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Abstract

In this paper we present an algorithm for parametgzapproximate algebraic surfaces by lines. The algorithm
is applicable tas-irreducible algebraic surfaces of degiéénaving ans-singularity of multiplicity d — 1, and
therefore it generalizes the existing approximate patdragion algorithms. In particular, given a tolerance 0
and ans-irreducible algebraic surfacgé of degreed, the algorithm computes a new algebraic surfiicehat is
rational, as well as a rational parametrizatiorvofin addition, in the error analysis we show that the output surface
V and the input surfac¥ are close. More precisely, we prove thaties in the offset region o¥ at distance, at
most,O(e1/ (D)),
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Introduction

The combination of computer algebra techniques with classical theoretical results in pure mathematics
has yielded to many important symbolic algorithms (i.e., algorithmic methods where input and output are
assumed to be exact) to solve relevant problems, especially, in algebra and algebraic geometry (see, e.g.,
(Cox et al., 1997; Hoffmann et al., 1997; Winkler, 1996)). Nevertheless, in many practical applications,
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for instance in the frame of computer aided geometric design, these approaches tend to be insufficient,
since in practice most of data objects are given or become approximate. As a consequence of this phenom-
enon, there has been an increasing interest for the development of hybrid symbolic-numerical algorithms

and approximate algorithms.

Approximate algorithms deal with mathematical objects that are assumed to be given approximately,
probably because they proceed from an exact data that has been perturbed under some previous measuring
process or manipulation. Since the input data, Bahas been perturbed, the mathematical eititiiat
one wants to compute (for instance a gcd, a Grobner basis, a singular locus structure, etc.) has changed
and does not behave anymore as expected. Then, the problem consists in finding a nel clujlese”
to D, satisfying the expecting proper. The notion of “closeness” depends on the particular problem
that one is trying to solve, and has to be defined properly. Examples of approximate algorithms in algebra
can be found in (Corless et al., 1995; Emiris et al., 1997; Pan, 1996) for computing polynomial greatest
common divisors, in (Corless et al., 1995; Emiris and Pan, 2002; Fortune, 2001) for finding zeros of
multivariate systems, in (Corless et al., 2001; Galligo and Rupprech, 2002; Pan, 2001; Sasaki, 2001) for
factoring polynomials, in (Moéller, 1998; Stetter, 1997) for numerical computation of Grébner basis, etc.

One may illustrate this type of phenomenon by the following easy example on factorization of ap-
proximate polynomials, that has been taken from (Corless et al., 2001). Cofs@kethe polynomial
p(x,y) = y?> — x* 4+ 0.01x?, that does not have the prope&yof being reducible. In this situation, the
problem consists in computing a new obj&tin this case a new polynomigl(x, y), having the prop-
erty £ and being close tp(x, y). Applying algorithms in (Corless et al., 2001), one gets fhat, y) can
be taken as

p(x,y) = (y + x> — 0.0050433(y — x2 + 0.0049999
that factors. Moreover, it holds that
Ilp — Pl
Ipll
Observe that in this case, the notion of closeness, has been taken as a relative error.

For approximate algorithms in algebraic geometry we refer to (Bajaj et al., 1988; Bajaj and Xu, 1997;
Demmel and Manocha, 1995; Golub and Van Loan, 1989; Hoffmann, 1993) for the computation of singu-
larities, to (Corless et al., 2000; Dokken, 2001) for implicitization methods, to (Farouki and Rajan, 1988)
for the analysis of the numerical condition of implicitly given algebraic curves and surfaces, to (Bajaj
and Royappa, 2000; Gahleitner et al., 2002; Hartmann, 2000; Pérez-Diaz et al., 2004) to parametrization
algorithms, etc.

In this paper, we study the problem of parametrizing approximate algebraic surfaces. In this context,
and in order to be more precise, the problem can be stated as follows. Given a fixed toletaf¢e
that may be introduced for instance by the user or by the constrains of the application process, and given
an e-irreducible algebraic surfacg (see either (Corless et al., 2001) or Section 2 for the notiost of
irreducibility), that may be or may not be rational, one has to compute a rational stirfacel a parame-
trization of V, such that’ lies within the region limited by the external and the internal offséf cét dis-
tances (¢), where|é(¢) — ¢| is significantly small (see (Arrondo et al., 1997) for basic notions of offsets).

Approximate parametrization algorithms for curves and surfaces can be found in (Bajaj and Royappa,
2000; Gahleitner et al., 2002; Hartmann, 2000; Pérez-Diaz et al., 2004). In (Gahleitner et al., 2002;
Hartmann, 2000) the problem is treated locally. In (Bajaj and Royappa, 2000) the problem is treated
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globally and the authors present a method for conics, cubics and quadrics. In (Pérez-Diaz et al., 2004)
the results in (Bajaj and Royappa, 2000) are generalized to a wider class of algebraic curves, namely those
curves having “almost” a singularity of maximum multiplicity. In this paper, we show how the results
presented in (Pérez-Diaz et al., 2004) can be extended to surfaces havismgalarity of multiplicity

d — 1 (see Sections 2 and 3 for the notionse$ingularity), wherel is the degree of the input surface,

ande > 0 is the tolerance. Therefore in this paper we generalize the results given in (Bajaj and Royappa,
2000); note that quadrics are a particular case of the above situation. In addition, we analyze the error,
and we prove that the output rational surface lies in the offset region of the input surface at distance, at
most, O (¥ @), whered > 0 is the degree of the input surface, and 0 is the fixed tolerance. Besides

this theoretical analysis of the distance between the input and output surfaces, in the examples, we have
empirically quantified the distance. The conclusion of this experimental analysis is that, in practical
examples, the distance is smaller than the theoretical bound shows.

The paper is structured as follows. Section 1 is preliminary, and we briefly describe the symbolic algo-
rithm to parametrize surfaces by lines. In Section 2 we give the approximate algorithm for quadrics, and
in Section 3 we present the general algorithm for parametrizing by lines surfaces haghsingularity
of multiplicity d — 1, whered is the degree of the input surface. Section 4 is devoted to the analysis of
the error, and we prove that the output generated by our algorithm is close to the input surface.

1. Preliminaries. symbolic parametrization of surfaces by lines

In this section, we recall how to parametrize by lines some special surfaces; for more details see
(Abhyankar and Bajaj, 1989; Schicho, 1998; Wang et al., 1997). For this purpose, we consider w.l.0.g.
surfaces of degree greater than 1.

Let V be an irreducible surface of degré@ver an algebraically closed fieli; in practice, one may
think thatKK is the fieldC of the complex numbers. We assume tifahas a pointP of multiplicity
(d —1). That is, all partial derivatives of the defining polynomialof till order d — 2, vanish atP. In
this caseV can be parametrized by means of rational functions, W.és, a rational surface. The idea for
actually computing a parametrization of this type of surfaces consists in a generalization of the algorithm
for quadrics presented in (Abhyankar and Bajaj, 1989; Sederberg and Snively, 1987; Wang et al., 1997).
Intuitively speaking, any line through must intersect the surfadéin one additional point, by Bézout’s
theorem (see Fig. 1). Thus, if one parametrizes a pencil of ligg, /), throughP, that point onV can
be expressed, for each lik (¢, 1) in the pencil, by an expression inand:.

More precisely, letf (x, y, z) be the implicit equation of an irreducible affine quad¥icWe consider
a pointP € V not being a singularity and |éf be a plane not containing the poift In these conditions,
one considers the projection &f with center onP over the pland7. Moreover, letQ(t, h) be a generic
point of IT and letH; = P + A(Q(¢, h) — P) be the pencil of lines. Thus, intersectitf andV one gets
the parametrizatio® (¢, 1) of V. That is, fromf (H;) = 0 one may express rationallyin terms ofz, &,
and afterwards by substituting it i, one obtains the parametrization Wbf(see Fig. 1).

In the particular case of the example illustrated in Fig. 1, i.e., wheiie the sphere of equation
f(x,y,2) =x% 4+ y%2 4+ z2 — 1, the algebraic calculation would be as follows. We consideP ahe
point P = (0,0, 1) and the plandT of equationz = 0; note thatP ¢ I1. Then,Q(t, h) = (¢, h, 0), and
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P(t, h)

Qft, h)

Fig. 1. Geometric idea of the parametrization of quadrics.

H, (¢, h) = (At, Ah, 1 — 1). Now, f(H,(t, h)) = A(At? 4+ Ah? — 2+ 1). So, forx = 0 one gets the point
P, and forx = 2/(t? + h? + 1), one obtains the sphere rational parametrization

2t 2h 1 2
24+ n2+1 24+ n2+17 24+ h241)

The above reasoning can be generalized to irreducible surfaces of deesng a point of multi-
plicity d — 1. In fact, the above geometric process can be seen algebraically as follow<gxl-¢t z) be
the implicit equation o and we assume w.l.0.g. that the poihE V of multiplicity d — 1 is the origin.
Otherwise one may consider a linear change of coordinates. In this situation, it holds that

fxy,2) = falx,y,2) + fa-1(x, y,2),
where f,;(x, v, 2), fa—1(x, y, z) are the homogeneous forms of degieandd — 1 of f(x, y, z), respec-
tively. In this situation, letQ(z, h) = (¢, h, 1) be a generic point of the plan@ defined byz; = 1 (note
that nowP ¢ IT); hence,

Hy = (A, Ah, ).
Thus, intersecting oV with 7, one gets that

FOL 1) =2 fa, b, D)+ A7 fya @, b, ),
and therefore one deduces that

= Ja-1(t, h, 1)
Ja(t, h, 1)
Then, a rational parametrization &fis given by
Ja-1(t,h, 1) _n Jaa@t, D) faa(t, b, 1))
fat,h, ) 7 fa(t,h, D) T fa(t, D)

More precisely, one has the following parametrization algorithm by lines:

P(t, h)= (

P(t, h)= <—t



S. Pérez-Diaz et al. / Computer Aided Geometric Design 22 (2005) 147-181 151

Algorithm. Symbolic parametrization by lines for surfaces.

e Given an irreducible polynomial (x, v, z) € K[x, y, z] defining an irreducible algebraic surfate
of degreed > 1 with a point of multiplicityd — 1.
e Compute a rational parametrizatioR(z, h) = (p1(¢, h), p2(t, h), p3(t,h)) of V.

(1) If d =2 take a regular poinP on V, else determine a poit of multiplicity (d —1) onV.
(2) If P is atinfinity, consider a linear change of variables such thattransformed into an affine point.
Let P =(a,b,c).
(3) Compute
a1y

e SR
d—1 arxas".adflfrfsz
ZrJrs:O (d—1—r—s)!rls!

A(x,y,z,t,h) =

4 é)ddf t"hs ’
97 x9S ygd—"r =5z
D r+5=0 d—r—s)irls!
(4) Consider
P(t,h) = (—tA(P,t,h)+a,—hA(P,t,h) + b, —A(P, 1, h) +c).

(5) Return the parametrization obtained when one appli@gto:) the inverse of the change considered
in (2).

Remark. The parametrizatiofP(z, 1) in step(4) can also be obtained as follows: compgte, y, z) =
f(x+a,y+b,z+c),and return
—tgy_1(t, h, 1 —hgy_1(t, h, 1 —g4-1(t,h, 1
P(t,h)z( ga—-1( ) o, —hea 1( ) p, 8 1( )—i—c),
ga(t,h,1) ga(t,h,1) ga(t,h, 1)

whereg,(x, v, z) andg,_1(x, v, z) are the homogeneous componentg@f, y, z) of degreel andd — 1,
respectively.

The following example illustrates the above parametrization algorithm for a surface of degree 5 defined
overC.

Example 1. Let V be the irreducible surface ov€rdefined by the implicit equation
f,y,2) =y +x° +x% = 2y 4+ 22% + 3.

Note thatV has a singularity of multiplicity 4 irP = (0, 0, 0) (see Fig. 2). Applying the above algorithm
one computes

a4r
24 97 x5 yad—r—sz e
r+s=0  (4—r—s)!rls!
A(-x’yaz’tah): Bdf )
t"hs

r+s=0  (5—r—s)!rls!
and hence we obtain the rational parametrizatiolr afefined as
P(t,h) = (—tA(P,1) +a,—hA(P,1) + b, —A(P, 1) +¢)
(=G +1*=2nht —@r+1"—2nh -3t +1* - 2n%)
S\ KS42n 415 T BS54 2n415 7 W54 2h 445
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Fig. 2. Rational surfac® .

2. Parametrization of approximate quadrics

In this section we study the problem of parametrizing approximate quadrics. We consider a fixed toler-
ancee > 0, that may be introduced for instance by the user or by the constrains of the application process,
and a quadrid’. Then, we want to compute the parametrization of a new quadtiat lies within the
offset region ofV at some small distance. More precisely, we present an algorithm that determines a
rational parametrization of , that lies within the offset region df at distance at mosP(/¢). In fact,
in Section 4, we will see that the offset region 16f whereV is contained, can be taken as distance, at
most, 3°+/3.¥€, wheree = exp(1).

The results obtained in this case are similar to those presented in (Bajaj and Royappa, 2000). How-
ever, the method that we present will be generalized to surfaces of dégvith “almost” a point of
multiplicity d — 1 (see Section 3). Therefore, the results in (Bajaj and Royappa, 2000) will be extended.

Throughout this paper, we consider that a fixed toleranse0 is given, and we will use the polyno-
mial co-norm; i.e., if

px,y,2)= ) aijux'y/Z €Clx,y, 2]
i,j.kel

then||p(x, y, 2)| is defined as

P, v, 2| = max{lai il /i, j. k € 1}.
In particular if p(x, y, z) is a constant coefficienfi,p(x, y, z)|| will denote its module. Furthermore, we
consider a real quadri¢ defined by are-irreducible polynomial (see for instance (Corless et al., 2001;
Sasaki, 2001))f (x, y, z) € R[x, y, z]; that is, f (x, y, z) cannot be expressed as

fx,y,2) =g, y,2h(x,y,2) +E(x, y,2)
whereg, h, € € C[x, y, z] and

fx,y, 2.

We observe that the notion efirreducibility implies the notion of “exact” irreducibility. Therefore,
in our case, one has that the polynomfdl, y, z) is irreducible. On the other hand, since irreducible
quadrics are rational, one deduces that our quadrican be parametrized. In order to compute a

[€Gy. 2] <é]
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parametrization ofV’, one may apply the symbolic parametrization algorithmvtqsee Section 1).
However, the symbolic parametrization algorithm requires the computation of a simple point on the
quadric; in fact, once the simple point is determined, the remaining steps of the algorithm can be ex-
ecuted symbolically without further difficulties. Note that, since the surfédcis real, this point can

be taken oveiR. The computation of this simple point can be performed either symbolically, for in-
stance introducing algebraic numbers, or numerically by root finding methods (see (Fortune, 2001,
Golub and Van Loan, 1989)).

If one works symbolically then the direct application of the algorithm will provide an exact answer.
However, in the frame of this paper, we are interested in the approximate approach. Thus, we assume that
the simple point is approximated.

In order to deal with the approximate simple point, we will introduce the notienpafint of a surface.

This concept essentially consists of a point that almost lies on the surface. AlgebraicAlly, if, z) is

a polynomial defining the surfacé and P e C? is the point, the notion of-point may be approached
asking that| f(P)| is small, let us say smaller than the tolerance. However, since for every non-zero
A € C, the polynomialrf (x, v, z) also defines the same surface, the above condition is not enough. For
controlling this phenomenon one may consider relative errors, and one may agkthgy || /|| is small.

More precisely, one has the following definition.

Definition 1. We say thatP = (a, b, ¢) € C2 is an @ffine e-point of an algebraic surfac& defined by
ane-irreducible polynomialf (x, y, z) € R[x, y, z] if it holds that

|f(P)]
— <g,
IfCx,y, D

and for anyig, jo, ko € N with ig + jo+ ko =1,
Jaf D
‘a"o;ca-nyaka(P){ S e
Ifey, ol ~
that is, P is a simple point o€ computed under fixed precisief| f (x, y, z)|.
Now, we proceed to describe the method for parametrizing by lines approximate quadrics. For this

purpose, lefP = (a, b, ¢) be an affines-point of the quadrid/, and let us consider the quadficdefined
by the polynomial

f,y,2)=fx,y,2)— f(P).

We observe that the POIIR is an exact simple point of (at least a partial derivative of of order 1
does not vanish aP ). In these conditions, the following lemma holds.

Lemma 1. The quadricV is irreducible overC.

Proof. If f factors asf = gh then f = gh + f( P) and sinceP is ane-point, it holds tha f( P )| <
el f1I. Then, f is note-irreducible overC, which is impossible. O
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Therefore, we have constructed a rational irreducible quadric, navhely which we know a simple
point, namelyP. Hence, taking into account the above remarks, we may directly apply the symbolic
algorithm toV (see Section 1) to get the rational parametrization

P(t,h) = (—tA(P,t,h) +a,—hA(P,t,h) + b, —A(P,t,h) +¢),
where
Lo+ itn+ i
Tt Y Akt b ik g
From the reasoning presented above, one gets the following theorem.

A(x,y,z,t,h) =

Theorem 1. Let f(x, y, z) be the implicit equation of the quadricirreducible V, and letP = (a, b, ¢)
be ane-point of V. We consider the parametrization

P(t,h) = (—tA(P,t,h) +a,—hA(P,t,h) +b,—A(P,t,h) +¢),
where
af af af

A(x,y,z,t,h) =

92f 12 4 2fh2 | 2f1  92f 2f . 92f "
32x 2 + 92y 2 + 927 2 + axayth + axazt + ayazh

Then, the implicit equation of the quadri€ defined by the parametrizatioR(z, &) is
f v, = flx,y,2) = f(P).

In (Bajaj and Royappa, 2000), the authors present similar results to Theorem 1. However, as we will
see in Section 3, the formulation given in Theorem 1 shows how to generalize these ideas to the case of
surfaces of arbitrary degreewith the property of having an-point of multiplicity d — 1. Theorem 1
provides the following algorithm for parametrizing approximate quadrics.

Algorithm 1. Approximate parametrization by lines for quadrics.

e Given a tolerances > 0 and ane-irreducible polynomial f(x, y,z) € R[x, y, z], defining a
quadricV. _ _
e Compute a rational parametrizatioR (¢, 1) of a quadricV close toV'.

(1) Compute an affine-point P = (a, b, ¢) of V.
(2) Determinef (x,y,z) = f(x,y,2) — f(P).
(3) Compute
t4 Uy
Ax,y,z,t,h) = 7 _ dy 0z

fi2 1, ¥f 92 f 02f 4
—7+—?+‘—§+mlh+ml+wh

and return

P(t,h) = (—tA(P,t,h) +a, —hA(P,t,h) + b, —A(P,t, h) +¢).
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Note that for computing® in step(1) one may use numerical techniques, for instance (Fortune, 2001)
or (Golub and Van Loan, 1989). Taking into account Theorem 1 and the above algorithm, one deduces
the following result.

Theorem 2. The input surface and the output surface given by Algorithmave the same degree. Fur-
thermore, all the coefficients, but the independent ones, of the defining polynomials of the input and the
output surfaces of Algorithrh are the samgi.e., its difference is a constant.

The following example illustrates Algorithm 1. In the description of the example we will remark
the mentioned particular properties of the parametrization method, and we will also estimate, for this
particular case, the distance of the input and output surface; for a theoretical treatment of this fact, we
refer to Section 4. In order to estimate the distance, we particularize the theoretical reasoning in Section 4
to this example, proceeding as follows. We randomly generated 10000 points on the output surface. Since
this surface is rational, and since we know a parametrization of it, the points on the surface are obtained
by giving random values to the parameters. Once the points on the output surface are determined, we
compute, by intersecting with a pencil of lines (see details in the example), points on the input surface,
and we measure the corresponding distances. For the set of all the obtained distances we get the mean
value as well as the statistical standard error, that turn to be very small.

Example 2. We consider = 0.001 and the quadri¥ defined by thes-irreducible polynomial

f(x,y,z) =97.0010000@ + 50.0030000@2 + 79xy + 56xz + 49.001000007 + 63>
+0.00100000000G- 0.001000000006.
First of all, we determine an affine-point P. For this purpose, using numerical techniques (see for
instance (Fortune, 2001) and (Golub and Van Loan, 1989)) w&ge{(0, 0, 0).
Applying step(2) of Algorithm 1 we obtain the quadri€ defined by the irreducible polynomial
f(x,v,2)= f(x,y,2) — f(P)=97.00100000 + 50.003000062 + 79xy + 56xz
+ 49.00100000 7 + 63;% + 0.001000000000.
Note thatf (x, y, z) is irreducible (see Lemma 1), and th&tP ) = 0, and hence® is an exact point on

the irreducible quadri&’ . Finally, applying steg3) of Algorithm 1, we obtain a rational parametrization
of V defined by

P(t, h) = (pa(t, h), pa(t, h), p3(t, h)),

where

_ —970010000%4 — .999999999¢

pat.h) = 50002999992 + 79000000024 + 5600000000 + 4900099999 + 6299999997

_ —970010000%:2 — .9999999998%

pa(t,h) = 50002999992 + 7900000002/ + 5600000000 + 4900099999 + 6299999997
and

_ —970010000% — .9999999998

p3(t, h) =

50002999992 + 79000000024 + 5600000000 + 4900099999 + 6299999997
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Fig. 3. Input surfacé’ (grey) and contour of the output surfaZe(red).

Note that, as stated in Theorem 2, dggx, v,z)) = deg f(x, y,z)) and f(x,y,z) — f(x,y,z) iS a

constant, namely (P ). _
In Fig. 3 one may compare the input quadric and the output rational quadric. Note that the Buidace

close to the input surfacg. This behavior will be studied in Section 4. However, as we have mentioned
above, we will statistically estimate the distance betw&eandV .

For this purpose, we particularize the theoretical reasoning in Section 4 to this example. More pre-
cisely, giving random values to the parameters in P(z, h) we generate 10000 points . Let A
denote the set of all these points. Now, for each pgirt .4 we consider the lin&€ of parametric equa-
tion QO + A(Q — P). Afterwards, we compute the intersection of the lifi@nd the surfacd’, i.e., we
approximate the roots of (Q + A(Q — P)). This computation yields to a finite s#, of points on
V, and we take the minimum of the Euclidean distance® db the points inB,. After repeating this
construction for all points i4, we have a set of distances, and we compute their mean pahgewell
as the statistical standard erarin this case, we have obtained

u = 0.003643288980 o = 0.0005411567185

from where one can statistically deduce that the distance is, in average, in the ifierval96p, u +
1.96p] =[0.0025826218120.00470395614B

3. Parametrization by lines of approximate surfaces

In Section 2 we have presented an approximate parametrization algorithm for quadrics. In this section
we generalize these results for surfaces of degregth the property of having “almost” a point of
multiplicity d — 1. Therefore, we extend the results presented in (Bajaj and Royappa, 2000).

The main difference with the quadric case (see Section 2) is that the given approximate algebraic sur-
face is, in general, non-rational even though it might correspond to the perturbation of a rational surface.
The basic idea to approach the problem consists in generalizing the construction done for quadrics in
such a way that a rational surface is constructed.

For this purpose, we observe that the output surface in the 2-degree case is the original polynomial
minus its Taylor expansion up to order 1 at thpoint, i.e., the evaluation of the polynomial at the point
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(see Theorem 2). For surfaces of degfdeaving “almost” a singularity of multiplicity — 1, we see that
one may generalize properly the process by subtracting to the original polynomial its Taylor expansion
up to orderd — 1 at the “quasi” singularity, to get a rational surface close to the given one.
In order to be precise, we first introduce the notiorzefingularity, that is the natural generalization
of the concept of-point given in Definition 1.

Definition 2. We say thatP = (a, b, ¢) € C3 is an @ffing e-singularity of multiplicityr of a surface
defined by arz-irreducible polynomialf (x, y, z) € R[x, y, z] if for 0 <i + j + k <r — 1, it holds that

3’+]+kf

dlxa/}ak (P){ <
IfCx,y, D ’
and for someo, Jjo, ko e Nwith ig+ jo+ ko =r

d’0x810y di0xaioyakoz (P ){

If Gy, 2l

Note that are-singularity of multiplicity 1 is ane-point on the surface. In this situation, we introduce
the setS¢ as follows.

Definition 3. We denote byS? the set of all thes-irreducible algebraic real surfaces of deg#ekaving
a reale-singularity of multiplicityd — 1.

In the following, we assume that > 2 and we prove that the elementsSti can be parametrized
by lines. Note that the cask= 1, i.e., planes, is trivial, and that the case- 2 has been analyzed in
Section 2. But first, we deal with the problem of checking whether a given real algebraic surface
belongs or not t&?.

In order to check whether a given real surfacef degreed, defined by a polynomiaf (x, y, z), be-
longs toS?, one has to check theirreducibility of f(x, y, z) as well as the existence of arsingularity
of multiplicity d — 1. To analyze the-irreducibility, one may use any of the existing algorithms (see,
e.g., (Corless et al., 2001; Pérez-Diaz et al., 2004; Sasaki, 2001)). For checking the existence and actual

computation ok-singularities of multiplicityd — 1 one has to solve the system of algebraic equations
3i+j+kf
=yt =

under fixed precision - || f (x, y, 2)||, by applying root finding techniques (see, e.g., (Corless et al., 1995;
Fortune, 2001; Golub and Van Loan, 1989; Hoffmann, 1993; Krishnan and Manocha, 1996)). The system
A may be simplified by reducing the number of equations and their degrees. More precisely, first, we
choose three triple§,, ji, k¢), with £ =1, 2, 3, such thai, + j, + k, =d — 2, and we consider the new
system

8d_2f 8d_2f ad—2f
= 9 = G ) = a6 =)

under fixed precisior| f (x, y, z)||. Note that now the three involved equations are quadratic. One also
has to observe that it may happen that all partial derivatives of atdeR2 are in fact zero, but this
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is quite unlikely since we work with approximations. Nevertheless, if this is the case, one would work
with the previous non-zero derivatives, and the degree would have increased slightly. In this situation,
one computes the solutions Bfby using any of the existing methods (see, e.g., (Corless et al., 1995;
Fortune, 2001; Golub and Van Loan, 1989; Hoffmann, 1993; Krishnan and Manocha, 1996)). Once these
solutions have been approximated, one simply has to check if any of the solRionis3 satisfies that

3i+j+kf
0ix03/ydkz
These ideas are illustrated in Examples 3 and 4 in this section.

Numerical methods for solving systems of algebraic equations may fail when the set of solutions
is not zero-dimensional, i.e., when there exist infinitely many solutions. In our case, this phenomenon
may appear if the surface has infinitely mangingularities. Geometrically, this mean that the surface
might contain a whole curve whose points arsingularities, i.e., the surface has asingular curve.
Therefore, when applying the process described above, numerical methods may not compute all the
possibilities, and hence one might not guarantee whéthisrin S¢. That is, if applying these methods
we may compute am-singularity of multiplicity ¢ — 1, then we conclude that € S¢; otherwise, we
cannot conclude whether is not in S¢ and the parametrization algorithm could not be applied. We

illustrate this difficulty with the following example. Let be the surface of degree 3 defined by the
irreducible polynomial

<ﬁ>\

<e|feoy,|, i+j+k=0,....d-2

1
1000

and lete = 0.001. This surface corresponds to an small perturbation of a generalization of “Cartan um-
brella” (see p. 60 in (Bochnak et al., 1998)). It is easy to check that all points, in the line of equations
x =y =0, aree-singularities of multiplicity 2 ofV (see Fig. 4). However, applying numerical methods
one does not reach the expected answer.

We do not know how to solve this problem, and therefore we do not have a deterministic algorith-
mic criterion for deciding whetheV € S¢. However, a possible idea to approach this problem might
be to apply the approximate parametrization algorithm for quadrics (see Section 2) to find a suitable
parametrization of one of the polynomialsfnto afterwards substitute this parametrization in the other
polynomials involved irf3. In this way the problem is reduced to the bivariate case, and compugods
and approximately crossing it out, we arrive at a zero-dimensional system and hence current numerical
methods would compute all solutions. Nevertheless we have been unable to guarantee the numerical
stability of the process, and therefore we prefer to leave it open.

fC,y,2) = x5 + xax? — x2

Fig. 4. SurfaceV.
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In the following, we assume that € S¢ and thatf(x, y, z) € R[x, y, z] is the implicit equation
defining V. In addition, we consider that = (a, b, ¢) € R® is ane-singularity of multiplicity d — 1 of
the surfaceV, and we parametrize by lines, approximately, the surfdc&or this purpose, i©(z, k)
represents a generic point of a plane not containing the gimte consider the pencil of lines defined
by the parametrization

Hi(t,h) =P+ A(Q(t,h) — P).
If P would be an exact singularity, then the symbolic algorithm (see Section 1) would output the para-
metrization

P(t,h) =P+ u(t, h)(Q(t,h) — P) e R(t, h)*,
whereu(z, h) € R(z, h) is the root w.r.ta of the linear polynomial

G h))‘

Ad-1

However, in our case is not a singularity but am-singularity. Then, the idea consists in computing
the root inR(t, h) of the quotient off (H; (¢, h)) andA?~1 w.r.t. ». Note that deg( f (H,.(t, h)) =d, and
therefore the quotient is linear in Let w(z, &) be this root. Then, we will see that

P(t,h) =P+ u(t, h)(Qt, h) — P),

is an approximate parametrizationof
For this purpose, first we prove thRtz, #) is a rational parametrization. Furthermore, we show that
if Q(z, h) is proper, then the parametrizati@t(z, ) is also proper.

Lemma 2. Let f(x, y, z) be the implicit equation of the surfade € S¢ and letP = (a, b, ¢) € R® an
affinee-singularity of multiplicityd — 1 of V. We considep.(z, #) the root inR(z, h) of the quotient of
the polynomialf (H,.(¢, h)) andA?~t w.r.t. ». Then,

P(t,h) = P + (1, h)(Q(t, h) — P)

is a rational parametrization.

Proof. To prove the lemma we show that at least one of the componefg o) is not a constant. Let
us assume that all the componentsgf, #) are constant. In this situation, since

whereQ(z, h) = (q1(t, h), q2(t, h), g3(t, h)) parametrizes a plane that does not contain the pojrne
deduces that(z, 1) = 0. Now, we consider the Taylor expansion fofx, v, z) at P; that is,

d

fey,9=f(P)+ Y,

Jitietjz=1

Qiitiztis f

P —_ V(v — b)2(» — 5)3
gy (P - D0 =DEE =0

Jalja2ljs!
Thus,

f(Ha(t, ) = f(a+r(g1—a), b+ (g2 —b), ¢+ gz — )
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_ F(P)+ Xd: gtizths f (17)/\"1”2“3 (g1 — @) (g2 — b)?(g3 — )
it =1 0J/1x072y337 Jalj2ljs!
i Xd: Jirtiztis f 7 At (g1 G)i (g — b)T2 (g3 — €)7B
PR 811x812y313z J1lj2!js!

d—2 o o . - . .
_ 3]1+12+13f _ )\atiztis (ql — a)]l (92 — b)2 (Q?, — C)Js
+|f(P)+ E ——— (P — .
0/1x9/2yd/3z J1lj2!Jjs!

Jitiztiz=1
Therefore,f (H,.(z, h)) can be expressed as
f(Hat, ) =2 M (t, h, ) + N(t, h, 1),
where

S(H;.(t, h))

N(t,h,\) =T (H(t, b)), Mt h,2)= A1

S(x,y,z) is the Taylor expansion of (x, y, z) from orderd — 1 up to orderd at P, andT (x, y, z) is
the Taylor expansion of ordet — 1 of the polynomialf (x, y, z) at P. Note, that degM) = 1 and
deg (N) < d — 2. On the other hand, |€1 (¢, 2, ») and V (¢, h, 1) be the quotient and the remainder of
f(H,(t, h)) andA9~t w.r.t. A, respectively. Then, one has that

F(Ha, D)) =20, b, M)+ V(E b2
with deg (V) <d — 2. Thus,
AT M, ho M) — Ut b, M) =V (t,h, &) — N(t, b, A).

Since the degree w.rit.of V — N is less of equal thad — 2 andA?~! divides toV — N, one deduces
thatM = U andV = N. Therefore, sinceu(z, ) = 0 is the root im. of

d o o . o o
g/1tiztis _ )tietjz—d+l — ) Ay — &)
vt h,n= Z 9J1x 92 a£ (P @ ; ‘?‘Fq‘z )*(q3 =)
jitiatjz=d—1 yo=z Jalj2!ljs!

’

and sinceQ(t, h) is a plane not containing the poift, we deduce that for evety j, k € N with i + j +
k=d -1,

ad—lf
dixd/yokz
Finally, since the multiplicity of the-singularity P is d — 1, there existy, jo, ko € N such thaty + jo +
ko=d—1and
8d—lf
dloxdjoygkoz

(P)=0.

(P)|ze-|f@x, 2] >0.

Thusﬂ( P) # 0, which contradicts the hypothesisC

970x9J/0ypk07

The following lemma shows that (z, &) is a proper parametrization, théiz, ) is also a proper
parametrization. For this purpose, we assume w.l.0.g. that the plane not containing the poin&
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¢+ 1, and that < 1 (which ensures thak is not on the plane). Otherwise, we would consider the plane
z=c¢+ p with p > ¢. In this situation, we consider the proper parametrization of the plaineh) =
(t, h,c + 1). Then, the parametrizatioR(z, ) is given by

P(t,h) = (a+ p(t,h)(t —a), b+ pu(t, h)(h — b), ¢+ n(t, h)).

Lemma 3. The parametrization
P(t.h) = (a+ut,h)(t —a), b+ u(t, h)(h—b),é+ u(t, h))
iS proper.

Proof. We denote byp; (¢, 1) theith component oﬁ(r, h). Thus, it holds that

(ult,h) —a) (Palt.h) —b) -
= S, - ) h = b
pet i —¢ | ° Gt —¢ T

Therefore;P(z, h) is a proper parametrization and its inverse is given by
—a —b)
((x a>+a, (y )+b). .

z—¢C z—c¢

Now we prove that if there exists ansingularity, then there exists infinitely many singularities close
to the original one that can be considered equivalent. For this purposk,dd@3 ands > 0, we denote
by B(P, §) the Euclidean ball

B(P,8)={(x.y,2) €R®| |(x,y,2) — P|, <}

Lemma 4. Let V be an affine algebraic surface defined by the polynonial, y, z) € R[x, y, z] with

a real e-singularity P of multiplicity ». Then, there exist$ > 0 such that any poinQ € B(P, §) is an
g-singularity of multiplicity at least of V. Furthermore, there exist at least one partial derivative of
f(x,y,z) of orderr that does not vanish ab.

Proof. We represent by; ; ; the partial derivativ%. SinceP is ans-singularity_of multiplicity
rofori+ j+k=0,...,r —1itholds that|f; ; x(P)| < ell fI|. Let us denotd f; ; s (P)| = &; j x for
i+j+k=0,...,r —1. Then, for each; ; ; there exists,; ; , > 0 such that

gije=elfll —Aijx <ellfll

We considem. =min{x; jx, i + j +k=0,...,r — 1} (note thatx > 0). On the other hand, since all
partial derivatives| f; ; |, are continuous, le¥ bound all partial derivatives up to ordem the compact
setB(P, ¢), and lets; be strictly smaller than min./(2M), €}; note thatM > 0 since otherwise it would
imply thatV contains a 3-dimensional ball of points which is impossible. Now, @keB(P, §1). Then,
by applying the Mean Value Theorem, we have thatiferj + k=0,...,r — 1

| fiju Q| < | fiju (P + | fijuc(P) = fiju (@ < eiju + |V fiju i) - (P — Q)T
whereé; ;, = P +6(P — Q) with 6 € (0, 1). Therefore, one concludes that
| fiin (D] el fll = hiji +20.M < el fIl =1 +28:M <] £,

’
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and then,Q is ane-singularity of multiplicity at least of the surfaceV.
On the other side, since is ane-singularity of multiplicity r, in particular one deduces that there
exists a partial derivative of (x, y, z) of orderr not vanishing atP. We consider thag(x, y,z) =
o f (x,y,2), foranyig, jo, ko € Nwith ig+ jo+ ko = r, is this derivative. Note that singdx, y, z)

3'0xdloyakoy

is continuous ang(P ) # 0 one has that there exists> 0 such that for any) € B(P, 8,) it holds that
g(0) # 0. Then, lets = min{84, 8,}. Thus, for each) € B(P, §) one has tha is ane-singularity of
multiplicity at leastr of V and that there exists at least a partial derivativef 6f, y, z) of orderr nor
vanishing inQ. O

By Lemma 4, it holds tha¥ has infinitely manye-singularities of multiplicity at leastd — 1) quite
close toP. For our purposes, we are interested in choosing the singularity appropriately. More precisely,
one has the following definition.

Definition 4. Let P be a reals-singularity of multiplicity (¢ — 1) of V. Then, we say that the point
Q = (a, b, ¢) in the ball of Lemma 4 is @roper e-singularity of multiplicityd — 1 of the surfacéeV, if
the polynomial

Xd: 3j1+4i2+j3f j i i
———— () (x —a)*(y = D)?*(z — o) *——
it Tz 01X 02y 0z Jalj2!js!

is irreducible overC.

Note that by Lemma 4, one deduces that there exists a ball with center at th@ pofiat-singularities
of V which multiplicity is at least/ — 1. If P is not proper, then the polynomial used in Definition 4 is
reducible overC. However, since an small perturbation of the coefficients of a polynomial transforms it
onto an irreducible polynomial, one always may take a new point on the ball, cldgatod such that
it is a propere-singularity. Therefore, in the following we assume w.l.0.g. tRds proper and thus, the
polynomial in Definition 4 is irreducible. In addition, some partial derivativef ¢f, y, z) of orderd — 1
at the pointP is not zero.

In particular, this implies that for this propersingularity P, Lemmas 3 and 4 are satisfied. That is,
P(t,h) = (p1(t, h), p2(t, h), ps(t, h)) obtained with the above construction but considerdhg proper
g-singularity, is always a proper rational parametrization.

The following theorem shows that the implicit equation of the rational surface defined by the parame-
trization P(z, i) generated by the above process can also be obtained as in the quadric case, by Taylor
expansions at the-singularity. In fact, the theorem includes as a particular case the result for quadrics
(see Theorem 1). This result will avoid quotient computations and will be used to analyze the error in
Section 4.

Theorem 3. Let f(x, y, z) be the implicit equation of the surfaéee S? and letP = (a, b, ¢) be a proper
e-singularity of multiplicityd — 1 of V.. We consider a generic poi@(, i) = (qa(t, h), g2(t, h), 3(t, h))
of a plane not containing the poit, and we consider the pencil of lines defined by

Hi(t,h) =P +A(Q(t,h) — P) = (a+ A(gr—a), b+ A(gz — b), ¢+ A(q3 — ©)).
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Let u(z, h) be the root inR(z, k) of the quotient off (H,(z, #)) and A4=Lw.rt. A. Then, the implicit
equation of the rational surfac¥ defined by the parametrization

P(t,h) =P+ u(t, h)(Qt, h) — P),

f(x’yaz):f(X,y,Z) - T(X,y,Z),
whereT (x, y, z) is the Taylor expansion up to ordér— 1 of f(x, y, z) at P.

Proof. Reasoning as we did in the proof of Lemma 4 we deduce that
FOH) =2 M@ by 2) + N by b,
where

S(H;.(t, h))

N2 =T (Rt ), M h2) = — 75—

andS(x, y, z) is the Taylor expansion of (x, y, z) from orderd — 1 up to orderd at P. Furthermore,
M =U andV = N whereU (¢, h, A) andV (¢, h, 1) are the quotient and the remainder ofH, (¢, h))
andx?~t w.r.t. A, respectively. In this situation,

F(P@, )= f(Pt,h)—T(Pt,h) = f(Huam 1)) =T (Huen(t, h)
=ut, ) TU(t, b, w(t, b)) + N(t, b, w(t, 1)) — T (Huqn (. h))
= N([, h, u(t, ]’l)) — T(Hﬂ(tyh) (t, ]’l)) = T(Hﬂ(tyh) (t, ]’l)) — T(Hﬂ(tyh) (t, ]’l)) =0.

In addition, sinceP is a propers-singularity of V, one has thay is irreducible and therP(z, i) para-
metrizesV. O

Theorem 3 provides the following algorithm for parametrizing approximate algebraic suvfaces.

Algorithm 2. Approximate parametrization by lines for surfaces.

e Given atolerances > 0 and are-irreducible polynomialf (x, v, z) € R[x, y, z], defining a surface
Ves
e Compute a rational parametrizatioR (¢, i) of a rational surfacé close toV .

(1) Compute a proper-singularity P = (a, b, ¢) of V of multiplicity d — 1.
(2) Determine f(x,y,z) = f(x,y,2) — T(x,y,z), where T(x,y,z) is the Taylor expansion of
f(x,y,z)uptoorderd —1 atP.
(3) Compute
d—17
Zd_l 3rxasiad—l{—r—sztrhs
r+s=0 (d—1—r—s)'r's!
ad 7 ThS ’
d 9" x9S yad—r—5;
Zr+s:0%w

Ax,y,z,t,h) =

and return
P(t,h) = (—tA(P,t,h) +a, —hA(P,t,h) + b, —A(P,t, h) +¢).
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Taking into account Theorem 3 and the above algorithm, one deduces the following result.

Theorem 4. The input surface and the output surface provided by the Algorzhawve the same degree.
Furthermore, the input surface and the output surface have the same homogeneous form of maximum
degree.

3.1. Examples

In this subsection we illustrate Algorithm 2 by some examples. First, we give two examples (Examples
3 and 4) where we explain carefully how the algorithm is performed, and we remark the mentioned
particular properties of the parametrization method. More precisely, we see that the polyfoisial
irreducible and the surfac¥ is rational. In addition, we check that the input polynomjaland the
output polynomialf have the same homogeneous form of maximum degree (see Theorem 4). Moreover,
we can also check that the output parametrizafign ) is proper. Afterwards, we present three other
examples (Examples 5, 6 and 7) where details are omitted, and we only give the input $urtaee
e-singularity P, the output rational surfacg, and its rational parametrization(z, /).

In these examples one observes that the output subfaiseclose to the input surfac#. This fact
will be theoretically studied in Section 4. Nevertheless, in order to illustrate this property, we estimate
for this particular examples the distance of the input and the output surface. For this purpose, we proceed
similarly as we did in Example 2. More precisely, we randomly generated 10000 points on the output
surface. Since this surface is rational, and since we know a parametrization of it, the points on the surface
are obtained by giving random values to the parameters. Once the points on the output surface are deter-
mined, we compute, by intersecting with a pencil of lines (see details in the Examples 3 and 4), points on
the input surface, and we measure the corresponding distances. For the set of all the obtained distances
we get the mean value as well as the statistical standard error, that tend to be very small.

Example 3. We consider = 0.001 and the surfac¥ defined by the polynomial

f(x, y,z) = 34.0330888@ + 10.11353509 — 1787688488 + x* + z* — 15.9960000Q°
— 18.9858960@7 -+ 85.9441040@% + y* 4 12.00400000° + 2.002000009%x
+8.017004000x + 47.0029960Qy — 4.004000000° + 37.04200400>
— 6.002000008%y — 13.01099600x + 2.002000000°x + 18079915564 xyz
—1.x%z% — 1.y?z? — 1.x%y? — 6.0020000082 y + 7.9980000002 7
+ 7.99800000027.
First of all, by applying the algorithm developed in (Sasaki, 2001), we observe that the polynomial
f(x,y,2) is e-irreducible. Now, we apply step (1) of Algorithm 2, and we computedfsngularity.

For this purpose, we determine the solutions of the system (see (Fortune, 2001; Krishnan and Manocha,
1996))

3% f 32 f 3%f
b= {E(x,y,z) h 8—2z(x’y’z) h dxady

under precisiorz|| f (x, y, z)|| = 0.1807991556. We get four solutions, namely

(x,y,z):O},
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P; = (1.001000000 —3.011000000 3.999000009,
P, = (1.001000000 —2.991000000 3.999000009,
P3 = (.8892860796 —2.751000000 3.887286089,
P4 = (.8892860796 —3.251000000 4.110713920.

The pointsP; and P, satisfy that

aiJrjf _
——(P,)| <0.1807991556 i+ j=0,...2, r=1,2,
d'xd/y
and
3f —
(P,)| >0.1807991556 r=1,2.
02x0z

Then, we tak_egzz_Fl as thes-singularity of multiplicity 3 of the surfac& . Thus,V € S g, (Simi-
larly if we take P := P,). In addition, since the corresponding polynomial in Definition 4

. RV2TB) () (x — 1.002000000 (y + 3.011000000 (z — 3.999000000/2

Z 8/1x9/2y3737

Jitijztjz=3

Jilj2!ja!

is irreducible overC we have thatP is a properes-singularity. Now, applying steg2) of the algorithm
we get the rational surfacé defined implicitly by
f(x,y,z)=339927988@ + 10.10942580 — 1787788588 + x* + z* — 15.99600000°
— 1898589607 + 85.94410400% + y* + 12.00400000° + 2.002000009x
+ 8.017004000x + 47.0029960@y — 4.004000000° + 37.041404002
+ 180.8334578— 6.002000008%y — 13.00099600x + 2.002000000°x + xyz
—1.x%z2 — 1.y?z? — 1.x%y? — 6.002000008? y + 7.998000000 7
+ 7.998000000?7.
Observe that polynomialg and f have the same degree, and the same homogeneous form of maximum
degree (see Theorem 4). In addition, note that

girtiatis f

f(P)=0 (P)=0, forji+ja+js€{l 2}

’ 8j1x8j2y8j3z
Iherefore,F is a singularity of multiplicity 3 of the sErfacg. Thus, sincef is irreducible one has that
V is rational. In order to compute a parametrizatiori/ofwe apply stef3) of Algorithm 2 to obtain the
rational parametrization

P, h) = (pat, h), palt, h), pa(t, b)),
where

pa(t, h) = (.3456018248: — .5005000000« 10 17422 — .1484481000¢> + .1182661000°1
+ 3.653785283+ .6008002006° + .5005000000< 10~ *A* 4 2.55807661k
+2.204172170% + .7233870998— .1424667228 — 2034112006
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+ .5005000000< 1014 — .1000000000< 10 243 4 .2000000000< 10~2/°%1)
/(.60280220087 — .5000000000« 10~1427? — .3011000000+ 4 .1001000006%¢
+ 3.222682417+ .6022000006° + .5000000000< 10 11* 4 2.449821864

+2.2200362002 + 1.607217612 — .6024058006 — .2002000006°
+.5000000000< 10~ %),

Po(t, h) = (—.89998248081 + .1495500000%72 + .90059010006¢> — .1494491006°%¢
—10.99055693- 1.789136200° — .1485500006* — 8.122126738
— 6.735831498% — 3.461717012 + 1.80477774% + .6028022006°
— .1505500006) /(.6028022008¢ — .5000000000x 1014272 — .30110000006+>
+.10010000008%¢ + 3.222682417+ .6022000006° + .5000000000< 10~ 14*
+ 2.449821864 + 2.2200362007 + 1.607217612 — .602405800€
— .2002000006° + .5000000000< 10114,

p3(t, h) = (1.954901950¢ — .1999500006%7> — 1.201099908+¢2 + .4002999006°¢
+ 14.16943772+ 2.402199800° + .1999500000* + 10.1138296%
+ 8.8237448302 + 5.055138342 — 2.39999080% — .800599800¢
+.1999500006%)/(.60280220068: — .5000000000< 10~ 14?%? — 301100000062
+.10010000008%1 + 3.222682417+ .6022000000° + .5000000000< 10~ 14*
+ 2.449821864 + 2.2200362002 + 1.607217612 — .602405800€
— 2002000008 + .5000000000x 10~174).

In Fig. 5 one may compare the input and the output surfaces. Note that the saifacese to the input

surfaceV. This behavior will be studied_in Section 4. However, as we have mentioned above, we will
statistically estimate the distance betwééandV .

Fig. 5. Input surfacé’ (left) and output surfac® (right).
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For this purpose, we particularize the theoretical reasoning in Section 4 to this example. More pre-

cisely, giving random values to the parameters in P (¢, h) we generate 10000 points dn. Let A

denote the set of all these points. Now, for each pgirt .4 we consider the lin&€ of parametric equa-

tion QO + A(Q — P). Afterwards, we compute the intersection of the lifi@nd the surfacd’, i.e., we
approximate the roots of (Q + A(Q — P)). This computation yields to a finite s#, of points on

V, and we take the minimum of the Euclidean distance® db the points inB,. After repeating this
construction for all points in4, we have a set of distances, and we compute their mean pahisewell

as the statistical standard ergarln this case, we have obtained

w=0.03632991728 p =0.00005474193152

from where one can statistically deduce that the distance is, in average, in the ifierval96p, u +
1.96p] =[0.036222623090.0364372114F.

Example 4. We consider = 0.001 and the surfac® defined by the polynomial

f(x,y,z) =480270130% + 6215981533 + y° — 9.005000000* — 6.002000008"
— 6.003000008@° — 56.0950540%2 + .1000000000« 10272 — 17.00500009*
+114062007G° — 2700900000« 10~1y?x + 8105400900« 10 1yx
+32.0360100@°% — 37828805702 + 2.z%y + x® + 3.2%x
+.3000000000« 10 2y3x — 4215251910
First of all, by applying the algorithm developed in (Sasaki, 2001), we observe that the polynomial
f(x,v,2) ise-irreducible. Now, we apply step (1) of Algorithm 2, and we computestisengularity. For

this purpose, we determine the solutions of the system (see (Fortune, 2001; Golub and Van Loan, 1989;
Krishnan and Manocha, 1996))

a3 f a3 f a3 f
B: a2 » Vo - Ta_ » Vo -
{83x (x,,2) PER (x,,2) 3%20x

under precisior|| f (x, y, z)|| = .6215981530. One gets the solutions

P; = (2.0010000003.001000000 0),
P, = (2.001000000 3.801000000 0),
P3 = (1.601000000 3.000850028 0).

The pointP; satisfies that

(x,y,Z)zo},

oitJ
0ixdJy

(Py)| < 6215981530 i+ j=0,...,3,

and

o f

—(171) > .6215981530
%x

Thus, we takeP := Py, and thenV e Sg,,. Furthermore, since the corresponding polynomial in Def-
inition 4 associate t@ is irreducible overC, one has thaP is a propere-singularity. Now, we apply
step(2) of Algorithm 2, and we get the rational surfatedefined by the polynomial
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f(x,y,z) =480310150% + 6215941530 + y° — 9.005000009*
— 6.002000008* — 6.003000008° — 56.096054012 — 17.00500000*
+114062007G° — .2700900000< 10~ 1y2x + .8105400900< 10 tyx
+32.0360100@° — 37828805702 + 2.z%y + x° + 3.2%x
+.3000000000« 10-2y3x — 4215071910

Observe that polynomialg and f have the same degree, and the same homogeneous form of maximum
degree (see Theorem 4). In addition, note that

girtiatis f

f(P)=0, (P)=0, forji+jo+ jae{1,23}.

a4i1x8j2y8j3z

Iherefore,F is a singularity of multiplicity 4 of the sErfacE Thus, sincef is irreducible one has that
V is rational. In order to compute a parametrizatiori/ofwe apply stef3) of Algorithm 2 to obtain the
rational parametrization

P(t,h) = (pa(t, h), pa(t, h), pa(t, h)),

where

pa(t, h) = (.2541379018+ 1.247811900 — .8105400900« 10~ %412 + .2700900000« 10 *A22
+.1079639226%¢ — .2399599400« 10173 +.2001000000< 10~24°
—.8311909904x 10172 +.1001000000« 10~%°> — .1001500500« 10~ 1#*
+.4008005001x 10~17® — 3402700500« 10 14* + .2282380766°
— 75695440242 — .2158916938¢ — .3000000000x 10~°43?

.2000000000« 10-2rh* — .867457894%/(.1000000000x 10~24°

407540270k — 2814873501 .8012006001x 1072 4 .1000000000« 10 2¢°

— .1000500000< 10~1#* + 4004001000« 10~13 + .8016012004x 10~ 1s

— .2702700906% — .1500500000< 10 *A* +.9006001000< 10~ 173),

—- -

Po(t, h) = (11531440760 + 2.023430894 — .2402400600x 10142 — 1000000000« 102/ 1%
+.8004000000« 10213 — .1621080180« 10 3h?% +.3601200000« 10~ 4131
+.5001000000« 10~21% — .168344258# + .3001000000< 102>
— 2702400500« 107174 + .9614006601x 10 1% — 7503400200« 10 *A*
+.4503180500° — 1.3512963482 + .2937234811x 10 *hr — .300000000010°11*
— 1.30097008%/(.1000000000 1024° 4 .4075402704 — 2814873501
— .8012006001x 10~1#2 4 .1000000000< 10~%#°> — .1000500000« 1017
+.4004001000< 107172 + .8016012004x 10~ — .27027009062
— .1500500000< 10~14* + .9006001000< 10 143),
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Fig. 6. Input surfacé’ (left) and output surfac# (right).

pa(t, h) = (.2700900000°¢ — 81054009087 + 2912910503 -+ 20.00000000*
— 2160538829 + 1080179672 + 80.04000000° — 240019970a°
— 10.0000000@* — .3000000000< 10143 — 24024006007 + 1520248409
/(10.0000000@° + 407540270% — 2814873501 8012006001
+10.0000000@° — 100.0500000* ++ 400.4001000° + 8016012004
— 2702700903 — 150.050000@* 4 900.600100@:3).

In Fig. 6 one may check that the input an the output surfaces are close. In fact, reasoning as we did in
Example 3, one gets that in this case

© = 0.01420600280 p =0.0003023364344

from where one can statistically deduce that the distance is, in average, in the ifierval96p, u +
1.96p] =[0.013613423390.0147985822].

Example5. Let e = 0.1 and the surfac®& defined by the polynomial
fx,y,z) =x*+2x%y? + y* + 9xz%y? — 3x3z2 + .100000: + .100000)
+.10000G:% 4 .10000G2 + .300000

This surface has as-singularity of multiplicity 4 atP = (0,0, 0); hence,V € S3,. Furthermore, this
g-singularity is proper because the polynomial in Definition 4

5 §Jr1tiztis f

J1y,J2,J3

j1+j§:ﬂ3zsm( e il
is irreducible overC. Thus, applying steg2) of Algorithm 2, we obtain the surfac¥ defined by the
irreducible polynomial

f_(x, y, Z) =x4 + 2x2y2 + y4 + 9)622)72 _ 3X3Z2.
Finally, we apply stefg3) to get the proper parametrization of the surfate

B hy = <t4 +2%h2 + h* (t*+ 2t°h? + hYh 4 2r2h% + h4>.

' 3(—3h2412) " 3U(=3n%2+12) 3t (—3h%+1?)
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Fig. 7. Input surface/ (left) and output surfac& (right).

Fig. 8. Input surface’ and output surfac¥ .
See Figs. 7 and 8 to compare the input and the output surfaces. Reasoning as in the previous examples,
one gets that in this case
w = 0.1204696300< 1078, p = 0.4229716566¢ 10°°,
from where one can statistically deduce that the distance is, in average, in the ifterval96p, u +
1.96p] =[0.3756718531x 107°,0.2033720747% 1078].

Example 6. Let ¢ = 0.001 and the surfac¥ defined by

fx, y,2) =2+ x®+x* — 2y* +.00010@* — .00100G:3 — .00100Q°
—.001000— .001000:y? — .001000) — .00001@2 — .00010Q.

This surface has assingularity of multiplicity 4 atP = (0.001 0, 0.01); hence,V € Sg ;. In addition,
this e-singularity is proper because the polynomial in Definition 4

5
— o . 1
Z m(f))(x—OOO:I.J:I'_)IJZ(Z—001]3 Y
b g 01X 92D Jjiljalja!

is irreducible overC.

giitiztis f
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Now, applying ste2) of Algorithm 2 we get the rational surfadé defined by the irreducible poly-
nomial
f(x,y,z) = —.4015000000< 108x — .4000000000< 10 %z + .2000000000< 10~**
+ % + x% + x* — 2y* — 4010000000« 10~%x® — .4000000000x 10753
+.1000000000« 10~3z* 4+ .6000000000< 10~z 4+ .6020000000« 10~ °x2.

Finally, applying ste@3) we get the parametrization

P(t,h) = (pa(t, h), pa(t, h), ps(t, h)),

pa(t, h) = (—.100400° 4 50.2000* + 10.00002° — 1004000r° + .100400x 1032
— 9605960604+ .96059602x 1072 + 2000000r2* — 20.0000:%)
/(.1000000006° — 50.0000* + 1000000/° + 1000000¢° — .100000x 10372
+.5000000% 10~ ' — .100000x 10~10),

pa(t, h) = (—.500000x 10~*°(—804000 — .8040000000« 10'*+* + 12060006
+.2010000x 10"%#* +.192119204x 10'* — .400000x 10"°1*)h)
/(.1000000° — 50.0000* + 1000000%° + 1000000¢°> — .100000x 10372
+.5000000% 10~ 't — .100000x 10~10),

pa(t, h) = (39.799000° — 99500000 + 100.000%° 4 100.000Q° — .059698006"
+.3979850000« 10~#r — .95099006+ 19800000%:%)
/(.100000@® — 50.0000“ + 1000000%° 4 1000000¢°
— .100000x 10732 4+ .5000000x 10~ 't — .100000x 10719).

See Fig. 9 to compare the input and the output surfaces. Reasoning as in the previous examples, one gets
that in this case

u = 0.05044250369 o =0.001564587377
from where one can statistically deduce that the distance is, in average, in the ifterval96p, u +
1.96p] =[0.047375912430.0535090949h

Example 7. Lete = 0.001 and the surfac¥ defined by

fx,y,2) =y +x"z+ 2yx°z% — 4y5xz — .001000:z 4+ .001000— .001000) — .00100G:*7
—.001000/*.

This surface has astsingularity of order 6 aP = (0,0.001 0.001); hence,V € 55.001. In addition, this
g-singularity is proper because the polynomial in Definition 4 is irreducible Gver

Thus, applying steg2) of Algorithm 2, one obtains the rational surfaedefined by the irreducible
polynomial
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Fig. 9. Input surfacé/ (left) and output surfac¥ (right).

f(x,y,z) =—.400000x 10 t1x 4+ .700000x 10ty + .200000:*zx + x 'z + .400000x 10 °xz
+ y’ —.350000x 104y* — .200000x 10 ®yxz + .400000x 10 *y%xz

.400000x 10~2y3xz — .210000x 10~8y? — .100000x 1013

4 .350000x 107®y® —.700000x 10*y® +.210000x 10~2y° 4-.200000x 10 8yx

— .400000x 10~®y%x + .400000x 10~*y3x — .200000x 10 2y“x

.200000x 10~3yx® — .400000x 10~3zx° + .400000x 10 1y°x + 2yx°z?

— 4y°xz 4 .400000x 10~ °x°.

Finally, we apply steg3) of the algorithm to get the parametrization

ﬁ(t’ h) = (ﬁl(t’ h)5 ﬁZ(t, h)’ ]3305 h)),
where

p1(t, h) = (—2000000°h — 50.50505051" — .200000x 10~°; — 97.00000001°
+200000000G/4° — .2000000042 + .100000000x 10~%ti — 100Q00QA*
+20.0000G643 + .5050505051x 10~ 1% — 3535353536¢ 10~ '
+3535353536%° — .1767676768« 10 21> + .1060606061x 10 A2
—10.6060606%° +.1767676768* — 5050505052 ) /(¢*(9900: — 99+ 5000%)),

po(t, h) = (.200000x 10~ 'r + .4040404041x 10~°h + 4.000000°k — 12000000 4>
+.300000x 10~2¢h?% — .1200000x 10 *+h + 30.00004* — 4000043
+50.50505051" — .020000000° — 14.14141414° + .282828282% 10 13
— 1414141414« 10°%h? + .2828282828° — .003535353536" + 40404040410’
— .5050505051x 10~12 — 50.5050505%¢" — 200.0000000°42 + 200000000 /1°
— 505050505%%) /(+°(9900: — 99+ 5000%)),
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Fig. 10. Input surfacé (left) and output surfac& (right).

p3(t, h) = (—99.000000°h — 97.0200° — .198000000x 10°7 + 1980000¢/2° — .1980000%2
+.99000000x 10374 — 990000004* + 19.800004° + .5000000% 10~1°
— .3500000x 10~"/ + 3500000:° — .0017500008° + .1050000x 10~*4?
—10.50000:° +.175000@* — 500Q000:7)/(¢°(9900: — 99+ 5000%)).

See Fig. 10 to compare the input and the output surfaces. Reasoning as in the previous examples, one
gets that in this case

n=0.01115123452 o =0.001626349788

from where one can statistically deduce that the distance is, in average, in the ifjerval96p, u +
1.96] =[0.0079635889360.01433888010D

4. Error analysis

Examples in Sections 2 and 3 show that, in practice, the output surface of our algorithm is quite close
to the input one. In this section we theoretically analyze how far these two affine surfaces are. For this
purpose, we distinguish two subsections: the first one devoted to explain the general strategy, and the
second one dealing with the theoretical results.

4.1. General strategy

Let V € 8¢ be the input surface of degrdeand letf (x, y, z) be its defining polynomial. In addition,
let V be the output surface generated by either Algorithm 1 or Algorithm 2, arf@l(letz) be the output
rational parametrization of . We first observe that, since we will measure distances, we may assume
that thes-singularity P of the surfaceV is the origin; otherwise, one can apply a translation such that it
is moved to the origin and distances are preserved. Also we assunigfthaty, z)|| = 1, otherwise we
considerL%2-9_ |f one does not normalize the input polynomiédx, v, z), a similar treatment with

g IfCy. ol
relative errors can be done.
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H(1o, ho)

1Q-Qll2< V3N =\
Fig. 11. General strategy.

In this situation, our general strategy consists in showing that almost all affine real points on the
surfaceV are at small distance of an affine point Bn For this purpose, we observe thafz, i) is an
exact parametrization df obtained by lines, and therefore almost all affine real points @ne obtained
as the intersection of the surfatewith a pencil of lines. In fact, this pencil of lines is defined as

H(t,h) =P+ A1(Q(t,h) — P)=1Q(t,h), reR,

whereQ(t, h) represents a generic point of a plane not containing teiegularity P of V. In this error
analysis, we consider w.l.0.g. that the plane is 1. Then,

Q(t,h) =(t,h,1),
and
H, (t, h) = (At, Lh, D).

Therefore, almost all the real affine points on the surfdcare obtained as the intersection of the line
y—hz=x—1tz=0, fors,h € R, with the surfaceV. Then, if one intersects the surfatewith the
same line one gets, in almost all cases, finitely many pointg cemd we show that at least one of these
intersection points oV is close to the initial point ofV. Also, we observe that it is enough to reason
with slope parameter values oand# in the interval[—1, 1], because ift| > 1 (similarly if |2| > 1) one
may apply a similar strategy considering the plane tx instead ofx = ¢z in the definition of the line
(similarly, z = hy instead ofy = hz).
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Therefore, lettg € R andig € R be sucﬂ thalto| <1, |hol <1 and such_'[haf(t, h)_is o@fined at
(t0, ho). Then, the lineH, (to, ho) intersectsV at P and at an additional poin@; indeedQ = P(to, ho).
Now, because of the construction, one has thaian be expressed as

Q = (Aoto, Aoho, Ao) whereig = @ with somemyg, ng € R.
ng
If we write the affine pointQ projectively one has the poifitnotg : moho : mo : ng). Now, observe that
if |mo| and|ng| are simultaneously very small, i.e., very closestdhis point is not well defined as an
element inP3(R). For this reason, we will assume that eithep| or |no| is bigger than a certain bound
that depends on the tolerance. In fact, for our error analysis, we fix that

d 1/d

|mg| > e or |no| > &™“.

Furthermore, we observe that the defining polynomial¥ @ind V have the same homogeneous form of
maximum degree (see Theorem 4), and hence both surfaces have the same points at infinity.

Now, let O be any affine point iV N H, (o, ho). Note that here it also holds thé can be expressed
as

O = (Mtg, Ahg, A1) for somer, € C.
We want to compute the Euclidean distance betw@eand Q. In order to do that, we observe that

10 — Qll2 =/ (Mo — Aoto)? + (Aaho — roho)? 4+ (A1 — Ao)2 = |Ag — Aoly/ 1§ +h5+1

< V31— ol.
Therefore, we focus on the problem of computing a good bounghfor Aq|.

4.2. Theoretical reasoning

Once we have described the general strategy, we proceed to bound the distance betmeen.
The bound that we present in given in terms of the degreéthe V, the tolerance, and the number
e = exp(1). For this purpose we first prove two different lemmas.

Lemmab. It holds that
A1 — Aol <e-C,
where

d=2 Jitiztis| a1 jo__1
C— Zj1+j2+j3:0 |20l 70172 Ao T1ljalja!
[Aol?=L|nol

Proof. First of all, we note thathy = Z’—S is a root of the univariate ponnomiaf_(/\to, Mg, A) =
194=Y(Ang — mg), and thatr, is a root of the univariate polynomial

d-2 3j1+j2+j3f o
f o, kho, 2) = 2o —mo) + Y (0,0, O R Y
=0 0/1x072y073z J1lj2!js!

Since(0, 0, 0) is the(d — 1)-fold e-singularity of V it holds that
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| £ (hto, Ao, A) — f(Ato, Mho, 1) |

3j1+j2+j3f . .
= max —(0, O, O) |t0|]1|h0|12 T .
j1+ijo+ja=0,...d—2 | | d/1x3/2yd 37 J1lj2!Jj3!
aj1+j2+j3f

<

max —F(0,0,0 .y, —e¢,
j1+jz+j3=o,...d2{ allanZyajsz( )H <e|f(x,y.2)|=¢
and thus,f (Ao, Al1g, ) can be written as

J (o, Mo, 1) = f (o, Mo, 1) + R(G) whereR € RATy [RG| < e.

Therefore, by applying standard numerical techniques to medsure Aol by means of the condition
number (see for instance (Bulirsch and Stoer, 1993, p. 303)), one deduces that

A1 — Aol <e-C,
where
D s R i L e
| MO0 ()]
B Z‘;lszﬂazo Iko|f1+j2+f3|t0|f1|ho|f2m .
B |Aol4=L|no| '

Lemma®6. Let
h(x) = cl_[(x —¢;) €C[x] with degh)=n,

i=1
and leti € C be such thata(1)| < 8. Then, there exists a roo}, of z(x) such that

I — ciol < (8/1c1)™"

Proof. Letus assume thatfér=1,...,n, |x —c;i| > (§/|c))". Then,

h|=lel[TIh—cil >,
i=1
which contradicts that:(1)| <38. O

Now, we proceed to analyZé, — A1| by using the previous lemmas. For this purpose, we distinguish
different cases depending on the value$af] and|ng|.

Lemma7. Let|ng| > 1. Then, it holds that
1. If |Ao] > 1, then|ig — 11| < & - €°.
2. 1f |ho] < 1, then|rg — 11| < (g - 3)V4,

Proof. 1. If |1 > 1, taking into account the equality

r

" d'bick B (a+b+c)
Z iljlk! _Z 5! ’

i+j+k=0 5=0
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one has that the constafitof Lemma 5 can be bounded as
d—=2 Jitjetiz |1 o1
Zjl+jz+13 —o ol ltol”* | hol J1j2!j3!
[Aol?=L|no|
d—2 stttz 1
Zjlﬂzﬂs =0 |20l Jj1lj2!j3!

|Aold1
d—2 (3|rg)¥ d-2

C=

d—-2
_ k=0 "k _ Z 3 3_k
I Kot S L7 S
Thus, by Lemma 5 we deduce that
Ao— A1l <e-e
2.1f |Ag| <1, one has that
| f (Roto, Moo, M)
-2 girtiztis AT 401 1| | 2

= | f (Aoto, Aoho, Ao) + Z ————(0,0,0)2

Py 07/1x072yd737 J1lj2!js!

d-2
< )
J1tj2+j3=0
d-2
<é- Z
Jitje+jz=
Thus, taking into account the equality
Xr: a'bl ck _Xr: (a+b+c)
WL 1R S s! ’
one gets that

9/1tiztis f

ajlxaj2y8j3

(0 0 0)‘|K |J1+]2+J3
JalJj2!Jjs!

|l0|j1+j2+j3

o J1l2lJa!

= BlroD!
| f (hoto, Aoho, Ao)| <& - Z k—? <e-edMl e b
k=0

In this situation, applying Lemma 6 we deduce that there exists a root of the univariate polynomial
f (Ao, Aho, A), that we can assume w.l.0.g. thakis such that

. 63 1/d
|A1 — ol < (W) <E- SV o
0

Lemma8. Let|ng| < 1and|mg| > 1. Then, it holds thath; — Ao < & - €2

Proof. Since|ng| <1 and|mg| > 1, one has that the constafitin Lemma 5 can be bounded as

d—2 Jitjetia| s (it j2 d—2 Jitjotja_ 1
c— 2+ ot ja=o 1ol ltol ™ |hol 2t ja=o 1ol 7
B [Aol4=nol '

[Aol?=t|no|

J1l2! 13'
~
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Now, applying the equality

r

" d'bick B (a+b+c)
Z iljlk! _Z 5! ’

i+j+k=0 5=0

one deduces that

d—2 (3)rgD* dez BlmoD¥|ng|“4—27
k!

C k=0 k! _ =
< =
[Aol9=2|no| lmg|d—1
d—2 d—2
< Z —3k < 3 <ed
= ) d—1k X Z T Se
=0 k|m0| =0 k.

Therefore, by Lemma 6 we conclude that

|)\,l—)\.0|<8'63. O

Finally, it only remains to analyze the case whprg < 1 and|mg| < 1. In order to do that, we recall
that we have assumed that eitheg| or |no| is bigger thare'/?. In the next lemma, we study these cases.

Lemma9. Let|mg| < 1 and|ng| < 1. Then, it holds that
1. If |no] < 1ande¥? < |mg| < 1, then|rg — A1 < e¥/? . 2.
2. If |mo] < 1ande¥? < |ng| < 1, then|rg — Aq| < (e¥/2- 314,

Proof. 1. If |ng| <1 ande¥? < |mo| < 1, one has that the constafitin Lemma 5 can be bounded as

d-2 Mtiatis| g | 12| ol iz —E— d—2 jitiatis 1
2ot s=0 POl IO Mol Frir 2 o ol

~
[Aol4=nol [Aol4=2|no|

C =

d—=2 d—j1—jo—jz—2__1 d—2 _1
Zj1+j2-5-j3=0 1ol Jilialjs! - Zj1+j2+j3:0 Jj1lj2lJja!
|mo|d—j1—j2—1—j3 = |m0|d—1

In these conditions, taking into account the equality

r

" d'bick _ (a+b+c)
Z il k! _Z 5! ’

i+j+k=0 s=0

one deduces that

d—2 3k 3

k=0 %7 ¢ < 3.l

= |mold=t T |mgld—1 T

Thus, Lemma 5 implies that

o — A1l <e¥?. 8.

2. LeteV? < |ng| < 1 and|myg| < 1. First, we assume w.l.0.g. thatg| < £'/?, because otherwise we
would reason as in cag@). In these conditions one has thaty| < ¢/ < |ng| < 1, and we deduce that
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d-2

| f (hoto, Aoho, Ao)| = | f (Moo, Aoho, Ao) + Z
Jjitj2+jz=0

Qiitiztis f

aj1x8j2y8j3z

1
Jalj2! 3!

(0,0, O)Kél+j2+j3 l‘élhéz

d—2 i
gJ/1tiztis I,
f (0’ 0’ 0))‘61+12+j3tcj)1h62

- Z 0/1x9J2y9J3
Jitj2+ja=0 yosz
d-2

< )
Jitj2+j3=0
d-2
<o X
Jitje+Js
Now, taking into account the equality

Jilj2!ja!

§i1tiztis f

——(0,0,0 ‘ | Aol T2t 8 ———
d1xd/2yd73z Jilj2! 3!
|)\O|j1+j2+j3

1! jo! 73!
_o J1J2:J3

Xr: a'bi ck _Xr: (a+b+c)
T ] ’

Wprrdliy iljlk! = s!

one deduces that

d—2
1
| £ (Moto, Aoho, ho)| < & - Z Iholf = < e el Le-ed
= k!
By Lemma 6 we conclude that there exists a root of the univariate polyngfiiiad, Aho, A), that we
may assume w.l.o.g. it is;, such that

o3\ Vd
) < (g-eHM

E -

|70l

From the previous lemmas, one deduces the following theorem.

1 sa 1
31/ _ (/2. ,3\1/d
I <(e-€”) e (g7 e’)7 . O

Ao — A1l < (

Theorem 5. For almost all affine real poinQ € V there exists an affine poi® € V such that

10 — Qll2 < V/3eV@De3,

Proof. Applying Lemmas 7, 8, and 9 one deduces that
10 — Qll2 = v/ (Mo — Aoto)? + (Aaho — Aoho)? 4 (A1 — Ao)?

= A1 — Aoly/ i@+ h2+ 1< V31— Aol <V3BeV®e3, O

Now, let 0 = (hoto, Aoho, Ao) be a regular point oV such that there exist® = (A1fg, A1ho, A1) eV
with |Q — Qll2 < +/3&%@D¢? (see Theorem 5). In this situation, we consider the tangent plaWeato
Q;li.e.,

T(x,y,z) =n.,(x — Aoto) +ny(y — Aoho) +n.(z — Lo),
where(n,, ny, n;) is the unitary normal vector t¥ at Q. Then, taking into account Theorem 5 we bound
the valug|T (Q)| as follows:
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[yl - [A1to — Aoto| + |ny| - |A1ho — Aohol + |n;] - [A1 — Aol
10 — Qll2(In + Iy | + In,]) < 3v/3e¥ @03,

Therefore, reasoning as in Sectiod &f (Farouki and Rajan, 1988) one deduces the following theorem.

IT(Q)] <
<

Theorem 6. The surfaceV is contained in the offset region of the surfaéet distance3v/3g/ @) ¢8,
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