$ with respect to a monomial order \leq. Let g_{i} be the basis element with the least
leading monomial then $g:=\frac{1}{L K\left(g_{i}\right)} g_{i}$ is the unique $\operatorname{lclm}(a, b)$. As for the computation of a left Gröbner basis of $R_{r} a \cap R_{r} b$ we refer to the syzygy-based approach as outlined in Adams and Loustaunau (1996, Chapter 3.8) and which generalizes straightforwardly.

3. An Effective Version of Stafford's Theorem

Stafford's theorem says that any left ideal from R_{r} can be generated by two elements. A left ideal generated by a, b, \ldots will be denoted by $\mathcal{I}_{l}(a, b, \ldots)$.
So for instance the left Gröbner basis $\left\{D_{1}, D_{2}, D_{3}\right\} \in R_{3}$ (with respect to any monomial order) of the ideal $I:=\mathcal{I}_{l}\left(D_{1}, D_{2}, D_{3}\right)$ can be shrunk to the generating system $\left\{D_{1}, D_{2}+x_{1} D_{3}\right\}$. This follows from the fact that $D_{3}=D_{1}\left(D_{2}+x_{1} D_{3}\right)-\left(D_{2}+x_{1} D_{3}\right) D_{1} \in$ $\mathcal{I}_{l}\left(D_{1}, D_{2}+x_{1} D_{3}\right)$ and therefore also $D_{1}, D_{2} \in \mathcal{I}_{l}\left(D_{1}, D_{2}+x_{1} D_{3}\right)$.
By Hilbert's Basis Theorem we know already that any left ideal $I \subset R_{r}$ can be finitely generated. So it suffices to show that from any three generators $a, b, c \in I$ one can construct a new generating set consisting of only two generators. This construction will have various steps which are grouped iteratively according to the number of variables which are involved. The overall method follows as far as possible Stafford's proof as presented in the book of Björk (1979), but various substantial modifications become necessary in order to obtain computability in finitely many steps. Before going into the details we will try to make plausible the main ideas:
(1) For $a, b, c \in R_{n}$ we will look for generators of the form $a+a_{0} c, b+b_{0} c \in R_{n}$ $\left(a_{0}, b_{0} \in R_{n}\right)$ s.t. $\mathcal{I}_{l}\left(a+a_{0} c, b+b_{0} c\right)=\mathcal{I}_{l}(a, b, c)$. This will be achieved, if

$$
c \in R_{n}\left(a+a_{0} c\right)+R_{n}\left(b+b_{0} c\right)
$$

(2) In order to find such $a_{0}, b_{0} \in R_{n}$ we will look for $q_{r} \in R_{r} \backslash\{0\}, a_{r}, b_{r} \in R_{n}$ and successively for decreasing r s.t.

$$
q_{r} c \in R_{n}\left(a+a_{r} c\right)+R_{n}\left(b+b_{r} c\right) .
$$

See below 3.10. For $r=n$ the existence of q_{n} (with $a_{n}=b_{n}=0$) is guaranteed by the Ore-ring property. Given q_{n}, in Lemma 3.10 one guarantees the existence of $q_{n-1}, q_{n-2}, \ldots, q_{0}$. On arriving at $r=0$ the nonzero element q_{0} on the left is a unit and $c \in R_{n}\left(a+a_{0} c\right)+R_{n}\left(b+b_{0} c\right)$. So what will be done is a kind of elimination of the D_{i} from q_{r}. For this the following result is essential and one main ingredient of a finite computational procedure:
(3) For any $v \in R_{n} \backslash\{0\}$ and $q_{r+1} \in R_{r+1}$ one can find an $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and a $q_{r} \in R_{r} \backslash\{0\}$ s.t.

$$
q_{r} \in R_{n} q_{r+1}+R_{n} v f
$$

See Lemma 3.9. This means that by the determination of an appropriate and simply structured f one can assure that in the ideal $R_{n} q_{r+1}+R_{n} v f$ one finds a nonzero element involving only the first r differential operators despite the fact that q_{r+1} and $v f$ may involve more variables.
(4) The task to find such an f will become easier if one works for a while in the ring

$$
\mathcal{R}=K\left(x_{1}, \ldots, x_{n}\right)\left(D_{1}, \ldots, D_{r}\right)\left[D_{r+1}, \ldots, D_{n}\right]
$$

instead of R. The element q_{r} in (3) will then be a unit. The requirements for $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ are then

$$
1 \in \mathcal{R} q_{r+1}+\mathcal{R} v f \quad \text { or } \quad \mathcal{R}=\mathcal{R} q_{r+1}+\mathcal{R} v f
$$

See Theorem 3.5.
(5) Since q_{r+1} is already in R_{r+1}, it will be important to separate the variable D_{r+1} in v (see the equation in (4)) from the remaining variables. For this v will be decomposed: $v=\sum_{i=0}^{t} D_{r+1}^{i} g_{i}$ where the g_{i} do not involve D_{r+1}.
Now for any $u \in R_{n}$ one determines finitely many $h_{j} \in \mathbb{Z}\left[x_{r+2}, \ldots, x_{n}\right]$ and $f_{j} \in$ $\mathbb{Z}\left[x_{r+1}\right]$ s.t.

$$
\mathcal{R} q_{r+1}+\mathcal{R} u+\sum_{i} \mathcal{R} g_{i} h_{j}=\mathcal{R} q_{r+1}+\mathcal{R}\left(u+\sum_{i} D_{r+1}^{i} g_{i} h_{j} f_{j}\right)
$$

and

$$
\mathcal{R}=\mathcal{R} q_{r+1}+\sum_{j} \sum_{i} \mathcal{R} g_{i} h_{j} .
$$

Setting $f=\sum_{j} h_{j} f_{j}$ this leads to an equation as in (4).
(6) In order to attack the equations to be solved in (5) they are rewritten with $e_{0}:=u$, $e_{i}:=g_{i} h_{j}, f:=f_{j}, \delta_{i}:=D_{r+1}^{i-1}$. This gives

$$
\mathcal{R} q_{r+1}+\sum_{i \geq 0} \mathcal{R} e_{i}=\mathcal{R} q_{r+1}+\mathcal{R}\left(e_{0}+\sum_{i \geq 1} \delta_{i} e_{i} f\right)
$$

Stafford's main trick now is to interpret the $e_{i}(i=0, \ldots, m)$ as canonical basis vectors of the left \mathcal{R}-module \mathcal{R}^{m+1} and $\mathcal{R} q_{r+1}$ as $\mathcal{R}^{m+1} \rho$ where ρ is from R_{r+1}. Having done this and remembering that in \mathcal{R} nonzero polynomials involving only D_{1}, \ldots, D_{r} are units, one realizes that, in our equation to be solved the entries $\rho, e_{i}, \delta_{i} e_{i} f$ have only D_{r+1} as a variable over $=K\left(x_{1}, \ldots, x_{n}\right)\left(D_{1}, \ldots, D_{r}\right)$. So one has to look for an $f \in \mathbb{Z}\left[x_{r+1}\right]$ which solves the following equation for the ring $S=\bar{K}\left(x_{r+1}\right)\left[D_{r+1}\right]:$

$$
S^{m+1}=S^{m+1} \rho+S\left(e_{0}+\sum_{i=1}^{m} D_{r+1}^{i-1} f e_{i}\right)
$$

where $\bar{K}:=K\left(x_{1}, \ldots, x_{r-1}, x_{r+1}, \ldots, x_{n}\right)\left(D_{1}, \ldots, D_{r}\right)$. After this an easy linear map gets you back to the situation of (5) together with solutions ready at hand.

In what follows we will go the opposite way since this is mathematically more efficient. So we start with the problem as outlined in (6). All the f and f_{j} which have to be constructed play a central role for the realization of a constructive approach. It is mainly the wish to find f and f_{j} which are as simple as possible which makes it necessary to alter and reorganize the proofs for the various steps in Stafford's resp. Björk's approach.

3.1. Some properties of modules in one variable

Let T be a skew field of characteristic zero and $S:=T(x)[D]$ with the same properties as R_{1}. We do not call this ring R_{1} for technical reasons.

Lemma 3.1. Let $\rho, \delta_{1}, \ldots, \delta_{m} \in S \backslash\{0\}$ with $\operatorname{deg}_{D}\left(\delta_{i}\right)<\operatorname{deg}_{D}\left(\delta_{i+1}\right)$ for $i<m$.
(a) Let $I:=\mathcal{I}_{l}\left(\left\{\sum_{k=1}^{m} \delta_{k} x^{i} e_{k} \mid i \leq \operatorname{deg}_{D}\left(\delta_{m}\right)\right\}\right)$. Then $I=S^{m}$ where e_{1}, \ldots, e_{m} are the canonical basis vectors in S^{m}.
(b) Let $M \subset S^{m}$ be a left S-submodule with $S^{m} \rho \subset M$ and let $\alpha \in S \backslash\{0\}$. Then one can find a finite subset N of \mathbb{N} such that with $f=\sum_{i \in N} x^{i} \in \mathbb{Z}[x]$ the following equation is valid:

$$
S^{m}=M+S\left(\sum_{k=1}^{m} \alpha \delta_{k} f e_{k}\right)
$$

Proof. (a) For $f \in S$ and $k \in \mathbb{N}$ let $f^{(k)}$ be the k th derivative with respect to to D and for $k \leq \operatorname{deg}_{D}\left(\delta_{m}\right)$ we set $\gamma_{k}:=\sum_{i=1}^{m} \delta_{i}^{(k)} e_{i}$ and note that $\gamma_{k} \in I$ according to Corollary 2.7 (c). Then, by properties of derivative and degree, one obtains for $l=$ $\operatorname{deg}_{D}\left(\delta_{m}\right) \gamma_{l}=\sum_{i=1}^{m} \delta_{i}^{(l)} e_{i}=\delta_{m}^{(l)} e_{m} \in T(x) e_{m}$. Also $e_{m} \in I$ and for some $s_{k} \in S$ one has $\gamma_{k}^{*}:=\sum_{i=1}^{m-1} \delta_{i}^{(k)} e_{i}=\gamma_{k}-s_{k} e_{m} \in I$. Considering γ_{l}^{*} for $l=\operatorname{deg}_{D}\left(\delta_{m-1}\right)$ shows that $e_{m-1} \in I$. Iteration proves (a).
(b) The left module S^{m} / M has finite length since S is left-Euclidean. (b) will be proved now by induction on the length of S^{m} / M. For $M=S^{m}$ the statement is trivial. Let the statement be true for all submodules M_{1} properly containing M. Thus length $\left(S^{m} / M_{1}\right)<$ length $\left(S^{m} / M\right)$. According to (a) and with $\alpha \delta_{i}$ instead of δ_{i} one can find an $f_{0}= \pm x^{k_{0}}$ s.t. $\alpha \delta_{1} f_{0} e_{1}+\cdots+\alpha \delta_{m} f_{0} e_{m} \notin M$. Otherwise one would have a contradiction to (a) with $\delta_{i}:=\alpha \delta_{i}$. Choose now a submodule $M_{1} \subset S^{m}$ properly containing M and of the form

$$
M \subset M_{1} \subset M+S\left(\alpha \delta_{1} f_{0} e_{1}+\cdots+\alpha \delta_{m} f_{0} e_{m}\right)
$$

and M maximal in M_{1}. Since S is an Ore-domain, one can determine an $s \in S \backslash\{0\}$ which gives $s \alpha \delta_{i} \in S \rho$ for all $i \leq m$. By the induction hypothesis for $\alpha_{1}:=s \alpha \in S \backslash\{0\}$ there exists $f_{1}=x^{l_{1}}+\cdots+x^{l_{t}}$ with

$$
\begin{equation*}
S^{m}=M_{1}+S\left(\alpha_{1} \delta_{1} f_{1} e_{1}+\cdots+\alpha_{1} \delta_{m} f_{1} e_{m}\right) \tag{*}
\end{equation*}
$$

Now let $N:=M+S\left(\sum_{i=1}^{m} \alpha \delta_{i} f_{1} e_{i}\right)$. If $N=S^{m}$, then (b) is proved, otherwise we prove in the sequel that

$$
S^{m}=M+S\left(\sum_{i=1}^{m} \alpha \delta_{i}\left(f_{0}+f_{1}\right) e_{i}\right)=: N_{1}
$$

or equivalently that some $f=f_{1}+f_{0}=f_{1} \pm x^{k_{0}}$ satisfies (b). More precisely: set $f=f_{1}+x^{k_{0}}$ if the k_{0} th coefficient of f_{1} is zero, else set $f=f_{1}-x^{k_{0}}$. Then it is guaranteed that f has only coefficients from $\{0,1\}$. To prove now that $N_{1}=S^{m}$, let $P:=S\left(\sum_{i=1}^{m} \alpha_{1} \delta_{i} f_{1} e_{i}\right) \quad$ and $\quad N_{0}:=M+P$.
Since $S^{m}=M_{1}+P\left(\right.$ by $\left.\left(^{*}\right)\right)$ we conclude

$$
S^{m} / N_{0}=\left(M_{1}+P\right) /(M+P) \cong M_{1} /\left(M+M_{1} \cap P\right)
$$

Since furthermore M_{1} / M by the choice of M_{1} and in particular $M_{1} / M+M_{1} \cap P$ are indecomposable, the submodule N_{0} of S^{m} must be maximal. By the equation

$$
S^{m} \neq N=M+S\left(\sum_{i=1}^{m} \alpha \delta_{i} f_{1} e_{i}\right) \supset M+S\left(\sum_{i=1}^{m} s \alpha \delta_{i} f_{1} e_{i}\right)=M+P=N_{0}
$$

we get $N=N_{0}$. Also $s \alpha \delta_{i} f_{0} \subseteq S \rho$ for all $i \leq m$ and $S^{m} \rho \subset M$, where from we get

$$
P=S\left(\sum_{i=1}^{m} s \alpha \delta_{i} f_{1} e_{i}\right) \subset S^{m} \rho \subset M \subset N_{1}
$$

Therefore $N_{1} \supset M+P=N_{0}=N$ and by definition of N and N_{1} we see $\sum_{i=1}^{m} \alpha \delta_{i} f_{1} e_{i} \in$ N_{1} resp. $\sum_{i=1}^{m} \alpha \delta_{i} f_{0} e_{i} \in N_{1}$. Since by the choice of M_{1} we have $M_{1} \subset M+S\left(\sum_{i=1}^{m} \alpha \delta_{i} f_{0} e_{i}\right)$ $\subset N_{1}$, we finally obtain the desired result (*).
In the sequel \mathcal{R}_{r} denotes the quotient skew field of R_{r}.

Lemma 3.2. Let $S=\mathcal{R}_{r}\left[D_{r+1}\right]$ and let $\delta_{1}, \ldots, \delta_{m} \in S, \rho \in \mathcal{R}_{r+1} \backslash\{0\}$ with $\operatorname{deg}_{D_{r+1}}\left(\delta_{i}\right)<$ $\operatorname{deg}_{D_{r+1}}\left(\delta_{i+1}\right)$. Then there exists a finite subset N of \mathbb{N} such that with $f=\sum_{i \in N} x_{r+1}^{i} \in$ $\mathbb{Z}\left[x_{r+1}\right]$ one has

$$
S^{m+1}=S^{m+1} \rho+S\left(e_{0}+\delta_{1} f e_{1}+\cdots+\delta_{m} f e_{m}\right)
$$

Proof. For $x=x_{r+1}, D=D_{r+1}$ and $M=S^{m} \rho$ part (b) Lemma 3.1 gives

$$
S^{m}=S^{m} \rho+S\left(\sum_{i=1}^{m} \rho \delta_{i} f e_{i}\right)
$$

Here the trick consists in introducing ρ in the right-hand sum. This implies

$$
S^{m+1}=S^{m+1} \rho+S\left(e_{0}+\sum_{i=1}^{m} \rho \delta_{i} f e_{i}\right)+S e_{0}
$$

It remains to show that

$$
e_{0} \in S^{m+1} \rho+S\left(\left(e_{0}+\sum_{i=1}^{m} \delta_{i} f e_{i}\right)\right.
$$

which follows indeed after a short calculation using Lemma 3.1.

3.2. First step towards a Procedure

In this subsection the result from Lemma 3.2 will be translated into a result on left ideals in R_{r} via a linear transformation (Φ in the proof of Lemma 3.4). Thus Theorem 3.5 tells that the sum of two left principal ideals can give us the whole ring by only modifying one generator by an invertible right factor. In the case of only one variable this is easy to understand: let $q, v \in R_{1} \backslash\{0\}$. Since R_{1} is a left principal ideal ring, for some $c \in R_{1} \backslash\{0\}$ one must have $R_{1} q+R_{1} v=R_{1} c$. If in addition q and v are right coprime, then $c=1$. Otherwise replace v by $v f$ with $f \in K\left(x_{1}, \ldots, x_{n}\right)$ in such a way that q and $v f$ become right coprime. When v is no longer from R_{1} but rather from R_{n} then the additional differential operators make impossible a similar approach. This explains the digression on the left S-module S^{m}. The f occurring in the related results is of central importance. Towards the end of this subsection an explicit procedure will be given for its computation. But before that some more preparation is necessary.
Recall that $\mathcal{R}:=\mathcal{R}_{r}\left[D_{r+1}, \ldots, D_{n}\right]$ where \mathcal{R}_{r} is the quotient skew field of $R_{r}=K$ $\left(x_{1}, \ldots, x_{n}\right)\left[D_{1}, \ldots, D_{r}\right]$.

Lemma 3.3. Asume $a_{1}, \ldots, a_{s} \in R_{n}$ and $q \in R_{r} \backslash\{0\}$. Then there is a $\rho \in R_{r} \backslash\{0\}$, s.t. for all $i \leq s$ one has

$$
\rho a_{i} \in R_{n} q .
$$

Proof. $a \frac{1}{q} \in \mathcal{R}$ for any $a \in R_{n}$ and can be written as: $a \frac{1}{q}=\sum_{0 \leq_{0} \gamma \leq_{0} \beta} b_{\gamma} D^{\gamma}$ where $\beta=$ $\left(0, \ldots, 0, \beta_{r+1}, \ldots, \beta_{n}\right) \in \mathbb{N}^{n}$ and for some $b_{\gamma} \in \mathcal{R}_{r}$, say $b_{\gamma}=\frac{1}{b_{\gamma 1}} b_{\gamma 2}$ with $b_{\gamma 1}, b_{\gamma 2} \in R_{r}$. Multiplication by a common left multiple $\in R_{r}$ of all the $b_{\gamma 1}$ gives $b a \frac{1}{q}=\sum_{0 \leq 0 \gamma \leq 0 \beta} b b_{\gamma} D^{\gamma}$ $\in R_{n}$. Thus $b a \in R_{n} q$. Applying this we obtain for any $i \leq s$ a certain $b_{i} \in R_{r}$, s.t. $b_{i} a_{i} \in R_{n} q$. Therefore, with a nontrivial common left multiple $\rho \in R_{r}$ of b_{1}, \ldots, b_{s} we see that $\rho a_{i} \in R_{n} q$ for all $i \leq s$.

Lemma 3.4. Let $q \in R_{r+1} \backslash\{0\}$ and $u \in R_{n}$. For any $b_{0}, \ldots, b_{t} \in R_{r}\left[D_{r+2}, \ldots, D_{n}\right]$ we can find a finite subset set $N \subset \mathbb{N}$ s.t. with $f=\sum_{i \in N} x_{r+1}^{i} \in \mathbb{Z}\left[x_{r+1}\right]$ one has:

$$
\mathcal{R} q+\mathcal{R} u+\sum_{i=0}^{t} \mathcal{R} b_{i}=\mathcal{R} q+\mathcal{R}\left(u+\sum_{i=0}^{t} D_{r+1}^{i} f b_{i}\right) .
$$

Proof. By Lemma 3.3 we find $\rho \in R_{r+1} \backslash\{0\}$ s.t.

$$
\rho u \in R_{n} q \quad \text { and } \quad \rho b_{i} \in R_{n} q
$$

for all $0 \leq i \leq t$. For $\delta_{i}:=D_{r+1}^{i-1}$, according to Lemma 3.2 there is an $f=\sum_{j \in N} x_{r+1}^{j} \in$ $\mathbb{Z}\left[x_{r+1}\right]$ satisfying the equation:

$$
\mathcal{R}_{r}^{t+2}\left[D_{r+1}\right]=\mathcal{R}_{r}^{t+2}\left[D_{r+1}\right] \rho+\mathcal{R}_{r}\left[D_{r+1}\right]\left(e_{0}+D_{r+1}^{0} f e_{1}+\cdots+D_{r+1}^{t} f e_{t+1}\right)
$$

which leads to

$$
\begin{equation*}
\mathcal{R}^{t+2}=\mathcal{R}^{t+2} \rho+\mathcal{R}\left(e_{0}+D_{r+1}^{0} f e_{1}+\cdots+D_{r+1}^{t} f e_{t+1}\right) \tag{*}
\end{equation*}
$$

since $\mathcal{R}_{r}\left[D_{r+1}\right] \subset \mathcal{R}$. Define the left \mathcal{R}-linear map $\Phi: \mathcal{R}^{t+2} \rightarrow \mathcal{R}$ by $\Phi\left(e_{0}\right)=u$ and $\Phi\left(e_{i}\right)=b_{i-1}$ for $1 \leq i \leq t+1$. Then

$$
\Phi\left(\mathcal{R}^{t+2}\right)=\mathcal{R} u+\mathcal{R} b_{0}+\cdots+\mathcal{R} b_{t}
$$

which in turn implies

$$
\begin{align*}
\mathcal{R} q+\mathcal{R} u+\sum_{i=0}^{t} \mathcal{R} b_{i} & =\mathcal{R} q+\Phi\left(\mathcal{R}^{t+2}\right) \\
& \stackrel{(*)}{=} \mathcal{R} q+\Phi\left(\mathcal{R}^{t+2} \rho+\mathcal{R}\left(e_{0}+D_{r+1}^{0} f e_{1}+\cdots+D_{r+1}^{t} f e_{t+1}\right)\right) \\
& =\mathcal{R} q+\Phi\left(\mathcal{R}^{t+2} \rho\right)+\mathcal{R}\left(u+\sum_{i=0}^{t} D_{r+1}^{i} f b_{i}\right) \tag{**}
\end{align*}
$$

According to our choice of ρ we have $\rho u, \rho b_{i} \in R_{n} q \subset \mathcal{R}$ and therefore

$$
\Phi\left(\mathcal{R}^{t+2} \rho\right)=\mathcal{R} \rho \Phi\left(e_{0}\right)+\cdots+\mathcal{R} \rho \Phi\left(e_{t+1}\right)=\mathcal{R} \rho u+\mathcal{R} \rho b_{0}+\cdots+\mathcal{R} \rho b_{t} \subset \mathcal{R} q .
$$

The latter has now only to be inserted in $(* *)$ in order to prove the Lemma.

Theorem 3.5. For any $v \in R_{n} \backslash\{0\}$ and any $q \in R_{r+1} \backslash\{0\}$ there is a finite subset N of \mathbb{N} s.t. with $f=\sum_{\alpha \in N} x^{\alpha} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ one has $\mathcal{R}=\mathcal{R} q+\mathcal{R} v f$.

Note that if the characteristic of K is $p \neq 0$, then the theorem does not hold. A simple counterexample is as follows. Let $v=q=D_{r+1}^{p}$, then $\mathcal{R} D_{r+1}^{p}$ is a two-sided principal ideal and $\mathcal{R} q+\mathcal{R} v f=\mathcal{R} D_{r+1}^{p} \neq \mathcal{R}$ for all $f \in \mathcal{R}$.

Proof. We decompose v as follows:

$$
\begin{equation*}
v=\sum_{i=0}^{t} D_{r+1}^{i} g_{i} \quad \text { with } \quad g_{0}, \ldots, g_{t} \in \mathcal{R}_{\backslash\{r+1\}}:=\mathcal{R}_{r}\left[D_{r+2}, \ldots, D_{n}\right], \quad t \in \mathbb{N} . \tag{1}
\end{equation*}
$$

For a nonzero coefficient g_{k} we determine its leading monomial in $\mathcal{R}_{\backslash\{r+1\}}: D^{\alpha}:=$ $D^{\left(\alpha_{r+2}, \ldots, \alpha_{n}\right)}:=L M\left(g_{k}\right)$. Note that

$$
\mathcal{R}_{\backslash\{r+1\}}=\left(K\left(x_{r+1}\right)\right)\left(x_{1}, \ldots, x_{r}, x_{r+2}, \ldots, x_{n}\right)\left(D_{1}, \ldots, D_{r}\right)\left[D_{r+2}, \ldots, D_{n}\right] .
$$

Thus $\mathcal{R}_{\backslash\{r+1\}}$, up to renumbering, is one of the rings we have been investigating until now. Thus we know that $g_{k}^{(\alpha)} \in K\left(x_{1}, \ldots, x_{n}\right)\left(D_{1}, \ldots, D_{r}\right) \backslash\{0\}$ by 2.7 (c) and (d) and that $g_{k}^{(\alpha)} \in \sum_{\beta \leq_{0} \alpha} \mathcal{R}_{\backslash\{r+1\}} g_{k} x_{r+2}^{\beta_{r+2}} \cdots x_{n}^{\beta_{n}}$. Defining

$$
\begin{equation*}
\left\{h_{0}, \ldots, h_{m}\right\}:=\left\{x_{r+2}^{\beta_{r+2}} \cdots x_{n}^{\beta_{n}} \mid \beta \leq_{0} \alpha\right\} \tag{2}
\end{equation*}
$$

we arrive at the equality $\mathcal{R}=\mathcal{R} g_{k}^{(\alpha)}=\sum_{j=0}^{m} \mathcal{R} g_{k} h_{j}$, and then, of course, also

$$
\begin{equation*}
\mathcal{R}=\sum_{j=0}^{m} \sum_{i=0}^{t} \mathcal{R} g_{i} h_{j}+\mathcal{R} q \tag{3}
\end{equation*}
$$

Now apply Lemma 3.4 with $b_{i}:=g_{i} h_{0}$ and $u:=0$ to obtain $f_{0}=\sum_{i \in N} x_{r+1}^{i}$ with some finite subset $N \subset \mathbb{N}$ and which satisfies

$$
\mathcal{R} q+\sum_{i=0}^{t} \mathcal{R} g_{i} h_{0}=\mathcal{R} q+\mathcal{R}\left(\sum_{i=0}^{t} D_{r+1}^{i} f_{0} g_{i} h_{0}\right)
$$

Since $g_{i} \in \mathcal{R}_{\backslash\{r+1\}}, f_{0}$ commutes with g_{i} for $0 \leq i \leq t$ and remembering that $v=$ $\sum_{i=0}^{t} D_{r+1}^{i} g_{i}$ we get

$$
\begin{equation*}
\mathcal{R} q+\sum_{i=0}^{t} \mathcal{R} g_{i} h_{0} \subseteq \mathcal{R} q+\mathcal{R}\left(v f_{0} h_{0}\right) \tag{4}
\end{equation*}
$$

Note that for later use in an algorithm here and later on in the proof we do not apply the complete information of Lemma 3.4 which would give us equality. Define now $f:=f_{0} h_{0}$, $b_{i}:=g_{i} h_{1}$ and $u:=v f$. Then again by Lemma 3.4 we find $f_{1} \in \mathbb{Z}\left[x_{r+1}\right]$ with $\mathcal{R} q+\mathcal{R} v f+$ $\sum_{i=0}^{t} \mathcal{R} g_{i} h_{1} \subseteq \mathcal{R} q+\mathcal{R}\left(v f+\sum_{i=0}^{t} D_{r+1}^{i} f_{1} g_{i} h_{1}\right)$ and since also f_{1} commutes with the g_{i}, this time we arrive at the inclusion $\mathcal{R} q+\mathcal{R} v f+\sum_{i=0}^{t} \mathcal{R} g_{i} h_{1} \subseteq \mathcal{R} q+\mathcal{R}\left(v f+v f_{1} h_{1}\right)$. Applying (4) we obtain:

$$
\begin{equation*}
\mathcal{R} q+\sum_{i=0}^{t} \mathcal{R} g_{i} h_{0}+\sum_{i=0}^{t} \mathcal{R} g_{i} h_{1} \subseteq \mathcal{R} q+\mathcal{R}\left(v f+v f_{1} h_{1}\right) \tag{5}
\end{equation*}
$$

After updating f as $f:=f+f_{1} h_{1}$ this appears as follows:

$$
\begin{equation*}
\mathcal{R} q+\sum_{i=0}^{t} \mathcal{R} g_{i} h_{0}+\sum_{i=0}^{t} \mathcal{R} g_{i} h_{1} \subseteq \mathcal{R} q+\mathcal{R} v f \tag{6}
\end{equation*}
$$

We now proceed in the same way. This time we apply Lemma 3.4 with $b_{i}:=g_{i} h_{2}$ and $u:=v f$ to obtain $f_{2} \in \mathbb{Z}\left[x_{r+1}\right]$, s.t.

$$
\begin{equation*}
\mathcal{R} q+\mathcal{R} v f+\sum_{i=0}^{t} \mathcal{R} g_{i} h_{2} \subseteq \mathcal{R} q+\mathcal{R}\left(v f+v f_{2} h_{2}\right) \tag{7}
\end{equation*}
$$

Applying (6), now we obtain

$$
\mathcal{R} q+\sum_{i=0}^{t} \mathcal{R} g_{i} h_{0}+\sum_{i=0}^{t} \mathcal{R} g_{i} h_{1}+\sum_{i=0}^{t} \mathcal{R} g_{i} h_{2} \subseteq \mathcal{R} q+\mathcal{R}\left(v f+v f_{2} h_{2}\right)
$$

Then we update f again, $f:=f+f_{2} h_{2}$, and obtain $\mathcal{R} q+\sum_{j=0}^{2} \sum_{i=0}^{t} \mathcal{R} g_{i} h_{j} \subseteq \mathcal{R} q+$ $\mathcal{R} v f$. After m steps (or eventually already earlier) we must arrive at the inclusion $\mathcal{R} q+$ $\sum_{j=0}^{m} \sum_{i=0}^{t} \mathcal{R} g_{i} h_{j} \subseteq \mathcal{R} q+\mathcal{R} v f$ with some $f=f_{0} h_{0}+\cdots+f_{m} h_{m}$. The equation (3) then shows us that finally $\mathcal{R}=\mathcal{R} q+\mathcal{R} v f$.

Algorithm 3.6. The following algorithm proceeds as indicated by the foregoing proof and explicitly determines an f.

Let \leq be a monomial order on $\left\{D_{r+1}^{\alpha_{r+1}} \cdots D_{n}^{\alpha_{n}} \in \mathcal{R} \mid \alpha_{r+1}, \ldots, \alpha_{n} \in \mathbb{N}\right\}$
Input: $v \in R_{n} \backslash\{0\}, q \in R_{r+1} \backslash\{0\}$
Output: $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ satisfying the equality $\mathcal{R}=\mathcal{R} q+\mathcal{R} v f$

Start: decompose v as $v=\sum_{i=0}^{t} D_{r+1}^{i} g_{i}, g_{t} \neq 0$ with $g_{i} \in \mathcal{R}_{\backslash\{r+1\}}$
$D^{\alpha}:=D^{\left(\alpha_{r+2}, \ldots, \alpha_{n}\right)}:=L M\left(g_{t}\right)$
For $i=0$ to $t-1$ repeat:

$$
D_{r+2}^{\beta_{r+2}} \cdots D_{n}^{\beta_{n}}:=L M\left(g_{i}\right)
$$

$$
\text { If } g_{i} \neq 0 \text { and } \prod_{i=r+2}^{n}\left(\beta_{i}+1\right)<\prod_{i=r+2}^{n}\left(\alpha_{i}+1\right) \text { then set } \alpha:=\beta
$$

End For
Set $J:=\left\{x_{r+2}^{\gamma_{r+2}} \cdots x_{n}^{\gamma_{n}} \mid \gamma \leq_{0} \alpha\right\}$
Reduce J to $\left\{h_{1}, \ldots, h_{m}\right\} \subset J$, s.t. still $\sum_{j=1}^{m} \sum_{i=0}^{t} \mathcal{R} g_{i} h_{j}+\mathcal{R} q=\mathcal{R}$
$k:=1, f:=0$
Repeat:
Compute a left Gröbner basis G_{k} of $\mathcal{R} q+\sum_{j=1}^{k} \sum_{i=0}^{t} \mathcal{R} g_{i} h_{j}$
Repeat:
Choose in a systematic way a finite set $N \in \mathbb{N}$
and f_{k} of the form $f_{k}:=\sum_{i \in N} x_{r+1}^{i}$
Compute a left Gröbner basis F_{k} of $\mathcal{R} q+\mathcal{R} v\left(f+f_{k} h_{k}\right)$
Until $\sum_{g \in G_{k}} \mathcal{R} g \subset \sum_{h \in F_{k}} \mathcal{R} h$
$f:=f+f_{k} h_{k}$
$k:=k+1$
Until \mathcal{R} is generated by F_{k}
Display f
End.

Proof. This algorithm follows the proof of Theorem 3.5. At first v is decomposed as in (1). Then in the For-loop a good coefficient g_{i} and its leading monomial $L M\left(g_{i}\right)=$
D^{α} are determined in such a way that the set J becomes as small as possible $(|J|=$ $\prod_{i=r+2}^{n}\left(\alpha_{i}+1\right)$, see (2)). Thereafter (not necessary for the algorithm to work) one can apply some strategy in order to minimize the set J without violating (3).
Now the proper algorithm starts: in the repeat loop a left Gröbner basis G_{k} of $\mathcal{R} q+$ $\sum_{i=0}^{t} \sum_{j=1}^{k} \mathcal{R} g_{i} h_{j}$ is computed. This is done to eventually "simplify" the generating system of the ideal. After this one tries various $f_{k}=\sum_{i \in N} x_{r+1}^{i}$ and computes in each case a left Gröbner basis F_{k} of $\mathcal{R} q+\mathcal{R}\left(f+f_{k} h_{k}\right)$. This must be done until the left \mathcal{R}-ideal generated by F_{k} contains the left \mathcal{R}-ideal generated by G_{k} in which case $\mathcal{R} q+$ $\sum_{j=1}^{k} \sum_{i=0}^{t} \mathcal{R} g_{i} h_{j} \subseteq \mathcal{R} q+\mathcal{R}\left(f+f_{k} h_{k}\right)$ (see (4), (5), (7) in the proof of Theorem 3.5).
At this point the following questions arise:
(a) How can one check the inclusion $\sum_{g \in G_{k}} \mathcal{R} g \subseteq \sum_{h \in F_{k}} \mathcal{R} h$?
(b) How can one find the f_{k} in such a way that the algorithm stops after finitely many steps?
(a): Since F_{k} is a left Gröbner basis of $\sum_{h \in F_{k}} \mathcal{R} h$, a polynomial g is from $\sum_{h \in F_{k}} \mathcal{R} h$ if and only if the reduction remainder $\bar{g}^{F_{k}, l}$ is zero.
Therefore $\sum_{g \in G_{k}} \mathcal{R} g \subseteq \sum_{h \in F_{k}} \mathcal{R} h$ only if $\bar{g}^{F_{k}, l}=0$ for all $g \in G_{k}$.
(b): We know that an $f_{k}=\sum_{i \in N} x_{r+1}^{i}$, which makes the algorithm stop, must exist, see (4), (5), (7). Therefore, taking successively $f=1, x_{r+1}, x_{r+1}+1, x_{r+1}^{2}, x_{r+1}^{2}+$ $1, x_{r+1}^{2}+x_{r+1}, x_{r+1}^{2}+x_{r+1}+1, x_{r+1}^{3}, \ldots$ after finitely many steps one must meet a good choice. Apparently any section-finite linear order for the admitted monomial sums can be used.
The algorithm as a whole stops at the latest when $k=m+1$ because of (3).

The foregoing Theorem and the algorithm prove the effectiveness of the determination of a very simple "trivializing" polynomial f. Note that there is no need to determin lengths of quotient modules or other objects which have been of importance in the preparation of the mathematical background via the Lemma 3.1 to 3.4.

Example 3.7. Let $v=D_{3}^{2}+x_{3}, q=D_{1}+x_{2}$ and $\mathcal{R}=K\left(x_{1}, x_{2}, x_{3}\right)\left[D_{1}, D_{2}, D_{3}\right]$, so in this case $r=0 . q$ is an element of R_{1}. As a monomial order let us take the lexicographic order with $D_{1}<D_{2}<D_{3}$.
The decomposition of v in this example is trivial. One has $v=g_{0}=D_{3}^{2}+x_{3}$. Since the leading monomial of g_{0} is D_{3}^{2}, we get $J=\left\{1, x_{3}, x_{3}^{2}\right\} . J$ can be reduced to $J=$ $\left\{h_{1}, h_{2}\right\}=\left\{x_{3}, 1\right\}$, since $\{1\}$ is a left Gröbner basis of $\mathcal{I}_{l}\left(q, g_{0} h_{1}, g_{0} h_{2}\right)$. Now we enter the repeat loop. One computes $G_{1}=\left\{D_{1}+x_{2}, x_{3} D_{3}^{2}+x_{3}^{2}+2 D_{3}\right\}$ as a Gröbner basis of $\mathcal{I}_{l}\left(q, g_{0} h_{1}\right)$. Since $g_{0}=v$, already $f_{1}=1$ is a good choice. The algorithm then updates $f:=0+f_{1} h_{1}=x_{3}$. For the second way through the main repeat loop the algorithm determines $G_{2}=\{1\}$ as a left Gröbner basis for $\mathcal{I}_{l}\left(q, g_{0} h_{1}, g_{0} h_{2}\right)$. The choice $f_{2}=1$ is not a good one in this case, but the choice $f_{2}=x_{1}$ is good, since the set $\left\{q, v\left(f+f_{2} h_{2}\right)\right\}$ left-generates the whole ring.
Thus the output of the algorithm in this simple example is $f:=x_{3}+x_{1}$.

Remark 3.8. Computation in the foregoing simple example and in Example 3.13 below can still be done by hand. More complex examples have been computed with the help of

MapleV5-versions of the algorithms in this article and applying the Gröbner basis and multiplication facility of Chyzak's nice Ore-algebra package (to be used carefully).

3.3. An effective version of Stafford's theorem

In this subsection the proof of Stafford's theorem will be completed and an algorithm will be presented to compute generators as stated in the theorem. To achieve this, and as a first step, we will have to interpret for the ring R_{r} our results for \mathcal{R} :

Lemma 3.9. Let $v \in R_{n} \backslash\{0\}, q_{r+1} \in R_{r+1} \backslash\{0\}$ and $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ s.t. $\mathcal{R}=$ $\mathcal{R} q_{r+1}+\mathcal{R} v f$ (see Theorem 3.5). Then the following statements hold and are equivalent:
(a) There is a $q_{r} \in R_{r} \backslash\{0\}$ s.t. $q_{r} \in R_{n} q_{r+1}+R_{n} v f$.
(b) If \leq is a monomial order on R_{n} with $D_{i}<D_{j}$ for all $i \in\{1, \ldots, r\}$ and $j \in\{r+1$, $\ldots, n\}$, and if $\left\{h_{1}, \ldots, h_{k}\right\} \subset R_{n} \backslash\{0\}$ is a left Gröbner basis of $R_{n} q_{r+1}+R_{n} v f$, then at least one of the h_{i} is from R_{r} and the Gröbner basis element with least leading monomial is one such h_{i}.

Proof. At first the correctness of (a) will be proved.
For $\mathcal{R}=\mathcal{R}_{r}\left[D_{r+1}, \ldots, D_{n}\right]$ Theorem 3.5 some $r_{1}, r_{2} \in \mathcal{R}, f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ must exist satisfying

$$
\begin{equation*}
1=r_{1} q_{r+1}+r_{2} v f \tag{*}
\end{equation*}
$$

r_{1} and r_{2} cannot both be zero. If $r_{1} \neq 0$, then we can write

$$
r_{1}=\sum_{\substack{\alpha \in \mathbb{N} n \\ \alpha_{1}=\cdots=\alpha_{r}=0}} \frac{1}{a_{\alpha}} b_{\alpha} D^{\alpha}
$$

with some nonzero $a_{\alpha} \in R_{r}$ and some $b_{\alpha} \in R_{r}$. Let $a \in R_{r} \backslash\{0\}$ be a common left multiple of all the a_{α} and suppose $a=a_{\alpha}^{*} a_{\alpha}$, then

$$
r_{1}=\frac{1}{a} \sum_{\substack{\alpha \in \mathbb{N}^{n} \\ \alpha_{1}=\cdots=\alpha_{r}=0}} a_{\alpha}^{*} b_{\alpha} D^{\alpha}=: \frac{1}{a} \underbrace{b}_{\in R_{n}} .
$$

If $r_{2} \neq 0$, then we can represent r_{2} in a similar way as $r_{2}=\frac{1}{c} d$ with $c \in R_{r}, d \in R_{n}$. Let $a:=1$ resp. $c:=1$ in the case $r_{1}=0$ resp. $r_{2}=0$. Now, with a common left multiple $q_{r} \in R_{r}$ of a and c the equation $(*)$ translates to

$$
q_{r}=q_{r} r_{1} q_{r+1}+q_{r} r_{2} v f=\underbrace{q_{r} \frac{1}{a} b}_{\in R_{n}} q_{r+1}+\underbrace{q_{r} \frac{1}{c} d v f}_{\in R_{n}}
$$

This proves (a). Clearly (b) implies (a) but it remains to show the converse:
Since there is a $q_{r} \in R_{r} \backslash\{0\}$ s.t. $q_{r} \in R_{n} q_{r+1}+R_{n} v f$, one of the leading monomials $L M\left(h_{i}\right)(i \leq k)$ must divide $L M\left(q_{r}\right) \in R_{r}$, which implies $L M\left(h_{i}\right) \in R_{r}$ and because of the particular monomial order also $h_{i} \in R_{r}$. The rest of the statement is now immediate.

The following Lemma and the subsequent Theorem 3.11 will imply directly the Theorem of Stafford. The proof of the Lemma will then lead to the second part of the procedure for the computation of a two-element basis for a given left ideal of R.

Lemma 3.10. Let $a, b, c \in R_{n} \backslash\{0\}$. For all $0 \leq r \leq n$ there exist $a_{r}, b_{r} \in R_{n}$ and $q_{r} \in R_{r} \backslash\{0\}$ s.t.

$$
q_{r} c \in R_{n}\left(a+a_{r} c\right)+R_{n}\left(b+b_{r} c\right) .
$$

Proof. With $a_{n}=0$ and $b_{n}=0$ and a common left multiple $q_{n} c$ of a, c we see that the statement is true for $r=n$. We proceed by induction from $r+1$ to r, where $n-1 \geq$ $r \geq 0$. Assume that we have found some $a_{r+1}, b_{r+1} \in R_{n}$ and $q_{r+1} \in R_{r+1} \backslash\{0\}$, s.t. $q_{r+1} c \in R_{n}\left(a+a_{r+1} c\right)+R_{n}\left(b+b_{r+1} c\right)$. Suppose

$$
\begin{equation*}
q_{r+1} c=h_{1}\left(a+a_{r+1} c\right)+h_{2}\left(b+b_{r+1} c\right) \tag{1}
\end{equation*}
$$

with $h_{1}, h_{2} \in R_{n}$. We can assume that $h_{1} \neq 0$, otherwise one only has to interchange a, a_{r+1} and b, b_{r+1}. One has to perform now a series of tricky substitutions (going back to Stafford). Since R_{n} is also right Ore, there are some $g_{1}, g_{2} \in R_{n}, g_{2} \neq 0$ satisfying

$$
\begin{equation*}
h_{1} g_{1}+h_{2} g_{2}=0 \tag{2}
\end{equation*}
$$

and also some $s, t \in R_{n} \backslash\{0\}$ satisfying

$$
\begin{equation*}
s q_{r+1} c=t\left(b+b_{r+1} c\right) \tag{3}
\end{equation*}
$$

For $v=t g_{2} \neq 0$ Lemma 3.9 gives us $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and $q_{r} \in R_{r}$ s.t. with some $p_{1}, p_{2} \in R_{n}$ one has $q_{r}=p_{1} q_{r+1}+p_{2} t g_{2} f$. The latter, right-multiplied by c, gives

$$
\begin{equation*}
q_{r} c=p_{1} q_{r+1} c+p_{2} t g_{2} f c . \tag{4}
\end{equation*}
$$

Now one can construct the new parameters. With the help of $a_{r}:=a_{r+1}+g_{1} f, b_{r}:=$ $b_{r+1}+g_{2} f, d=\left(p_{1}-p_{2} s\right), h_{1}^{*}=d h_{1}, h_{2}^{*}=d h_{2}+p_{2} t$ it will be shown that

$$
\begin{equation*}
q_{r} c=h_{1}^{*}\left(a+a_{r} c\right)+h_{2}^{*}\left(b+b_{r} c\right) \tag{5}
\end{equation*}
$$

which completes induction. In order to prove (5) we now compute as follows:

$$
\begin{aligned}
& h_{1}^{*}\left(a+a_{r} c\right)+h_{2}^{*}\left(b+b_{r} c\right) \\
= & d h_{1}\left(a+a_{r+1} c+g_{1} f c\right)+d h_{2}\left(b+b_{r+1} c+g_{2} f c\right)+p_{2} t\left(b+b_{r+1} c+g_{2} f c\right) \\
= & d(\underbrace{h_{1}\left(a+a_{r+1} c\right)+h_{2}\left(b+b_{r+1} c\right)}_{=q_{r+1} c \text { by induction hypothesis }}+\underbrace{\left(h_{1} g_{1}+h_{2} g_{2}\right)}_{=0 \text { by }(2)} f c)+p_{2} t\left(b+b_{r+1} c+g_{2} f c\right) \\
= & d q_{r+1} c+p_{2} \underbrace{t\left(b+b_{r+1} c\right)}_{=s q_{r+1} c \text { by }(3)}+p_{2} t g_{2} f c \\
= & \left(p_{1}-p_{2} s\right) q_{r+1} c+p_{2} s q_{r+1} c+p_{2} t g_{2} f c \\
= & p_{1} q_{r+1} c+p_{2} t g_{2} f c=\left(p_{1} q_{r+1}+p_{2} t g_{2} f\right) c \\
= & q_{r} c \quad \text { by }(4) .
\end{aligned}
$$

An easy application of the foregoing Lemma leads to:
Theorem 3.11. For any $a, b, c \in R_{n} \backslash\{0\}$ there exist $\widetilde{a}, \widetilde{b} \in R_{n}$ s.t.

$$
\mathcal{I}_{l}(a+\widetilde{a} c, b+\widetilde{b} c)=\mathcal{I}_{l}(a, b, c) .
$$

Proof. Lemma 3.10 for $r=0$ guarantees the existence of a nonzero $q_{0} \in R_{0}=$ $K\left(x_{1}, \ldots, x_{n}\right)$ and $a_{0}, b_{0} \in R_{n}$ s.t.: $q_{0} c \in R_{n}\left(a+a_{0} c\right)+R_{n}\left(b+b_{0} c\right)$. But then c and also a and b must be from $R_{n}\left(a+a_{0} c\right)+R_{n}\left(b+b_{0} c\right)$. Set $\widetilde{a}:=a_{0}$ and $\widetilde{b}:=b_{0}$.
For examples see Example 3.13.
With the help of Lemma 3.10, Theorem 3.11 and Algorithm 3.6 we now can give an algorithm which computes a two-element basis for a left ideal which is generated by three elements

Algorithm 3.12. Let \leq be the lexicographic monomial order on $\left\{D^{\alpha} \mid \alpha \in \mathbb{N}^{n}\right\}$ s.t. $D_{1}<\cdots<D_{n}$.
Input: $a, b, c \in R_{n} \backslash\{0\}$.
Output: $a^{*}, b^{*} \in R_{n}$ s.t. $\mathcal{I}_{l}\left(a^{*}, b^{*}\right)=\mathcal{I}_{l}(a, b, c)$.
$\underline{\text { Start: }} a^{*}:=a, b^{*}:=b$.
compute $\operatorname{lclm}(a, c)$.
$h_{1}:=\operatorname{lclm}(a, c) \frac{1}{a}, h_{2}:=0 \in R_{n}$.
$q:=\operatorname{lclm}(a, c) \frac{1}{c}$
Choose minimal r s.t. $q \in R_{r+1}, r \geq-1$.
While $q \notin K\left(x_{1}, \ldots, x_{n}\right)$ repeat:
If $h_{1}=0$, interchange a^{*} with b^{*} and h_{1} with h_{2}.
If $h_{2}=0$, set $g_{1}:=0, g_{2}:=1$,
else set $g_{1}:=\frac{1}{h_{1}} \operatorname{lcrm}\left(h_{1}, h_{2}\right), g_{2}:=-\frac{1}{h_{2}} \operatorname{lcrm}\left(h_{1}, h_{2}\right)$.
Compute $\operatorname{lclm}\left(q c, b^{*}\right)$.
$s:=\operatorname{lclm}\left(q c, b^{*}\right) \frac{1}{q c}, t:=\operatorname{lclm}\left(q c, b^{*}\right) \frac{1}{b^{*}}$.
$v:=t g_{2}$.
Compute an $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ s.t. $\mathcal{R}=\mathcal{R} q+\mathcal{R} v f$.
Compute a left Gröbner basis G for $\mathcal{I}_{l}(q, v f)$.
$q^{*}:=$ element out of G with minimal $L M\left(q^{*}\right)$
Compute p_{1} and p_{2} s.t. $q^{*}=: p_{1} q+p_{2} v f$.
$q:=q^{*} \quad$ Choose minimal r s.t. $q \in R_{r+1}, r \geq-1$.
$a^{*}:=a^{*}+g_{1} f c, b^{*}:=b^{*}+g_{2} f c$.
$h_{1}:=\left(p_{1}-p_{2} s\right) h_{1}, h_{2}:=\left(p_{1}-p_{2} s\right) h_{2}+p_{2} t$.
End While.
Display a^{*} and b^{*}.
End.

Proof. The algorithm follows the proof of Lemma 3.10:
At first an $\operatorname{lclm}(a, c)$ is computed. This can be done by means of a Gröbner basis computation. Next q is determined as the unique result of a polynomial division. The minimal r can then be extracted from $q . h_{1}$ and h_{2} now satisfy equation (11) in the proof of 3.10. If q is already in $K\left(x_{1}, \ldots, x_{n}\right)$, we are done, if not, then the following is repeated until q is finally in $K\left(x_{1}, \ldots, x_{n}\right)$:
To assure that v stays nonzero one has to interchange eventually the polynomials $h_{1}, h_{2}, a^{*}, b^{*}$. During the next step the algorithm determines g_{1}, g_{2} in such a way that (2) in the proof of 3.10 will be satisfied. Thereafter s, t are determined s.t. (3) in the proof of 3.10 is valid. After this f is computed by Algorithm 3.6. In order to obtain a new q for
the next passage through the main loop the algorithm now computes a left Gröbner basis for $\mathcal{I}_{l}(q, v f)$. From this basis q^{*} (which will become the new q) is extracted according to Lemma 3.9. Now p_{1}, p_{2} can be determined by tracing back the foregoing Gröbner basis computation. From Lemma 3.9 we know that at this stage the new r must be definitively smaller than the one before. So after at most n iterations the most recent q will be an element of $R_{0}=K\left(x_{1}, \ldots, x_{n}\right)$. A final update gives the desired generators a^{*} and b^{*}.

Example 3.13. We give two examples to illustrate Algorithm 3.12 and Theorem 3.11. The first one can still be verified by hand in short time.
(a) Let $a:=D_{1}+x_{2}, b:=D_{3}^{2}+x_{3}$ and $c:=D_{2}+x_{1}$. These generators commute in R_{3}, but in contrast to commutative polynomial rings, here we can produce the same ideal by two generators only. Note that $\{a, b, c\}$ is the reduced Gröbner basis with respect to lexicographic order. Algorithm 3.12 starts by computing $\operatorname{lclm}(a, c)=1+x_{1} D_{1}+x_{1} x_{2}+$ $D_{2} D_{1}+x_{2} D_{2}$ and then sets: $h_{1}:=D_{2}+x_{1}, h_{2}:=0, q:=D_{1}+x_{2}$. The latter gives $r:=0$. This means that there will be only one iteration. Since $h_{2}=0$, the polynomials g_{1}, g_{2} are specified as follows: $g_{1}:=0, g_{2}:=1$. Next one computes $\operatorname{lclm}\left(q c, b^{*}\right)=$ $x_{1} D_{3}^{2} D_{1}+x_{2} D_{3}^{2} D_{2}+x_{3} D_{2} D_{1}+x_{3} x_{1} x_{2}+x_{3}+x_{2} x_{3} D_{2}+x_{1} x_{3} D_{1}+D_{3}^{2}+x_{1} x_{2} D_{3}^{2}+D_{3}^{2} D_{2} D_{1}$ and right division by b^{*} gives $t=D_{3}^{2}+x_{3}$ and $v=t g_{2}=D_{3}^{2}+x_{3}$. Now Algorithm 3.6 is applied to compute $f=x_{1}+x_{3}$ (compare Example 3.7). This f is in fact a good choice since $\{1\}$ is a left Gröbner basis for $\mathcal{I}_{l}(q, v f)$. Thus we can choose $q^{*}=1$ at this stage, which leads to $q:=1$, which makes the algorithm stop. The output will be now

$$
a^{*}=D_{1}+x_{2}, \quad b^{*}=D_{3}^{2}+x_{3}+x_{1} x_{3}+x_{1}^{2}+\left(x_{3}+x_{1}\right) D_{2} .
$$

This result can easily be checked by computing a Gröbner basis for $\mathcal{I}_{l}\left(a^{*}, b^{*}\right)$, which gives $\left[D_{2}+x_{1}, D_{1}+x_{2}, D_{3}^{2}+x_{3}\right]=[c, a, b]$. The operation which leads from (a, b, c) to $\left(a^{*}, b^{*}\right)$ is

$$
(a, b, c) \longmapsto(a, b+f c, c) \longmapsto\left(a^{*}, b^{*}, 0\right) .
$$

Of course there are other polynomials f which lead to a generating pair. By Algorithm 3.6 the variables are considered in the order x_{3}, x_{2}, x_{1}. Therefore x_{3} happens to appear in f. As a referee noted, also $f=x_{1}$ would do the job.
(b) The following generators do not commute. Let $a:=x_{2} D_{3} D_{1}+D_{1}^{2}, b:=D_{2} D_{1}+$ $x_{3} D_{1}^{2}, c:=x_{2} D_{3} D_{1}^{2}+\left(-x_{2}+x_{2}^{2}\right) D_{3} D_{1}-x_{2}^{2} D_{3}-D_{2}^{2} D_{1}+D_{2}^{2}-x_{3} D_{2} D_{1}^{2}+x_{3} D_{2} D_{1}+$ $D_{1}^{3}+\left(x_{2}-1\right) D_{1}^{2}-x_{2} D_{1}$. They generate an ideal whose reduced left Gröbner bases for total-degree and different lexicographical orderings consist of three elements. Here with $f:=D_{2}$ and $g:=D_{1}+x_{2}$ one has $\mathcal{I}_{l}(a+f c, b+g c)=\mathcal{I}_{l}(a, b, c)$. While the determination of an appropriate f and g is cumbersome the verification of the latter equation is relatively easy.

The main results behind us it, is merely a formality to arrive at the following

Theorem 3.14. Theorem of Stafford
Any left ideal in R_{n} can be generated by two elements. An analogous statement can be proved for right ideals.

Proof. By Hilbert's Basis Theorem any left ideal $I \subset R_{n}$ can be generated finitely and it remains to apply Theorem 3.11 finitely often.

Remark 3.15. The original Theorem of Stafford as presented in Björk (1979) or Stafford (1978) says more than Theorem 3.14. Even for left ideals in the Weyl algebra $K\left[x_{1}, \ldots, x_{n}\right]$ $\left[D_{1}, \ldots, D_{n}\right]$ the Theorem holds. To arrive at this result additional elimination of the variables x_{n}, \ldots, x_{1} from $q_{0} \in K\left[x_{1}, \ldots, x_{n}\right]$ as given in Lemma 3.10 must be done effectively. Due to the symmetry of Weyl algebras this should be possible in a way similar to the elimination of D_{n}, \ldots, D_{1}. Since our interest is in matrices over R_{r} we will not continue here in this direction.

4. Remarks on Matrices of Differential Operators

It was the problem of simplifying matrices over R_{r} which led us to this specific Theorem of Stafford's. The Jacobson-Teichmüller normal form over R_{1} with its deep uniqueness Theorem by Nakayama (see Cohn, 1971) and results from control theory indicate that the study of matrices over R_{r} merits interest on its own. Applying Stafford's Theorem it is in principal possible to reduce such matrices applying Theorem 3.11 as indicated in the introduction. But the computation of new generators by Algorithm 3.12 is apparently a rather great effort. Relaxing the notion of equivalence in order to admit enlargements of matrices by zero rows and zero columns the following approach usually will give considerable simplification much more rapidly in many cases.
Assume that the matrix has two columns and at least two non-zero rows and a right column module which cannot be generated by just one column. Proceed as follows:
(1) Add a random right multiple of the second column to the first column.
(2) enlarge the matrix by zero rows in order to admit the computation of a left Gröbner basis of the entries of the first column by elementary row operations.

Now the conjecture is that generically you will get $\{1\}$ as a Gröbner basis. Thus the Jacobson-Teichmüller-Nakayama normal form (see introduction) seems to appear in a weakened form also in more than one variable. We illustrate this by the following example:

Example 4.1. Consider the matrix $M:=\left[\begin{array}{cc}D_{1} & 0 \\ 0 & D_{2} \\ 0 & 0\end{array}\right]$, which has already been enlarged by a zero row. Add the λ-right-multiple of the second column to the first column. Choose e.g. $\lambda=\left(x_{1}+x_{2}\right)$. This choice of λ was proposed by a referee and makes calculations a bit easier. Now the new first column has $\{1\}$ as left Gröbner basis. Therefore M can be transformed by a total of two right column and several left row operations to

$$
N:=\left[\begin{array}{cc}
1 & 0 \\
0 & \left(x_{1}+x_{2}\right) D_{1} D_{2}{ }^{2}+2 D_{1} D_{2}-D_{2}{ }^{2} \\
0 & D_{1}^{2} D_{2}
\end{array}\right]
$$

The matrices M and N are equivalent. In a similar fashion $\operatorname{diag}\left(D_{1}, D_{2}, D_{3}\right)$ enlarged by a zero row is equivalent to a matrix whose first two columns are the first two canonical vectors. Random examples apart from eventual complexity problems yield the same behavior. Together with Stafford's Theorem this would mean that any full right column rank matrix over R_{r} with at least two non-zero rows is (after an appropriate zero
extension) equivalent to a matrix of the form

$$
\left[\begin{array}{cclc}
1 & 0 & \cdots & \\
\vdots & & \ddots & \\
0 & & & 1 \\
0 \\
0 & & \cdots & \\
0 & & \cdots & \\
0 & & q \\
\vdots & & & \\
0 & & & 0 \\
0
\end{array}\right]
$$

The only difference from the one-variable case is that there are two eventually nonzero entries in the last column.

References

Adams, W. W., Loustaunau, P. (1996). An Introduction to Gröbner Bases. Providence RI, USA, American Mathematical Society.
Björk, J. E. (1979). Rings of Differential Operators. North-Holland
Briancon, J., Maisonobe, P. (1984). Idéaux de germes d'opérateurs différentiels à une variable. L'Enseignement de Mathématique, 30, 7-30.
Castro, F. J. (1987). Calculs effectives pour les idéaux d'opérateurs différentiels, Géometrie et Applications, III: Géometrie Reelle: Systèmes Différentiels et Théorie de Hodge, Paris.
Chyzak, F. (1998). Fonctions holonomes en calcul formel, Thèse de doctorat, Ecole polytechnique.
Cohn, P. M. (1971). Free Rings and their Relations, $2^{\text {nd }}$ edn. London Mathematical Society.
Cotroneo, T. (1999). Observability of linear differential behaviors. In Polderman, J. W., Trentelman, H. eds, The Mathematics of Systems and Control: from Intelligent Control to Behavioral Systems. Groningen University.
Cohen, A. et al. (1999). Some Tapas of Computer Algebra. Springer.
Dauns, J. (1982). A Concrete Approach to Division Rings. Berlin, Helderman.
Ilchmann, A., Nürnberger, I., Schmale, W. (1984). Time-varying polynomial matrix systems. Int. J. Control, 40, 329-362.
Guralnick, R. M., Levy, L. S., Odenthal, C. (1988). Elementary divisor theorem for noncommutative PID-s. Proc. $A M S, 103,1003-1011$.
Pesch, M. (1998). Two-sided Groebner bases in iterated Ore extensions. In Manuel, B. et al. eds., Symbolic Rewriting Techniques. Papers from the Workshop held in Ascona, Switzerland, April 30-May 4, 1995, pp. 225-243. Basel, Birkhaeuser
Stafford, J. T. (1978). Module Structure of Weyl algebras. J. London Math. Soc., Ser. II, 18, 429-442 van der Waerden, B. L. (1964). Algebra. Springer.

