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Abstract

In this paper we present an algorithm for parametrizing approximate algebraic surfaces by lines. The algori
is applicable toε-irreducible algebraic surfaces of degreed having anε-singularity of multiplicity d − 1, and
therefore it generalizes the existing approximate parametrization algorithms. In particular, given a toleranceε > 0
and anε-irreducible algebraic surfaceV of degreed, the algorithm computes a new algebraic surface�V , that is
rational, as well as a rational parametrization of�V . In addition, in the error analysis we show that the output sur
�V and the input surfaceV are close. More precisely, we prove that�V lies in the offset region ofV at distance, a
most,O(ε1/(2d)).
 2004 Elsevier B.V. All rights reserved.
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Introduction

The combination of computer algebra techniques with classical theoretical results in pure math
has yielded to many important symbolic algorithms (i.e., algorithmic methods where input and out
assumed to be exact) to solve relevant problems, especially, in algebra and algebraic geometry (
(Cox et al., 1997; Hoffmann et al., 1997; Winkler, 1996)). Nevertheless, in many practical applica
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for instance in the frame of computer aided geometric design, these approaches tend to be ins
since in practice most of data objects are given or become approximate. As a consequence of this
enon, there has been an increasing interest for the development of hybrid symbolic-numerical alg
and approximate algorithms.

Approximate algorithms deal with mathematical objects that are assumed to be given approxi
probably because they proceed from an exact data that has been perturbed under some previous
process or manipulation. Since the input data, sayD, has been perturbed, the mathematical entityE that
one wants to compute (for instance a gcd, a Gröbner basis, a singular locus structure, etc.) has
and does not behave anymore as expected. Then, the problem consists in finding a new object�D , “close”
to D, satisfying the expecting propertyE . The notion of “closeness” depends on the particular prob
that one is trying to solve, and has to be defined properly. Examples of approximate algorithms in
can be found in (Corless et al., 1995; Emiris et al., 1997; Pan, 1996) for computing polynomial g
common divisors, in (Corless et al., 1995; Emiris and Pan, 2002; Fortune, 2001) for finding ze
multivariate systems, in (Corless et al., 2001; Galligo and Rupprech, 2002; Pan, 2001; Sasaki, 2
factoring polynomials, in (Möller, 1998; Stetter, 1997) for numerical computation of Gröbner basi

One may illustrate this type of phenomenon by the following easy example on factorization
proximate polynomials, that has been taken from (Corless et al., 2001). ConsiderD as the polynomia
p(x, y) = y2 − x4 + 0.01x2, that does not have the propertyE of being reducible. In this situation, th
problem consists in computing a new object�D, in this case a new polynomial̄p(x, y), having the prop-
ertyE and being close top(x, y). Applying algorithms in (Corless et al., 2001), one gets thatp̄(x, y) can
be taken as

p̄(x, y) = (y + x2 − 0.0050433)(y − x2 + 0.0049999),

that factors. Moreover, it holds that

‖p − p̄‖
‖p‖ = 0.47× 10−4.

Observe that in this case, the notion of closeness, has been taken as a relative error.
For approximate algorithms in algebraic geometry we refer to (Bajaj et al., 1988; Bajaj and Xu,

Demmel and Manocha, 1995; Golub and Van Loan, 1989; Hoffmann, 1993) for the computation of
larities, to (Corless et al., 2000; Dokken, 2001) for implicitization methods, to (Farouki and Rajan,
for the analysis of the numerical condition of implicitly given algebraic curves and surfaces, to
and Royappa, 2000; Gahleitner et al., 2002; Hartmann, 2000; Pérez-Díaz et al., 2004) to parame
algorithms, etc.

In this paper, we study the problem of parametrizing approximate algebraic surfaces. In this c
and in order to be more precise, the problem can be stated as follows. Given a fixed toleranceε > 0,
that may be introduced for instance by the user or by the constrains of the application process, a
an ε-irreducible algebraic surfaceV (see either (Corless et al., 2001) or Section 2 for the notion oε-
irreducibility), that may be or may not be rational, one has to compute a rational surface�V , and a parame
trization of�V , such that�V lies within the region limited by the external and the internal offset ofV , at dis-
tanceδ(ε), where|δ(ε)− ε| is significantly small (see (Arrondo et al., 1997) for basic notions of offs

Approximate parametrization algorithms for curves and surfaces can be found in (Bajaj and Ro
2000; Gahleitner et al., 2002; Hartmann, 2000; Pérez-Díaz et al., 2004). In (Gahleitner et al.
Hartmann, 2000) the problem is treated locally. In (Bajaj and Royappa, 2000) the problem is
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globally and the authors present a method for conics, cubics and quadrics. In (Pérez-Díaz et a
the results in (Bajaj and Royappa, 2000) are generalized to a wider class of algebraic curves, nam
curves having “almost” a singularity of maximum multiplicity. In this paper, we show how the re
presented in (Pérez-Díaz et al., 2004) can be extended to surfaces having anε-singularity of multiplicity
d − 1 (see Sections 2 and 3 for the notion ofε-singularity), whered is the degree of the input surfac
andε > 0 is the tolerance. Therefore in this paper we generalize the results given in (Bajaj and Ro
2000); note that quadrics are a particular case of the above situation. In addition, we analyze th
and we prove that the output rational surface lies in the offset region of the input surface at dista
most,O(ε1/(2d)), whered > 0 is the degree of the input surface, andε > 0 is the fixed tolerance. Beside
this theoretical analysis of the distance between the input and output surfaces, in the examples,
empirically quantified the distance. The conclusion of this experimental analysis is that, in pr
examples, the distance is smaller than the theoretical bound shows.

The paper is structured as follows. Section 1 is preliminary, and we briefly describe the symboli
rithm to parametrize surfaces by lines. In Section 2 we give the approximate algorithm for quadri
in Section 3 we present the general algorithm for parametrizing by lines surfaces having anε-singularity
of multiplicity d − 1, whered is the degree of the input surface. Section 4 is devoted to the analy
the error, and we prove that the output generated by our algorithm is close to the input surface.

1. Preliminaries: symbolic parametrization of surfaces by lines

In this section, we recall how to parametrize by lines some special surfaces; for more deta
(Abhyankar and Bajaj, 1989; Schicho, 1998; Wang et al., 1997). For this purpose, we consider
surfaces of degree greater than 1.

Let V be an irreducible surface of degreed over an algebraically closed fieldK; in practice, one may
think that K is the fieldC of the complex numbers. We assume thatV has a pointP of multiplicity
(d − 1). That is, all partial derivatives of the defining polynomial ofV , till order d − 2, vanish atP . In
this case,V can be parametrized by means of rational functions, i.e.,V is a rational surface. The idea f
actually computing a parametrization of this type of surfaces consists in a generalization of the alg
for quadrics presented in (Abhyankar and Bajaj, 1989; Sederberg and Snively, 1987; Wang et al.
Intuitively speaking, any line throughP must intersect the surfaceV in one additional point, by Bézout
theorem (see Fig. 1). Thus, if one parametrizes a pencil of lines,Hλ(t, h), throughP , that point onV can
be expressed, for each lineHλ(t, h) in the pencil, by an expression inh andt .

More precisely, letf (x, y, z) be the implicit equation of an irreducible affine quadricV . We consider
a pointP ∈ V not being a singularity and letΠ be a plane not containing the pointP . In these conditions
one considers the projection ofV with center onP over the planeΠ . Moreover, letQ(t, h) be a generic
point ofΠ and letHλ = P +λ(Q(t, h)−P) be the pencil of lines. Thus, intersectingHλ andV one gets
the parametrizationP(t, h) of V . That is, fromf (Hλ) = 0 one may express rationallyλ in terms oft, h,
and afterwards by substituting it inHλ one obtains the parametrization ofV (see Fig. 1).

In the particular case of the example illustrated in Fig. 1, i.e., whereV is the sphere of equatio
f (x, y, z) = x2 + y2 + z2 − 1, the algebraic calculation would be as follows. We consider asP the
point P = (0,0,1) and the planeΠ of equationz = 0; note thatP /∈ Π . Then,Q(t, h) = (t, h,0), and
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Fig. 1. Geometric idea of the parametrization of quadrics.

Hλ(t, h) = (λt, λh,1− λ). Now, f (Hλ(t, h)) = λ(λt2 + λh2 − 2+ λ). So, forλ = 0 one gets the poin
P , and forλ = 2/(t2 + h2 + 1), one obtains the sphere rational parametrization

P(t, h) =
(

2t

t2 + h2 + 1
,

2h

t2 + h2 + 1
,1− 2

t2 + h2 + 1

)
.

The above reasoning can be generalized to irreducible surfaces of degreed having a point of multi-
plicity d − 1. In fact, the above geometric process can be seen algebraically as follows. Letf (x, y, z) be
the implicit equation ofV and we assume w.l.o.g. that the pointP ∈ V of multiplicity d − 1 is the origin.
Otherwise one may consider a linear change of coordinates. In this situation, it holds that

f (x, y, z) = fd(x, y, z) + fd−1(x, y, z),

wherefd(x, y, z), fd−1(x, y, z) are the homogeneous forms of degreed andd − 1 of f (x, y, z), respec-
tively. In this situation, letQ(t, h) = (t, h,1) be a generic point of the planeΠ defined byz = 1 (note
that nowP /∈ Π ); hence,

Hλ = (λt, λh,λ).

Thus, intersecting ofV with Hλ one gets that

f (λt, λh,λ) = λdfd(t, h,1) + λd−1fd−1(t, h,1),

and therefore one deduces that

λ = −fd−1(t, h,1)

fd(t, h,1)
.

Then, a rational parametrization ofV is given by

P(t, h) =
(

−t
fd−1(t, h,1)

fd(t, h,1)
, −h

fd−1(t, h,1)

fd(t, h,1)
, −fd−1(t, h,1)

fd(t, h,1)

)
.

More precisely, one has the following parametrization algorithm by lines:
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Algorithm. Symbolic parametrization by lines for surfaces.

• Given an irreducible polynomialf (x, y, z) ∈ K[x, y, z] defining an irreducible algebraic surfaceV

of degreed > 1 with a point of multiplicityd − 1.
• Compute a rational parametrizationP(t, h) = (p1(t, h),p2(t, h),p3(t, h)) of V .

(1) If d = 2 take a regular pointP on V , else determine a pointP of multiplicity (d − 1) on V .
(2) If P is at infinity, consider a linear change of variables such thatP is transformed into an affine poin

Let P = (a, b, c).
(3) Compute

A(x, y, z, t, h) =
∑d−1

r+s=0

∂d−1f

∂r x∂sy∂d−1−r−s z
t rhs

(d−1−r−s)!r !s!∑d
r+s=0

∂d f

∂r x∂sy∂d−r−s z
t rhs

(d−r−s)!r !s!

.

(4) Consider

P(t, h) = (−tA(P, t, h) + a,−hA(P, t, h) + b,−A(P, t, h) + c
)
.

(5) Return the parametrization obtained when one applies toP(t, h) the inverse of the change consider
in (2).

Remark. The parametrizationP(t, h) in step(4) can also be obtained as follows: computeg(x, y, z) =
f (x + a, y + b, z + c), and return

P(t, h) =
(−tgd−1(t, h,1)

gd(t, h,1)
+ a,

−hgd−1(t, h,1)

gd(t, h,1)
+ b,

−gd−1(t, h,1)

gd(t, h,1)
+ c

)
,

wheregd(x, y, z) andgd−1(x, y, z) are the homogeneous components ofg(x, y, z) of degreed andd −1,
respectively.

The following example illustrates the above parametrization algorithm for a surface of degree 5
overC.

Example 1. Let V be the irreducible surface overC defined by the implicit equation

f (x, y, z) = y5 + x5 + x4 − 2y4 + 2z4y + 3z3x.

Note thatV has a singularity of multiplicity 4 inP = (0,0,0) (see Fig. 2). Applying the above algorith
one computes

A(x, y, z, t, h) =
∑4

r+s=0

∂4f

∂r x∂sy∂4−r−s z
t rhs

(4−r−s)!r !s!∑5
r+s=0

∂df

∂r x∂sy∂5−r−s z
t rhs

(5−r−s)!r !s!

,

and hence we obtain the rational parametrization ofV defined as

P(t, h) = (−tA(P, t) + a,−hA(P, t) + b,−A(P, t) + c
)

=
(−(3t + t4 − 2h4)t

h5 + 2h + t5
,

−(3t + t4 − 2h4)h

h5 + 2h + t5
,

−(3t + t4 − 2h4)

h5 + 2h + t5

)
.
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Fig. 2. Rational surfaceV .

2. Parametrization of approximate quadrics

In this section we study the problem of parametrizing approximate quadrics. We consider a fixe
anceε > 0, that may be introduced for instance by the user or by the constrains of the application p
and a quadricV . Then, we want to compute the parametrization of a new quadric�V that lies within the
offset region ofV at some small distance. More precisely, we present an algorithm that determ
rational parametrization of�V , that lies within the offset region ofV at distance at mostO( 4

√
ε). In fact,

in Section 4, we will see that the offset region ofV , where�V is contained, can be taken as distance
most, 3e3

√
3 4
√

ε, wheree = exp(1).
The results obtained in this case are similar to those presented in (Bajaj and Royappa, 2000

ever, the method that we present will be generalized to surfaces of degreed with “almost” a point of
multiplicity d − 1 (see Section 3). Therefore, the results in (Bajaj and Royappa, 2000) will be exte

Throughout this paper, we consider that a fixed toleranceε > 0 is given, and we will use the polyno
mial ∞-norm; i.e., if

p(x, y, z) =
∑

i,j,k∈I

ai,j,kx
iyj zk ∈ C[x, y, z]

then‖p(x, y, z)‖ is defined as∥∥p(x, y, z)
∥∥ = max

{|ai,j,k |/i, j, k ∈ I
}
.

In particular ifp(x, y, z) is a constant coefficient,‖p(x, y, z)‖ will denote its module. Furthermore, w
consider a real quadricV defined by anε-irreducible polynomial (see for instance (Corless et al., 20
Sasaki, 2001)),f (x, y, z) ∈ R[x, y, z]; that is,f (x, y, z) cannot be expressed as

f (x, y, z) = g(x, y, z)h(x, y, z) + E(x, y, z)

whereg,h,E ∈ C[x, y, z] and∥∥E(x, y, z)
∥∥ < ε

∥∥f (x, y, z)
∥∥.

We observe that the notion ofε-irreducibility implies the notion of “exact” irreducibility. Therefore
in our case, one has that the polynomialf (x, y, z) is irreducible. On the other hand, since irreduci
quadrics are rational, one deduces that our quadricV can be parametrized. In order to compute
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parametrization ofV , one may apply the symbolic parametrization algorithm toV (see Section 1)
However, the symbolic parametrization algorithm requires the computation of a simple point
quadric; in fact, once the simple point is determined, the remaining steps of the algorithm can
ecuted symbolically without further difficulties. Note that, since the surfaceV is real, this point can
be taken overR. The computation of this simple point can be performed either symbolically, fo
stance introducing algebraic numbers, or numerically by root finding methods (see (Fortune
Golub and Van Loan, 1989)).

If one works symbolically then the direct application of the algorithm will provide an exact an
However, in the frame of this paper, we are interested in the approximate approach. Thus, we ass
the simple point is approximated.

In order to deal with the approximate simple point, we will introduce the notion ofε-point of a surface
This concept essentially consists of a point that almost lies on the surface. Algebraically, iff (x, y, z) is
a polynomial defining the surfaceV andP ∈ C

3 is the point, the notion ofε-point may be approache
asking that|f (P )| is small, let us say smaller than the tolerance. However, since for every non
λ ∈ C, the polynomialλf (x, y, z) also defines the same surface, the above condition is not enoug
controlling this phenomenon one may consider relative errors, and one may ask that|f (P )|/‖f ‖ is small.
More precisely, one has the following definition.

Definition 1. We say that�P = (ā, b̄, c̄) ∈ C
3 is an (affine) ε-point of an algebraic surfaceV defined by

anε-irreducible polynomialf (x, y, z) ∈ R[x, y, z] if it holds that

|f (�P )|
‖f (x, y, z)‖ < ε,

and for anyi0, j0, k0 ∈ N with i0 + j0 + k0 = 1,∣∣ ∂f

∂i0x∂j0y∂k0z
(�P )

∣∣
‖f (x, y, z)‖ � ε;

that is,�P is a simple point onC computed under fixed precisionε‖f (x, y, z)‖.

Now, we proceed to describe the method for parametrizing by lines approximate quadrics. F
purpose, let�P = (ā, b̄, c̄) be an affineε-point of the quadricV , and let us consider the quadric�V defined
by the polynomial

f̄ (x, y, z) = f (x, y, z) − f ( �P ).

We observe that the point�P is an exact simple point of�V (at least a partial derivative off of order 1
does not vanish at�P ). In these conditions, the following lemma holds.

Lemma 1. The quadric�V is irreducible overC.

Proof. If f̄ factors asf̄ = ḡh̄ thenf = ḡh̄ + f ( �P ) and since�P is anε-point, it holds that|f ( �P )| <

ε‖f ‖. Then,f is notε-irreducible overC, which is impossible. �
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Therefore, we have constructed a rational irreducible quadric, namely�V on which we know a simple
point, namely�P . Hence, taking into account the above remarks, we may directly apply the sym
algorithm to�V (see Section 1) to get the rational parametrization

�P(t, h) = (−tA(�P , t, h) + ā,−hA(�P , t, h) + b̄,−A(�P , t, h) + c̄
)
,

where

A(x, y, z, t, h) =
∂f

∂x
t + ∂f

∂y
h + ∂f

∂z

∂2f

∂2x

t2

2 + ∂2f

∂2y

h2

2 + ∂2f

∂2z

1
2 + ∂2f

∂x∂y
th + ∂2f

∂x∂z
t + ∂2f

∂y∂z
h

.

From the reasoning presented above, one gets the following theorem.

Theorem 1. Let f (x, y, z) be the implicit equation of the quadricε-irreducibleV , and let�P = (ā, b̄, c̄)

be anε-point ofV . We consider the parametrization

�P(t, h) = (−tA(�P , t, h) + ā,−hA(�P , t, h) + b̄,−A(�P , t, h) + c̄
)
,

where

A(x, y, z, t, h) =
∂f

∂x
t + ∂f

∂y
h + ∂f

∂z

∂2f

∂2x

t2

2 + ∂2f

∂2y

h2

2 + ∂2f

∂2z

1
2 + ∂2f

∂x∂y
th + ∂2f

∂x∂z
t + ∂2f

∂y∂z
h

.

Then, the implicit equation of the quadric�V defined by the parametrization�P(t, h) is

f̄ (x, y, z) = f (x, y, z) − f (�P ).

In (Bajaj and Royappa, 2000), the authors present similar results to Theorem 1. However, as
see in Section 3, the formulation given in Theorem 1 shows how to generalize these ideas to the
surfaces of arbitrary degreed with the property of having anε-point of multiplicity d − 1. Theorem 1
provides the following algorithm for parametrizing approximate quadrics.

Algorithm 1. Approximate parametrization by lines for quadrics.

• Given a toleranceε > 0 and anε-irreducible polynomialf (x, y, z) ∈ R[x, y, z], defining a
quadricV .

• Compute a rational parametrization�P(t, h) of a quadric�V close toV .

(1) Compute an affineε-point �P = (ā, b̄, c̄) of V .
(2) Determinef̄ (x, y, z) = f (x, y, z) − f (�P ).
(3) Compute

A(x, y, z, t, h) =
∂f̄

∂x
t + ∂f̄

∂y
h + ∂f̄

∂z

∂2f̄

∂2x

t2

2 + ∂2f̄

∂2y

h2

2 + ∂2f̄

∂2z

1
2 + ∂2f̄

∂x∂y
th + ∂2f̄

∂x∂z
t + ∂2f̄

∂y∂z
h
,

and return

�P(t, h) = (−tA(�P , t, h) + ā,−hA(�P, t, h) + b̄,−A(�P, t, h) + c̄
)
.
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Note that for computing�P in step(1) one may use numerical techniques, for instance (Fortune, 2
or (Golub and Van Loan, 1989). Taking into account Theorem 1 and the above algorithm, one d
the following result.

Theorem 2. The input surface and the output surface given by Algorithm1 have the same degree. Fu
thermore, all the coefficients, but the independent ones, of the defining polynomials of the input
output surfaces of Algorithm1 are the same; i.e., its difference is a constant.

The following example illustrates Algorithm 1. In the description of the example we will rem
the mentioned particular properties of the parametrization method, and we will also estimate,
particular case, the distance of the input and output surface; for a theoretical treatment of this f
refer to Section 4. In order to estimate the distance, we particularize the theoretical reasoning in S
to this example, proceeding as follows. We randomly generated 10000 points on the output surfac
this surface is rational, and since we know a parametrization of it, the points on the surface are o
by giving random values to the parameters. Once the points on the output surface are determ
compute, by intersecting with a pencil of lines (see details in the example), points on the input s
and we measure the corresponding distances. For the set of all the obtained distances we get
value as well as the statistical standard error, that turn to be very small.

Example 2. We considerε = 0.001 and the quadricV defined by theε-irreducible polynomial

f (x, y, z) = 97.00100000y + 50.00300000x2 + 79xy + 56xz + 49.00100000yz + 63z2

+ 0.001000000000+ 0.001000000000x.

First of all, we determine an affineε-point �P . For this purpose, using numerical techniques (see
instance (Fortune, 2001) and (Golub and Van Loan, 1989)) we get�P = (0,0,0).

Applying step(2) of Algorithm 1 we obtain the quadric�V defined by the irreducible polynomial

f̄ (x, y, z) = f (x, y, z) − f (�P ) = 97.00100000y + 50.00300000x2 + 79xy + 56xz

+ 49.00100000yz + 63z2 + 0.001000000000x.

Note thatf̄ (x, y, z) is irreducible (see Lemma 1), and thatf̄ (�P ) = 0, and hence�P is an exact point on
the irreducible quadric�V . Finally, applying step(3) of Algorithm 1, we obtain a rational parametrizatio
of �V defined by

�P(t, h) = (
p̄1(t, h), p̄2(t, h), p̄3(t, h)

)
,

where

p̄1(t, h) = −97001.00001th − .9999999999t2

50002.99999t2 + 79000.00002th + 56000.00000t + 49000.99999h + 62999.99997
,

p̄2(t, h) = −97001.00001h2 − .9999999999th

50002.99999t2 + 79000.00002th + 56000.00000t + 49000.99999h + 62999.99997
,

and

p̄3(t, h) = −97001.00001h − .9999999999t

50002.99999t2 + 79000.00002th + 56000.00000t + 49000.99999h + 62999.99997
.
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Fig. 3. Input surfaceV (grey) and contour of the output surface�V (red).

Note that, as stated in Theorem 2, deg(f (x, y, z)) = deg(f̄ (x, y, z)) and f̄ (x, y, z) − f (x, y, z) is a
constant, namelyf (�P ).

In Fig. 3 one may compare the input quadric and the output rational quadric. Note that the surfa�V is
close to the input surfaceV . This behavior will be studied in Section 4. However, as we have menti
above, we will statistically estimate the distance between�V andV .

For this purpose, we particularize the theoretical reasoning in Section 4 to this example. Mo
cisely, giving random values to the parameterst, h in �P(t, h) we generate 10000 points on�V . Let A
denote the set of all these points. Now, for each pointQ ∈A we consider the lineL of parametric equa
tion Q + λ(Q − �P ). Afterwards, we compute the intersection of the lineL and the surfaceV , i.e., we
approximate the roots off (Q + λ(Q − �P )). This computation yields to a finite setBQ of points on
V , and we take the minimum of the Euclidean distances ofQ to the points inBQ. After repeating this
construction for all points inA, we have a set of distances, and we compute their mean valueµ as well
as the statistical standard errorρ. In this case, we have obtained

µ = 0.003643288980, ρ = 0.0005411567185,

from where one can statistically deduce that the distance is, in average, in the interval[µ − 1.96ρ,µ +
1.96ρ] = [0.002582621812,0.004703956148].

3. Parametrization by lines of approximate surfaces

In Section 2 we have presented an approximate parametrization algorithm for quadrics. In this
we generalize these results for surfaces of degreed with the property of having “almost” a point o
multiplicity d − 1. Therefore, we extend the results presented in (Bajaj and Royappa, 2000).

The main difference with the quadric case (see Section 2) is that the given approximate algebr
face is, in general, non-rational even though it might correspond to the perturbation of a rational s
The basic idea to approach the problem consists in generalizing the construction done for qua
such a way that a rational surface is constructed.

For this purpose, we observe that the output surface in the 2-degree case is the original pol
minus its Taylor expansion up to order 1 at theε-point, i.e., the evaluation of the polynomial at the po
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(see Theorem 2). For surfaces of degreed having “almost” a singularity of multiplicityd −1, we see tha
one may generalize properly the process by subtracting to the original polynomial its Taylor exp
up to orderd − 1 at the “quasi” singularity, to get a rational surface close to the given one.

In order to be precise, we first introduce the notion ofε-singularity, that is the natural generalizati
of the concept ofε-point given in Definition 1.

Definition 2. We say that�P = (ā, b̄, c̄) ∈ C
3 is an (affine) ε-singularity of multiplicityr of a surface

defined by anε-irreducible polynomialf (x, y, z) ∈ R[x, y, z] if for 0 � i + j + k � r − 1, it holds that∣∣ ∂i+j+kf

∂ix∂j y∂kz
(�P )

∣∣
‖f (x, y, z)‖ < ε,

and for somei0, j0, k0 ∈ N with i0 + j0 + k0 = r∣∣ ∂rf

∂i0x∂j0y∂k0z
(�P )

∣∣
‖f (x, y, z)‖ > ε.

Note that anε-singularity of multiplicity 1 is anε-point on the surface. In this situation, we introdu
the setSd

ε as follows.

Definition 3. We denote bySd
ε the set of all theε-irreducible algebraic real surfaces of degreed having

a realε-singularity of multiplicityd − 1.

In the following, we assume thatd > 2 and we prove that the elements inSd
ε can be parametrize

by lines. Note that the cased = 1, i.e., planes, is trivial, and that the cased = 2 has been analyzed
Section 2. But first, we deal with the problem of checking whether a given real algebraic surfV

belongs or not toSd
ε .

In order to check whether a given real surfaceV of degreed, defined by a polynomialf (x, y, z), be-
longs toSd

ε , one has to check theε-irreducibility of f (x, y, z) as well as the existence of anε-singularity
of multiplicity d − 1. To analyze theε-irreducibility, one may use any of the existing algorithms (s
e.g., (Corless et al., 2001; Pérez-Díaz et al., 2004; Sasaki, 2001)). For checking the existence a
computation ofε-singularities of multiplicityd − 1 one has to solve the system of algebraic equatio

A=
{

∂i+j+kf

∂ix∂j y∂kz
(x, y, z) = 0

}
i+j+k=0,...,d−2

under fixed precisionε · ‖f (x, y, z)‖, by applying root finding techniques (see, e.g., (Corless et al., 1
Fortune, 2001; Golub and Van Loan, 1989; Hoffmann, 1993; Krishnan and Manocha, 1996)). The
A may be simplified by reducing the number of equations and their degrees. More precisely, fi
choose three triples(i�, j�, k�), with � = 1,2,3, such thati� + j� + k� = d − 2, and we consider the ne
system

B =
{

∂d−2f

∂i1x∂j1y∂k1z
(x, y, z) = ∂d−2f

∂i2x∂j2y∂k2z
(x, y, z) = ∂d−2f

∂i3x∂j3y∂k3z
(x, y, z) = 0

}
under fixed precisionε‖f (x, y, z)‖. Note that now the three involved equations are quadratic. One
has to observe that it may happen that all partial derivatives of orderd − 2 are in fact zero, but thi
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is quite unlikely since we work with approximations. Nevertheless, if this is the case, one would
with the previous non-zero derivatives, and the degree would have increased slightly. In this si
one computes the solutions ofB by using any of the existing methods (see, e.g., (Corless et al., 1
Fortune, 2001; Golub and Van Loan, 1989; Hoffmann, 1993; Krishnan and Manocha, 1996)). Onc
solutions have been approximated, one simply has to check if any of the solutions,�P , of B satisfies that∥∥∥∥ ∂i+j+kf

∂ix∂j y∂kz
(�P )

∥∥∥∥ � ε
∥∥f (x, y, z)

∥∥, i + j + k = 0, . . . , d − 2.

These ideas are illustrated in Examples 3 and 4 in this section.
Numerical methods for solving systems of algebraic equations may fail when the set of so

is not zero-dimensional, i.e., when there exist infinitely many solutions. In our case, this pheno
may appear if the surface has infinitely manyε-singularities. Geometrically, this mean that the surf
might contain a whole curve whose points areε-singularities, i.e., the surface has anε-singular curve.
Therefore, when applying the process described above, numerical methods may not compute
possibilities, and hence one might not guarantee whetherV is in Sd

ε . That is, if applying these method
we may compute anε-singularity of multiplicity d − 1, then we conclude thatV ∈ Sd

ε ; otherwise, we
cannot conclude whetherV is not in Sd

ε and the parametrization algorithm could not be applied.
illustrate this difficulty with the following example. LetV be the surface of degree 3 defined by
irreducible polynomial

f (x, y, z) = x3
1 + x3x

2
1 − x2

2 − 1

1000
,

and letε = 0.001. This surface corresponds to an small perturbation of a generalization of “Carta
brella” (see p. 60 in (Bochnak et al., 1998)). It is easy to check that all points, in the line of equ
x = y = 0, areε-singularities of multiplicity 2 ofV (see Fig. 4). However, applying numerical metho
one does not reach the expected answer.

We do not know how to solve this problem, and therefore we do not have a deterministic al
mic criterion for deciding whetherV ∈ Sd

ε . However, a possible idea to approach this problem m
be to apply the approximate parametrization algorithm for quadrics (see Section 2) to find a s
parametrization of one of the polynomials inB to afterwards substitute this parametrization in the o
polynomials involved inB. In this way the problem is reduced to the bivariate case, and computingε-gcds
and approximately crossing it out, we arrive at a zero-dimensional system and hence current nu
methods would compute all solutions. Nevertheless we have been unable to guarantee the n
stability of the process, and therefore we prefer to leave it open.

Fig. 4. SurfaceV .
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In the following, we assume thatV ∈ Sd
ε and thatf (x, y, z) ∈ R[x, y, z] is the implicit equation

definingV . In addition, we consider that�P = (ā, b̄, c̄) ∈ R
3 is anε-singularity of multiplicity d − 1 of

the surfaceV , and we parametrize by lines, approximately, the surfaceV . For this purpose, ifQ(t, h)

represents a generic point of a plane not containing the point�P , we consider the pencil of lines define
by the parametrization

Hλ(t, h) = �P + λ
(
Q(t, h) − �P )

.

If �P would be an exact singularity, then the symbolic algorithm (see Section 1) would output the
metrization

�P(t, h) = �P + µ(t, h)
(
Q(t, h) − �P ) ∈ R(t, h)3,

whereµ(t, h) ∈ R(t, h) is the root w.r.t.λ of the linear polynomial

f (Hλ(t, h))

λd−1
.

However, in our case�P is not a singularity but anε-singularity. Then, the idea consists in comput
the root inR(t, h) of the quotient off (Hλ(t, h)) andλd−1 w.r.t. λ. Note that degλ(f (Hλ(t, h)) = d, and
therefore the quotient is linear inλ. Let µ(t, h) be this root. Then, we will see that

�P(t, h) = �P + µ(t, h)
(
Q(t, h) − �P )

,

is an approximate parametrization ofV .
For this purpose, first we prove that�P(t, h) is a rational parametrization. Furthermore, we show

if Q(t, h) is proper, then the parametrization�P(t, h) is also proper.

Lemma 2. Let f (x, y, z) be the implicit equation of the surfaceV ∈ Sd
ε and let �P = (ā, b̄, c̄) ∈ R

3 an
affineε-singularity of multiplicityd − 1 of V . We considerµ(t, h) the root inR(t, h) of the quotient of
the polynomialf (Hλ(t, h)) andλd−1 w.r.t. λ. Then,

�P(t, h) = �P + µ(t, h)
(
Q(t, h) − �P )

is a rational parametrization.

Proof. To prove the lemma we show that at least one of the components of�P(t, h) is not a constant. Le
us assume that all the components of�P(t, h) are constant. In this situation, since

�P(t, h) = (
ā + µ(t, h)

(
q1(t, h) − ā

)
, b̄ + µ(t, h)

(
q2(t, h) − b̄

)
, c̄ + µ(t, h)

(
q3(t, h) − c̄

))
,

whereQ(t, h) = (q1(t, h), q2(t, h), q3(t, h)) parametrizes a plane that does not contain the point�P , one
deduces thatµ(t, h) = 0. Now, we consider the Taylor expansion off (x, y, z) at �P ; that is,

f (x, y, z) = f ( �P ) +
d∑

j1+j2+j3=1

∂j1+j2+j3f

∂j1x∂j2y∂j3z
( �P )(x − ā)j1(y − b̄)j2(z − c̄)j3

1

j1!j2!j3! .

Thus,

f
(
Hλ(t, h)

) = f
(
ā + λ(q1 − ā), b̄ + λ(q2 − b̄), c̄ + λ(q3 − c̄)

)
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= f ( �P ) +
∑

j1+j2+j3=1

∂j1+j2+j3f

∂j1x∂j2y∂j3z
( �P )

λj1+j2+j3(q1 − ā)j1(q2 − b̄)j2(q3 − c̄)j3

j1!j2!j3!

= λd−1

(
d∑

j1+j2+j3=d−1

∂j1+j2+j3f

∂j1x∂j2y∂j3z
( �P )

λj1+j2+j3−d+1(q1 − ā)j1(q2 − b̄)j2(q3 − c̄)j3

j1!j2!j3!

)

+
(

f ( �P ) +
d−2∑

j1+j2+j3=1

∂j1+j2+j3f

∂j1x∂j2y∂j3z
( �P )

λj1+j2+j3(q1 − ā)j1(q2 − b̄)j2(q3 − c̄)j3

j1!j2!j3!

)
.

Therefore,f (Hλ(t, h)) can be expressed as

f
(
Hλ(t, h)

) = λd−1M(t,h,λ) + N(t, h, λ),

where

N(t, h, λ) = T
(
Hλ(t, h)

)
, M(t, h, λ) = S(Hλ(t, h))

λd−1
,

S(x, y, z) is the Taylor expansion off (x, y, z) from orderd − 1 up to orderd at �P , andT (x, y, z) is
the Taylor expansion of orderd − 1 of the polynomialf (x, y, z) at �P . Note, that degλ(M) = 1 and
degλ(N) � d − 2. On the other hand, letU(t, h, λ) andV (t, h, λ) be the quotient and the remainder
f (Hλ(t, h)) andλd−1 w.r.t. λ, respectively. Then, one has that

f
(
Hλ(t, h)

) = λd−1U(t, h, λ) + V (t, h, λ)

with degλ(V ) � d − 2. Thus,

λd−1(M(t,h,λ) − U(t, h, λ)
) = V (t, h, λ) − N(t, h, λ).

Since the degree w.r.t.λ of V − N is less of equal thand − 2 andλd−1 divides toV − N , one deduces
thatM = U andV = N . Therefore, sinceµ(t, h) = 0 is the root inλ of

U(t, h, λ) =
d∑

j1+j2+j3=d−1

∂j1+j2+j3f

∂j1x∂j2y∂j3z
( �P )

λj1+j2+j3−d+1(q1 − ā)j1(q2 − b̄)j2(q3 − c̄)j3

j1!j2!j3! ,

and sinceQ(t, h) is a plane not containing the point�P , we deduce that for everyi, j, k ∈ N with i + j +
k = d − 1,

∂d−1f

∂ix∂jy∂kz
( �P ) = 0.

Finally, since the multiplicity of theε-singularity �P is d − 1, there existi0, j0, k0 ∈ N such thati0 + j0 +
k0 = d − 1 and∣∣∣∣ ∂d−1f

∂i0x∂j0y∂k0z
( �P )

∣∣∣∣ � ε · ∥∥f (x, y, z)
∥∥ > 0.

Thus ∂d−1f

∂i0x∂j0y∂k0z
( �P ) �= 0, which contradicts the hypothesis.�

The following lemma shows that ifQ(t, h) is a proper parametrization, then�P(t, h) is also a prope
parametrization. For this purpose, we assume w.l.o.g. that the plane not containing the point�P is z =
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c̄ + 1, and thatε < 1 (which ensures that�P is not on the plane). Otherwise, we would consider the p
z = c̄ + ρ with ρ > ε. In this situation, we consider the proper parametrization of the planeQ(t, h) =
(t, h, c̄ + 1). Then, the parametrization�P(t, h) is given by

�P(t, h) = (
ā + µ(t, h)(t − ā), b̄ + µ(t, h)(h − b̄), c̄ + µ(t, h)

)
.

Lemma 3. The parametrization

�P(t, h) = (
ā + µ(t, h)(t − ā), b̄ + µ(t, h)(h − b̄), c̄ + µ(t, h)

)
is proper.

Proof. We denote byp̄i(t, h) theith component of�P(t, h). Thus, it holds that

t = (p̄1(t, h) − ā)

p̄3(t, h) − c̄
+ ā, h = (p̄2(t, h) − b̄)

p̄3(t, h) − c̄
+ b̄.

Therefore,�P(t, h) is a proper parametrization and its inverse is given by(
(x − ā)

z − c̄
+ ā,

(y − b̄)

z − c̄
+ b̄

)
. �

Now we prove that if there exists anε-singularity, then there exists infinitely many singularities cl
to the original one that can be considered equivalent. For this purpose, for�P ∈ R

3 andδ > 0, we denote
by B(�P, δ) the Euclidean ball

B(�P, δ) = {
(x, y, z) ∈ R

3 | ∥∥(x, y, z) − �P∥∥
2 < δ

}
.

Lemma 4. Let V be an affine algebraic surface defined by the polynomialf (x, y, z) ∈ R[x, y, z] with
a real ε-singularity �P of multiplicity r . Then, there existsδ > 0 such that any pointQ ∈ B(�P , δ) is an
ε-singularity of multiplicity at leastr of V . Furthermore, there exist at least one partial derivative
f (x, y, z) of orderr that does not vanish atQ.

Proof. We represent byfi,j,k the partial derivative ∂i+j+kf

∂ix∂j y∂kz
. Since�P is anε-singularity of multiplicity

r , for i + j + k = 0, . . . , r − 1 it holds that|fi,j,k(�P )| < ε‖f ‖. Let us denote|fi,j,k(�P )| = εi,j,k for
i + j + k = 0, . . . , r − 1. Then, for eachεi,j,k there existsλi,j,k > 0 such that

εi,j,k = ε‖f ‖ − λi,j,k < ε‖f ‖.
We considerλ = min{λi,j,k, i + j + k = 0, . . . , r − 1} (note thatλ > 0). On the other hand, since a
partial derivatives,|fi,j,k|, are continuous, letM bound all partial derivatives up to orderr in the compact
setB(�P , ε), and letδ1 be strictly smaller than min{λ/(2M), ε}; note thatM > 0 since otherwise it would
imply thatV contains a 3-dimensional ball of points which is impossible. Now, takeQ ∈ B(�P, δ1). Then,
by applying the Mean Value Theorem, we have that fori + j + k = 0, . . . , r − 1∣∣fi,j,k(Q)

∣∣ �
∣∣fi,j,k(�P )

∣∣ + ∣∣fi,j,k(�P ) − fi,j,k(Q)
∣∣ � εi,j,k + ∣∣∇fi,j,k(ξi,j,k) · (�P − Q)T

∣∣,
whereξi,j,k = �P + θ(�P − Q) with θ ∈ (0,1). Therefore, one concludes that∣∣fi,j,k(Q)

∣∣ � ε‖f ‖ − λi,j,k + 2δ1M � ε‖f ‖ − λ + 2δ1M < ε‖f ‖,
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and then,Q is anε-singularity of multiplicity at leastr of the surfaceV .
On the other side, since�P is anε-singularity of multiplicity r , in particular one deduces that the

exists a partial derivative off (x, y, z) of order r not vanishing at�P . We consider thatg(x, y, z) =
∂rf

∂i0x∂j0y∂k0z
(x, y, z), for anyi0, j0, k0 ∈ N with i0+j0+k0 = r , is this derivative. Note that sinceg(x, y, z)

is continuous andg(�P ) �= 0 one has that there existsδ2 > 0 such that for anyQ ∈ B(�P, δ2) it holds that
g(Q) �= 0. Then, letδ = min{δ1, δ2}. Thus, for eachQ ∈ B(�P , δ) one has thatQ is anε-singularity of
multiplicity at leastr of V and that there exists at least a partial derivative off (x, y, z) of orderr nor
vanishing inQ. �

By Lemma 4, it holds thatV has infinitely manyε-singularities of multiplicity at least(d − 1) quite
close to�P . For our purposes, we are interested in choosing the singularity appropriately. More pre
one has the following definition.

Definition 4. Let �P be a realε-singularity of multiplicity (d − 1) of V . Then, we say that the poin
Q = (a, b, c) in the ball of Lemma 4 is aproper ε-singularity of multiplicityd − 1 of the surfaceV , if
the polynomial

d∑
j1+j2+j3=d−1

∂j1+j2+j3f

∂j1x∂j2y∂j3z
(Q)(x − a)j1(y − b)j2(z − c)j3

1

j1!j2!j3!

is irreducible overC.

Note that by Lemma 4, one deduces that there exists a ball with center at the point�P , of ε-singularities
of V which multiplicity is at leastd − 1. If �P is not proper, then the polynomial used in Definition 4
reducible overC. However, since an small perturbation of the coefficients of a polynomial transfor
onto an irreducible polynomial, one always may take a new point on the ball, close to�P , and such tha
it is a properε-singularity. Therefore, in the following we assume w.l.o.g. that�P is proper and thus, th
polynomial in Definition 4 is irreducible. In addition, some partial derivative off (x, y, z) of orderd − 1
at the point�P is not zero.

In particular, this implies that for this properε-singularity �P , Lemmas 3 and 4 are satisfied. That
�P(t, h) = (p̄1(t, h), p̄2(t, h), p̄3(t, h)) obtained with the above construction but considering�P a proper
ε-singularity, is always a proper rational parametrization.

The following theorem shows that the implicit equation of the rational surface defined by the pa
trization �P(t, h) generated by the above process can also be obtained as in the quadric case, b
expansions at theε-singularity. In fact, the theorem includes as a particular case the result for qu
(see Theorem 1). This result will avoid quotient computations and will be used to analyze the e
Section 4.

Theorem 3. Letf (x, y, z) be the implicit equation of the surfaceV ∈ Sd
ε and let�P = (ā, b̄, c̄) be a proper

ε-singularity of multiplicityd −1 ofV . We consider a generic pointQ(t, h) = (q1(t, h), q2(t, h), q3(t, h))

of a plane not containing the point�P , and we consider the pencil of lines defined by

Hλ(t, h) = �P + λ
(
Q(t, h) − �P ) = (

ā + λ(q1 − ā), b̄ + λ(q2 − b̄), c̄ + λ(q3 − c̄)
)
.
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Let µ(t, h) be the root inR(t, h) of the quotient off (Hλ(t, h)) and λd−1 w.r.t. λ. Then, the implicit
equation of the rational surface�V defined by the parametrization

�P(t, h) = �P + µ(t, h)
(
Q(t, h) − �P )

,

is

f̄ (x, y, z) = f (x, y, z) − T (x, y, z),

whereT (x, y, z) is the Taylor expansion up to orderd − 1 of f (x, y, z) at �P .

Proof. Reasoning as we did in the proof of Lemma 4 we deduce that

f (Hλ) = λd−1M(t,h,λ) + N(t, h, λ),

where

N(t, h, λ) = T
(
Hλ(t, h)

)
, M(t, h, λ) = S(Hλ(t, h))

λd−1
,

andS(x, y, z) is the Taylor expansion off (x, y, z) from orderd − 1 up to orderd at �P . Furthermore,
M = U andV = N whereU(t, h, λ) andV (t, h, λ) are the quotient and the remainder off (Hλ(t, h))

andλd−1 w.r.t. λ, respectively. In this situation,

f̄
(�P(t, h)

) = f
(�P(t, h)

) − T
(�P(t, h)

) = f
(
Hµ(t,h)(t, h)

) − T
(
Hµ(t,h)(t, h)

)
= µ(t, h)d−1U

(
t, h,µ(t, h)

) + N
(
t, h,µ(t, h)

) − T
(
Hµ(t,h)(t, h)

)
= N

(
t, h,µ(t, h)

) − T
(
Hµ(t,h)(t, h)

) = T
(
Hµ(t,h)(t, h)

) − T
(
Hµ(t,h)(t, h)

) = 0.

In addition, since�P is a properε-singularity ofV , one has thatf̄ is irreducible and then,�P(t, h) para-
metrizes�V . �

Theorem 3 provides the following algorithm for parametrizing approximate algebraic surfacesV ∈ Sd
ε .

Algorithm 2. Approximate parametrization by lines for surfaces.

• Given a toleranceε > 0 and anε-irreducible polynomialf (x, y, z) ∈ R[x, y, z], defining a surface
V ∈ Sd

ε .
• Compute a rational parametrization�P(t, h) of a rational surface�V close toV .

(1) Compute a properε-singularity �P = (ā, b̄, c̄) of V of multiplicity d − 1.
(2) Determine f̄ (x, y, z) = f (x, y, z) − T (x, y, z), where T (x, y, z) is the Taylor expansion o

f (x, y, z) up to orderd − 1 at �P .
(3) Compute

A(x, y, z, t, h) =
∑d−1

r+s=0

∂d−1f̄

∂r x∂sy∂d−1−r−s z
t rhs

(d−1−r−s)!r !s!∑d
r+s=0

∂d f̄

∂r x∂sy∂d−r−s z
t rhs

(d−r−s)!r !s!

,

and return

�P(t, h) = (−tA(�P , t, h) + ā,−hA(�P, t, h) + b̄,−A(�P, t, h) + c̄
)
.
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Taking into account Theorem 3 and the above algorithm, one deduces the following result.

Theorem 4. The input surface and the output surface provided by the Algorithm2 have the same degre
Furthermore, the input surface and the output surface have the same homogeneous form of m
degree.

3.1. Examples

In this subsection we illustrate Algorithm 2 by some examples. First, we give two examples (Exa
3 and 4) where we explain carefully how the algorithm is performed, and we remark the men
particular properties of the parametrization method. More precisely, we see that the polynomif̄ is
irreducible and the surface�V is rational. In addition, we check that the input polynomialf and the
output polynomialf̄ have the same homogeneous form of maximum degree (see Theorem 4). Mo
we can also check that the output parametrization�P(t, h) is proper. Afterwards, we present three oth
examples (Examples 5, 6 and 7) where details are omitted, and we only give the input surfaceV , the
ε-singularity �P , the output rational surface�V , and its rational parametrization�P(t, h).

In these examples one observes that the output surface�V is close to the input surfaceV . This fact
will be theoretically studied in Section 4. Nevertheless, in order to illustrate this property, we es
for this particular examples the distance of the input and the output surface. For this purpose, we
similarly as we did in Example 2. More precisely, we randomly generated 10000 points on the
surface. Since this surface is rational, and since we know a parametrization of it, the points on the
are obtained by giving random values to the parameters. Once the points on the output surface a
mined, we compute, by intersecting with a pencil of lines (see details in the Examples 3 and 4), po
the input surface, and we measure the corresponding distances. For the set of all the obtained
we get the mean value as well as the statistical standard error, that tend to be very small.

Example 3. We considerε = 0.001 and the surfaceV defined by the polynomial

f (x, y, z) = 34.03308880x + 10.11353500y − 178.7688488z + x4 + z4 − 15.99600000z3

− 18.98589600x2 + 85.94410400z2 + y4 + 12.00400000y3 + 2.002000000y2x

+ 8.017004000yx + 47.00299600zy − 4.004000000x3 + 37.04200400y2

− 6.002000000z2y − 13.01099600zx + 2.002000000z2x + 180.7991556+ xyz

− 1.x2z2 − 1.y2z2 − 1.x2y2 − 6.002000000x2y + 7.998000000y2z

+ 7.998000000x2z.

First of all, by applying the algorithm developed in (Sasaki, 2001), we observe that the polyn
f (x, y, z) is ε-irreducible. Now, we apply step (1) of Algorithm 2, and we compute theε-singularity.
For this purpose, we determine the solutions of the system (see (Fortune, 2001; Krishnan and M
1996))

B =
{

∂2f

∂2x
(x, y, z) = ∂2f

∂2z
(x, y, z) = ∂2f

∂x∂y
(x, y, z) = 0

}
,

under precisionε‖f (x, y, z)‖ = 0.1807991556. We get four solutions, namely
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�P1 = (1.001000000, −3.011000000, 3.999000000),
�P2 = (1.001000000, −2.991000000, 3.999000000),
�P3 = (.8892860796, −2.751000000, 3.887286080),
�P4 = (.8892860796, −3.251000000, 4.110713920).

The points�P1 and �P2 satisfy that∣∣∣∣ ∂i+jf

∂ix∂j y
(�Pr)

∣∣∣∣ < 0.1807991556, i + j = 0, . . .2, r = 1,2,

and ∣∣∣∣ ∂3f

∂2x∂z
(�Pr)

∣∣∣∣ � 0.1807991556, r = 1,2.

Then, we take�P := �P1 as theε-singularity of multiplicity 3 of the surfaceV . Thus,V ∈ S4
0.001 (simi-

larly if we take �P := �P2). In addition, since the corresponding polynomial in Definition 4

4∑
j1+j2+j3=3

∂j1+j2+j3f

∂j1x∂j2y∂j3z
( �P )(x − 1.001000000)j1 (y + 3.011000000)j2 (z − 3.999000000)j3

j1!j2!j3!
is irreducible overC we have that�P is a properε-singularity. Now, applying step(2) of the algorithm
we get the rational surface�V defined implicitly by

f̄ (x, y, z) = 33.99279880x + 10.10942580y − 178.7788588z + x4 + z4 − 15.99600000z3

− 18.98589600x2 + 85.94410400z2 + y4 + 12.00400000y3 + 2.002000000y2x

+ 8.017004000yx + 47.00299600zy − 4.004000000x3 + 37.04140400y2

+ 180.8334578− 6.002000000z2y − 13.00099600zx + 2.002000000z2x + xyz

− 1.x2z2 − 1.y2z2 − 1.x2y2 − 6.002000000x2y + 7.998000000y2z

+ 7.998000000x2z.

Observe that polynomialsf andf̄ have the same degree, and the same homogeneous form of max
degree (see Theorem 4). In addition, note that

f̄ ( �P ) = 0,
∂j1+j2+j3f̄

∂j1x∂j2y∂j3z
( �P ) = 0, for j1 + j2 + j3 ∈ {1,2}.

Therefore,�P is a singularity of multiplicity 3 of the surface�V . Thus, sincef̄ is irreducible one has tha
�V is rational. In order to compute a parametrization of�V , we apply step(3) of Algorithm 2 to obtain the
rational parametrization

�P(t, h) = (
p̄1(t, h), p̄2(t, h), p̄3(t, h)

)
,

where

p̄1(t, h) = (.3456018242ht − .5005000000× 10−1h2t2 − .1484481000ht2 + .1182661000h2t

+ 3.653785283+ .6008002000h3 + .5005000000× 10−1h4 + 2.558076611h

+ 2.204172170h2 + .7233870993t − .1424667228t2 − .2034112000t3
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+ .5005000000× 10−1t4 − .1000000000× 10−2ht3 + .2000000000× 10−2h3t)

/(.6028022000ht − .5000000000× 10−1h2t2 − .3011000000ht2 + .1001000000h2t

+ 3.222682417+ .6022000000h3 + .5000000000× 10−1h4 + 2.449821864h

+ 2.220036200h2 + 1.607217612t − .6024058000t2 − .2002000000t3

+ .5000000000× 10−1t4),

p̄2(t, h) = (−.8999824802ht + .1495500000h2t2 + .9005901000ht2 − .1494491000h2t

− 10.99055693− 1.789136200h3 − .1485500000h4 − 8.122126733h

− 6.735831498h2 − 3.461717012t + 1.804777743t2 + .6028022000t3

− .1505500000t4)/(.6028022000ht − .5000000000× 10−1h2t2 − .3011000000ht2

+ .1001000000h2t + 3.222682417+ .6022000000h3 + .5000000000× 10−1h4

+ 2.449821864h + 2.220036200h2 + 1.607217612t − .6024058000t2

− .2002000000t3 + .5000000000× 10−1t4),

p̄3(t, h) = (1.954901950ht − .1999500000h2t2 − 1.201099900ht2 + .4002999000h2t

+ 14.16943772+ 2.402199800h3 + .1999500000h4 + 10.11382961h

+ 8.823744830h2 + 5.055138342t − 2.399990805t2 − .8005998000t3

+ .1999500000t4)/(.6028022000ht − .5000000000× 10−1h2t2 − .3011000000ht2

+ .1001000000h2t + 3.222682417+ .6022000000h3 + .5000000000× 10−1h4

+ 2.449821864h + 2.220036200h2 + 1.607217612t − .6024058000t2

− .2002000000t3 + .5000000000× 10−1t4).

In Fig. 5 one may compare the input and the output surfaces. Note that the surface�V is close to the inpu
surfaceV . This behavior will be studied in Section 4. However, as we have mentioned above, w
statistically estimate the distance between�V andV .

Fig. 5. Input surfaceV (left) and output surface�V (right).
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For this purpose, we particularize the theoretical reasoning in Section 4 to this example. Mo
cisely, giving random values to the parameterst, h in �P(t, h) we generate 10000 points on�V . Let A
denote the set of all these points. Now, for each pointQ ∈A we consider the lineL of parametric equa
tion Q + λ(Q − �P ). Afterwards, we compute the intersection of the lineL and the surfaceV , i.e., we
approximate the roots off (Q + λ(Q − �P )). This computation yields to a finite setBQ of points on
V , and we take the minimum of the Euclidean distances ofQ to the points inBQ. After repeating this
construction for all points inA, we have a set of distances, and we compute their mean valueµ as well
as the statistical standard errorρ. In this case, we have obtained

µ = 0.03632991728, ρ = 0.00005474193152,

from where one can statistically deduce that the distance is, in average, in the interval[µ − 1.96ρ,µ +
1.96ρ] = [0.03622262309,0.03643721147].
Example 4. We considerε = 0.001 and the surfaceV defined by the polynomial

f (x, y, z) = 48.02701301x + 621.5981530y + y5 − 9.005000000x4 − 6.002000000z4

− 6.003000000z3 − 56.09505401x2 + .1000000000× 10−2z2 − 17.00500000y4

+ 114.0620070y3 − .2700900000× 10−1y2x + .8105400900× 10−1yx

+ 32.03601000x3 − 378.2880570y2 + 2.z4y + x5 + 3.z3x

+ .3000000000× 10−2y3x − 421.5251910.

First of all, by applying the algorithm developed in (Sasaki, 2001), we observe that the polyn
f (x, y, z) is ε-irreducible. Now, we apply step (1) of Algorithm 2, and we compute theε-singularity. For
this purpose, we determine the solutions of the system (see (Fortune, 2001; Golub and Van Loa
Krishnan and Manocha, 1996))

B =
{

∂3f

∂3x
(x, y, z) = ∂3f

∂3y
(x, y, z) = ∂3f

∂2z∂x
(x, y, z) = 0

}
,

under precisionε‖f (x, y, z)‖ = .6215981530. One gets the solutions

�P1 = (2.001000000, 3.001000000, 0),

�P2 = (2.001000000, 3.801000000, 0),

�P3 = (1.601000000, 3.000850028, 0).

The point�P1 satisfies that∣∣∣∣ ∂i+jf

∂ix∂j y
(�P1)

∣∣∣∣ < .6215981530, i + j = 0, . . . ,3,

and ∣∣∣∣∂4f

∂4x
(�P1)

∣∣∣∣ � .6215981530.

Thus, we take�P := �P1, and thenV ∈ S5
0.001. Furthermore, since the corresponding polynomial in D

inition 4 associate to�P is irreducible overC, one has that�P is a properε-singularity. Now, we apply
step(2) of Algorithm 2, and we get the rational surface�V defined by the polynomial
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f̄ (x, y, z) = 48.03101501x + 621.5941530y + y5 − 9.005000000x4

− 6.002000000z4 − 6.003000000z3 − 56.09605401x2 − 17.00500000y4

+ 114.0620070y3 − .2700900000× 10−1y2x + .8105400900× 10−1yx

+ 32.03601000x3 − 378.2880570y2 + 2.z4y + x5 + 3.z3x

+ .3000000000× 10−2y3x − 421.5071910.

Observe that polynomialsf andf̄ have the same degree, and the same homogeneous form of max
degree (see Theorem 4). In addition, note that

f̄ ( �P ) = 0,
∂j1+j2+j3f̄

∂j1x∂j2y∂j3z
( �P ) = 0, for j1 + j2 + j3 ∈ {1,2,3}.

Therefore,�P is a singularity of multiplicity 4 of the surface�V . Thus, sincef̄ is irreducible one has tha
�V is rational. In order to compute a parametrization of�V , we apply step(3) of Algorithm 2 to obtain the
rational parametrization

�P(t, h) = (
p̄1(t, h), p̄2(t, h), p̄3(t, h)

)
,

where

p̄1(t, h) = (.2541379019t + 1.247811900h − .8105400900× 10−4ht2 + .2700900000× 10−4h2t2

+ .1079639220h2t − .2399599400× 10−1h3t + .2001000000× 10−2h5

− .8311909904× 10−1t2 + .1001000000× 10−2t5 − .1001500500× 10−1t4

+ .4008005001× 10−1t3 − .3402700500× 10−1h4 + .2282380760h3

− .7569544021h2 − .2158916939ht − .3000000000× 10−5h3t2

+ .2000000000× 10−2th4 − .8674578942)/(.1000000000× 10−2h5

+ .4075402701h − .2814873501− .8012006001× 10−1t2 + .1000000000× 10−2t5

− .1000500000× 10−1t4 + .4004001000× 10−1t3 + .8016012004× 10−1t

− .2702700900h2 − .1500500000× 10−1h4 + .9006001000× 10−1h3),

p̄2(t, h) = (.1531440760t + 2.023430894h − .2402400600× 10−1ht2 − .1000000000× 10−2ht4

+ .8004000000× 10−2ht3 − .1621080180× 10−3h2t + .3601200000× 10−4h3t

+ .5001000000× 10−2h5 − .1683442581t2 + .3001000000× 10−2t5

− .2702400500× 10−1t4 + .9614006601× 10−1t3 − .7503400200× 10−1h4

+ .4503180500h3 − 1.351296342h2 + .2937234811× 10−1ht − .300000000010−5th4

− 1.300970085)/(.1000000000× 10−2h5 + .4075402701h − .2814873501

− .8012006001× 10−1t2 + .1000000000× 10−2t5 − .1000500000× 10−1t4

+ .4004001000× 10−1t3 + .8016012004× 10−1t − .2702700900h2

− .1500500000× 10−1h4 + .9006001000× 10−1h3),
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Fig. 6. Input surfaceV (left) and output surface�V (right).

p̄3(t, h) = (.2700900000h2t − .8105400900ht + 291.2910503t + 20.00000000h4

− 2160.538829h + 1080.179670h2 + 80.04000000t3 − 240.0199700h3

− 10.00000000t4 − .3000000000× 10−1h3t − 240.2400600t2 + 1520.248409)

/(10.00000000h5 + 4075.402701h − 2814.873501− 801.2006001t2

+ 10.00000000t5 − 100.0500000t4 + 400.4001000t3 + 801.6012004t

− 2702.700900h2 − 150.0500000h4 + 900.6001000h3).

In Fig. 6 one may check that the input an the output surfaces are close. In fact, reasoning as w
Example 3, one gets that in this case

µ = 0.01420600280, ρ = 0.0003023364344,

from where one can statistically deduce that the distance is, in average, in the interval[µ − 1.96ρ,µ +
1.96ρ] = [0.01361342339,0.01479858221].
Example 5. Let ε = 0.1 and the surfaceV defined by the polynomial

f (x, y, z) = x4 + 2x2y2 + y4 + 9xz2y2 − 3x3z2 + .100000x + .100000y

+ .100000x2 + .100000z2 + .300000.

This surface has anε-singularity of multiplicity 4 at�P = (0,0,0); hence,V ∈ S5
0.1. Furthermore, this

ε-singularity is proper because the polynomial in Definition 4
5∑

j1+j2+j3=3

∂j1+j2+j3f

∂j1x∂j2y∂j3z
( �P )xj1yj2zj3

1

j1!j2!j3!
is irreducible overC. Thus, applying step(2) of Algorithm 2, we obtain the surface�V defined by the
irreducible polynomial

f̄ (x, y, z) = x4 + 2x2y2 + y4 + 9xz2y2 − 3x3z2.

Finally, we apply step(3) to get the proper parametrization of the surface�V
�P(t, h) =

(
t4 + 2t2h2 + h4

3(−3h2 + t2)
,
(t4 + 2t2h2 + h4)h

3t (−3h2 + t2)
,
t4 + 2t2h2 + h4

3t (−3h2 + t2)

)
.
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Fig. 7. Input surfaceV (left) and output surface�V (right).

Fig. 8. Input surfaceV and output surface�V .

See Figs. 7 and 8 to compare the input and the output surfaces. Reasoning as in the previous e
one gets that in this case

µ = 0.1204696300× 10−8, ρ = 0.4229716566× 10−9,

from where one can statistically deduce that the distance is, in average, in the interval[µ − 1.96ρ,µ +
1.96ρ] = [0.3756718531× 10−9,0.2033720747× 10−8].
Example 6. Let ε = 0.001 and the surfaceV defined by

f (x, y, z) = y5 + x5 + x4 − 2y4 + .000100z4 − .001000x3 − .001000z3

− .001000− .001000xy2 − .001000y − .000010z2 − .000100z.

This surface has anε-singularity of multiplicity 4 at�P = (0.001,0,0.01); hence,V ∈ S5
0.001. In addition,

this ε-singularity is proper because the polynomial in Definition 4
5∑

j1+j2+j3=4

∂j1+j2+j3f

∂j1x∂j2y∂j3z
( �P )(x − 0.001)j1yj2(z − 0.01)j3

1

j1!j2!j3!
is irreducible overC.
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Now, applying step(2) of Algorithm 2 we get the rational surface�V defined by the irreducible poly
nomial

f̄ (x, y, z) = −.4015000000× 10−8x − .4000000000× 10−9z + .2000000000× 10−11

+ y5 + x5 + x4 − 2y4 − .4010000000× 10−2x3 − .4000000000× 10−5z3

+ .1000000000× 10−3z4 + .6000000000× 10−7z2 + .6020000000× 10−5x2.

Finally, applying step(3) we get the parametrization

�P(t, h) = (
p̄1(t, h), p̄2(t, h), p̄3(t, h)

)
,

p̄1(t, h) = (−.100400t3 + 50.2000t4 + 10.0000h5 − 10040.00t5 + .100400× 10−3t2

− .9605960604t + .96059602× 10−3 + 20000.00th4 − 20.0000h4)

/(.1000000000t3 − 50.0000t4 + 10000.00h5 + 10000.00t5 − .100000× 10−3t2

+ .5000000× 10−7t − .100000× 10−10),

p̄2(t, h) = (−.500000× 10−10(−804000t − .8040000000× 1012t3 + 12060000t2

+ .2010000× 1015t4 + .192119204× 1011 − .400000× 1015h4)h
)

/(.1000000t3 − 50.0000t4 + 10000.00h5 + 10000.00t5 − .100000× 10−3t2

+ .5000000× 10−7t − .100000× 10−10),

p̄3(t, h) = (39.799000t3 − 9950.0000t4 + 100.000h5 + 100.0000t5 − .059698000t2

+ .3979850000× 10−4t − .95099006+ 19800.000h4)

/(.1000000t3 − 50.0000t4 + 10000.00h5 + 10000.00t5

− .100000× 10−3t2 + .5000000× 10−7t − .100000× 10−10).

See Fig. 9 to compare the input and the output surfaces. Reasoning as in the previous examples
that in this case

µ = 0.05044250369, ρ = 0.001564587377,

from where one can statistically deduce that the distance is, in average, in the interval[µ − 1.96ρ,µ +
1.96ρ] = [0.04737591243,0.05350909495].

Example 7. Let ε = 0.001 and the surfaceV defined by

f (x, y, z) = y7 + x7z + 2yx5z2 − 4y5xz − .001000xz + .001000− .001000y − .001000x4z

− .001000y4.

This surface has anε-singularity of order 6 at�P = (0,0.001,0.001); hence,V ∈ S7
0.001. In addition, this

ε-singularity is proper because the polynomial in Definition 4 is irreducible overC.
Thus, applying step(2) of Algorithm 2, one obtains the rational surface�V defined by the irreducible

polynomial
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Fig. 9. Input surfaceV (left) and output surface�V (right).

f̄ (x, y, z) = −.400000× 10−11x + .700000× 10−11y + .200000y4zx + x7z + .400000× 10−9xz

+ y7 − .350000× 10−4y4 − .200000× 10−6yxz + .400000× 10−4y2xz

− .400000× 10−2y3xz − .210000× 10−8y2 − .100000× 10−13

+ .350000× 10−6y3 − .700000× 10−1y6 + .210000× 10−2y5 + .200000× 10−8yx

− .400000× 10−6y2x + .400000× 10−4y3x − .200000× 10−2y4x

− .200000× 10−3yx5 − .400000× 10−3zx5 + .400000× 10−1y5x + 2yx5z2

− 4y5xz + .400000× 10−5x5.

Finally, we apply step(3) of the algorithm to get the parametrization

�P(t, h) = (
p̄1(t, h), p̄2(t, h), p̄3(t, h)

)
,

where

p̄1(t, h) = (−200.0000t5h − 50.50505051t7 − .200000× 10−5t − 97.00000001t5

+ 20000.00000th5 − .20000000th2 + .100000000× 10−2th − 1000.000th4

+ 20.00000th3 + .5050505051× 10−10 − .3535353536× 10−7h

+ 353.5353536h6 − .1767676768× 10−2h3 + .1060606061× 10−4h2

− 10.60606061h5 + .1767676768h4 − 5050.505051h7)/
(
t4(9900h − 99+ 5000t2)

)
,

p̄2(t, h) = (.200000× 10−7t + .4040404041× 10−9h + 4.000000t5h − 1200.0000th5

+ .300000× 10−2th2 − .1200000× 10−4th + 30.0000th4 − .40000th3

+ 50.50505051t7 − .020000000t5 − 14.14141414h6 + .2828282829× 10−4h3

− .1414141414× 10−6h2 + .2828282829h5 − .003535353536h4 + 404.04040410h7

− .5050505051× 10−12 − 50.50505051ht7 − 200.0000000t5h2 + 20000.0000th6

− 5050.505051h8)/
(
t5(9900h − 99+ 5000t2)

)
,
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Fig. 10. Input surfaceV (left) and output surface�V (right).

p̄3(t, h) = (−99.000000t5h − 97.0200t5 − .198000000× 10−5t + 19800.00th5 − .1980000th2

+ .99000000× 10−3th − 990.00000th4 + 19.80000th3 + .5000000× 10−10

− .3500000× 10−7h + 350.0000h6 − .0017500000h3 + .1050000× 10−4h2

− 10.50000h5 + .1750000h4 − 5000.000h7)/
(
t5(9900h − 99+ 5000t2)

)
.

See Fig. 10 to compare the input and the output surfaces. Reasoning as in the previous exam
gets that in this case

µ = 0.01115123452, ρ = 0.001626349788,

from where one can statistically deduce that the distance is, in average, in the interval[µ − 1.96ρ,µ +
1.96ρ] = [0.007963588936,0.01433888010].

4. Error analysis

Examples in Sections 2 and 3 show that, in practice, the output surface of our algorithm is quit
to the input one. In this section we theoretically analyze how far these two affine surfaces are.
purpose, we distinguish two subsections: the first one devoted to explain the general strategy,
second one dealing with the theoretical results.

4.1. General strategy

Let V ∈ Sd
ε be the input surface of degreed, and letf (x, y, z) be its defining polynomial. In addition

let �V be the output surface generated by either Algorithm 1 or Algorithm 2, and let�P(t, h) be the output
rational parametrization of�V . We first observe that, since we will measure distances, we may as
that theε-singularity �P of the surfaceV is the origin; otherwise, one can apply a translation such th
is moved to the origin and distances are preserved. Also we assume that‖f (x, y, z)‖ = 1, otherwise we
consider f (x,y,z)

‖f (x,y,z)‖ . If one does not normalize the input polynomialf (x, y, z), a similar treatment with
relative errors can be done.
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Fig. 11. General strategy.

In this situation, our general strategy consists in showing that almost all affine real points
surface�V are at small distance of an affine point onV . For this purpose, we observe that�P(t, h) is an
exact parametrization of�V obtained by lines, and therefore almost all affine real points on�V are obtained
as the intersection of the surface�V with a pencil of lines. In fact, this pencil of lines is defined as

Hλ(t, h) = �P + λ
(
Q(t, h) − �P ) = λQ(t, h), λ ∈ R,

whereQ(t, h) represents a generic point of a plane not containing theε-singularity �P of V . In this error
analysis, we consider w.l.o.g. that the plane isz = 1. Then,

Q(t, h) = (t, h,1),

and

Hλ(t, h) = (λt, λh,λ).

Therefore, almost all the real affine points on the surface�V are obtained as the intersection of the l
y − hz = x − tz = 0, for t, h ∈ R, with the surface�V . Then, if one intersects the surfaceV with the
same line one gets, in almost all cases, finitely many points onV , and we show that at least one of the
intersection points onV is close to the initial point on�V . Also, we observe that it is enough to reas
with slope parameter values oft andh in the interval[−1,1], because if|t| > 1 (similarly if |h| > 1) one
may apply a similar strategy considering the planez = tx instead ofx = tz in the definition of the line
(similarly, z = hy instead ofy = hz).
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Therefore, lett0 ∈ R andh0 ∈ R be such that|t0| � 1, |h0| � 1 and such that�P(t, h) is defined at
(t0, h0). Then, the lineHλ(t0, h0) intersects�V at �P and at an additional point�Q; indeed�Q = �P(t0, h0).
Now, because of the construction, one has that�Q can be expressed as

�Q = (λ0t0, λ0h0, λ0) whereλ0 = m0

n0
with somem0, n0 ∈ R.

If we write the affine point�Q projectively one has the point(m0t0 : m0h0 : m0 : n0). Now, observe tha
if |m0| and |n0| are simultaneously very small, i.e., very close toε, this point is not well defined as a
element inP

3(R). For this reason, we will assume that either|m0| or |n0| is bigger than a certain boun
that depends on the tolerance. In fact, for our error analysis, we fix that

|m0| > ε1/d or |n0| > ε1/d .

Furthermore, we observe that the defining polynomials of�V andV have the same homogeneous form
maximum degree (see Theorem 4), and hence both surfaces have the same points at infinity.

Now, letQ be any affine point inV ∩Hλ(t0, h0). Note that here it also holds thatQ can be expresse
as

Q = (λ1t0, λ1h0, λ1) for someλ1 ∈ C.

We want to compute the Euclidean distance between�Q andQ. In order to do that, we observe that

‖�Q − Q‖2 =
√

(λ1t0 − λ0t0)
2 + (λ1h0 − λ0h0)

2 + (λ1 − λ0)
2 = |λ1 − λ0|

√
t2
0 + h2

0 + 1

�
√

3|λ1 − λ0|.
Therefore, we focus on the problem of computing a good bound for|λ1 − λ0|.

4.2. Theoretical reasoning

Once we have described the general strategy, we proceed to bound the distance betweenV and �V .
The bound that we present in given in terms of the degreed of theV , the toleranceε, and the numbe
e = exp(1). For this purpose we first prove two different lemmas.

Lemma 5. It holds that

|λ1 − λ0| � ε · C,

where

C =
∑d−2

j1+j2+j3=0 |λ0|j1+j2+j3|t0|j1|h0|j2 1
j1!j2!j3!

|λ0|d−1|n0| .

Proof. First of all, we note thatλ0 = m0
n0

is a root of the univariate polynomial̄f (λt0, λh0, λ) =
λd−1(λn0 − m0), and thatλ1 is a root of the univariate polynomial

f (λt0, λh0, λ) = λd−1(λn0 − m0) +
d−2∑

j1+j2+j3=0

∂j1+j2+j3f

∂j1x∂j2y∂j3z
(0,0,0)λj1+j2+j3t

j1
0 h

j2
0

1

j1!j2!j3! .

Since(0,0,0) is the(d − 1)-fold ε-singularity ofV it holds that
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∥ ∥

n

uish
∥f (λt0, λh0, λ) − f̄ (λt0, λh0, λ)∥
= max

j1+j2+j3=0,...,d−2

{∣∣∣∣ ∂j1+j2+j3f

∂j1x∂j2y∂j3z
(0,0,0)

∣∣∣∣|t0|j1|h0|j2
1

j1!j2!j3!
}

� max
j1+j2+j3=0,...d−2

{∣∣∣∣ ∂j1+j2+j3f

∂j1x∂j2y∂j3z
(0,0,0)

∣∣∣∣
}

< ε
∥∥f (x, y, z)

∥∥ = ε,

and thus,f̄ (λt0, λh0, λ) can be written as

f̄ (λt0, λh0, λ) = f (λt0, λh0, λ) + R(λ) whereR ∈ R[λ] y ‖R(λ)‖ < ε.

Therefore, by applying standard numerical techniques to measure|λ1 − λ0| by means of the conditio
number (see for instance (Bulirsch and Stoer, 1993, p. 303)), one deduces that

|λ1 − λ0| � ε · C,

where

C =
∑d−2

j1+j2+j3=0 |λ0|j1+j2+j3|t0|j1|h0|j2 1
j1!j2!j3!

| ∂f̄ (λt0,λh0,λ)

∂λ
(λ0)|

=
∑d−2

j1+j2+j3=0 |λ0|j1+j2+j3|t0|j1|h0|j2 1
j1!j2!j3!

|λ0|d−1|n0| . �
Lemma 6. Let

h(x) = c

n∏
i=1

(x − ci) ∈ C[x] with deg(h) = n,

and letλ ∈ C be such that|h(λ)| � δ. Then, there exists a rootci0 of h(x) such that

|λ − ci0| �
(
δ/|c|)1/n

.

Proof. Let us assume that fori = 1, . . . , n, |λ − ci | > (δ/|c|)1/n. Then,

∣∣h(λ)
∣∣ = |c|

n∏
i=1

|λ − ci| > δ,

which contradicts that|h(λ)| � δ. �
Now, we proceed to analyze|λ0 − λ1| by using the previous lemmas. For this purpose, we disting

different cases depending on the values of|m0| and|n0|.
Lemma 7. Let |n0| � 1. Then, it holds that:

1. If |λ0| > 1, then|λ0 − λ1| � ε · e3.
2. If |λ0| � 1, then|λ0 − λ1| � (ε · e3)1/d .

Proof. 1. If |λ0| > 1, taking into account the equality
r∑

i+j+k=0

aibj ck

i!j !k! =
r∑

s=0

(a + b + c)s

s! ,
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omial
one has that the constantC of Lemma 5 can be bounded as

C =
∑d−2

j1+j2+j3=0 |λ0|j1+j2+j3|t0|j1|h0|j2 1
j1!j2!j3!

|λ0|d−1|n0|

�
∑d−2

j1+j2+j3=0 |λ0|j1+j2+j3 1
j1!j2!j3!

|λ0|d−1

=
∑d−2

k=0
(3|λ0|)k

k!
|λ0|d−1

=
d−2∑
k=0

3k

k!|λ0|d−1−k
�

d−2∑
k=0

3k

k! � e3.

Thus, by Lemma 5 we deduce that

|λ0 − λ1| � ε · e3.

2. If |λ0| � 1, one has that∣∣f (λ0t0, λ0h0, λ0)
∣∣

=
∣∣∣∣∣f̄ (λ0t0, λ0h0, λ0) +

d−2∑
j1+j2+j3=0

∂j1+j2+j3f

∂j1x∂j2y∂j3z
(0,0,0)

λ
j1+j2+j3
0 |t0|j1|h0|j2

j1!j2!j3!

∣∣∣∣∣
�

d−2∑
j1+j2+j3=0

∣∣∣∣ ∂j1+j2+j3f

∂j1x∂j2y∂j3z
(0,0,0)

∣∣∣∣|λ0|j1+j2+j3
1

j1!j2!j3!

� ε ·
d−2∑

j1+j2+j3=0

|λ0|j1+j2+j3

j1!j2!j3! .

Thus, taking into account the equality
r∑

i+j+k=0

aibj ck

i!j !k! =
r∑

s=0

(a + b + c)s

s! ,

one gets that

∣∣f (λ0t0, λ0h0, λ0)
∣∣ � ε ·

d−2∑
k=0

(3|λ0|)k

k! � ε · e3|λ0| � ε · e3.

In this situation, applying Lemma 6 we deduce that there exists a root of the univariate polyn
f (λt0, λh0, λ), that we can assume w.l.o.g. that isλ1, such that

|λ1 − λ0| �
(

ε · e3

|n0|
)1/d

� (ε · e3)1/d. �
Lemma 8. Let |n0| < 1 and |m0| � 1. Then, it holds that|λ1 − λ0| � ε · e3.

Proof. Since|n0| < 1 and|m0| � 1, one has that the constantC in Lemma 5 can be bounded as

C =
∑d−2

j1+j2+j3=0 |λ0|j1+j2+j3|t0|j1|h0|j2 1
j1!j2!j3!

|λ0|d−1|n0| �
∑d−2

j1+j2+j3=0 |λ0|j1+j2+j3 1
j1!j2!j3!

|λ0|d−1|n0| .
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Now, applying the equality

r∑
i+j+k=0

aibj ck

i!j !k! =
r∑

s=0

(a + b + c)s

s! ,

one deduces that

C �
∑d−2

k=0
(3|λ0|)k

k!
|λ0|d−1|n0| =

∑d−2
k=0

(3|m0|)k|n0|(d−2−k)

k!
|m0|d−1

�
d−2∑
k=0

3k

k!|m0|d−1−k
�

d−2∑
k=0

3k

k! � e3.

Therefore, by Lemma 6 we conclude that

|λ1 − λ0| � ε · e3. �
Finally, it only remains to analyze the case where|n0| < 1 and|m0| < 1. In order to do that, we reca

that we have assumed that either|m0| or |n0| is bigger thanε1/d . In the next lemma, we study these cas

Lemma 9. Let |m0| < 1 and |n0| < 1. Then, it holds that
1. If |n0| < 1 andε1/d < |m0| < 1, then|λ0 − λ1| � ε1/d · e3.
2. If |m0| < 1 andε1/d < |n0| < 1, then|λ0 − λ1| � (ε1/2 · e3)1/d .

Proof. 1. If |n0| < 1 andε1/d < |m0| < 1, one has that the constantC in Lemma 5 can be bounded as

C =
∑d−2

j1+j2+j3=0 |λ0|j1+j2+j3|t0|j1|h0|j2 1
j1!j2!j3!

|λ0|d−1|n0| �
∑d−2

j1+j2+j3=0 |λ0|j1+j2+j3 1
j1!j2!j3!

|λ0|d−1|n0|

=
∑d−2

j1+j2+j3=0 |n0|d−j1−j2−j3−2 1
j1!j2!j3!

|m0|d−j1−j2−1−j3
�

∑d−2
j1+j2+j3=0

1
j1!j2!j3!

|m0|d−1
.

In these conditions, taking into account the equality

r∑
i+j+k=0

aibj ck

i!j !k! =
r∑

s=0

(a + b + c)s

s! ,

one deduces that

C �
∑d−2

k=0
3k

k!
|m0|d−1

� e3

|m0|d−1
� e3 · ε−1+1/d .

Thus, Lemma 5 implies that

|λ0 − λ1| � ε1/d · e3.

2. Let ε1/d < |n0| < 1 and|m0| < 1. First, we assume w.l.o.g. that|m0| � ε1/d , because otherwise w
would reason as in case(1). In these conditions one has that|m0| � ε1/d < |n0| < 1, and we deduce tha
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d−2

∣

nd
∣∣f (λ0t0, λ0h0, λ0)
∣∣ =

∣∣∣∣f̄ (λ0t0, λ0h0, λ0) +
∑

j1+j2+j3=0

∂j1+j2+j3f

∂j1x∂j2y∂j3z
(0,0,0)λ

j1+j2+j3
0 t

j1
0 h

j2
0

1

j1!j2!j3!
∣∣∣∣

=
∣∣∣∣∣

d−2∑
j1+j2+j3=0

∂j1+j2+j3f

∂j1x∂j2y∂j3z
(0,0,0)λ

j1+j2+j3
0 t

j1
0 h

j2
0

1

j1!j2!j3!

∣∣∣∣∣
�

d−2∑
j1+j2+j3=0

∣∣∣∣ ∂j1+j2+j3f

∂j1x∂j2y∂j3z
(0,0,0)

∣∣∣∣|λ0|j1+j2+j3
1

j1!j2!j3!

� ε ·
d−2∑

j1+j2+j3=0

|λ0|j1+j2+j3

j1!j2!j3! .

Now, taking into account the equality
r∑

i+j+k=0

aibj ck

i!j !k! =
r∑

s=0

(a + b + c)s

s! ,

one deduces that

∣∣f (λ0t0, λ0h0, λ0)
∣∣ � ε ·

d−2∑
k=0

|λ0|k 1

k! � ε · e3|λ0| � ε · e3.

By Lemma 6 we conclude that there exists a root of the univariate polynomialf (λt0, λh0, λ), that we
may assume w.l.o.g. it isλ1, such that

|λ0 − λ1| �
(

ε · e3

|n0|
)1/d

� (ε · e3)1/d 1

ε1/d2 � (ε · e3)1/d 1

ε1/(2d)
= (ε1/2 · e3)1/d . �

From the previous lemmas, one deduces the following theorem.

Theorem 5. For almost all affine real point�Q ∈ �V there exists an affine pointQ ∈ V such that

‖�Q − Q‖2 �
√

3ε1/(2d)e3.

Proof. Applying Lemmas 7, 8, and 9 one deduces that

‖�Q − Q‖2 =
√

(λ1t0 − λ0t0)
2 + (λ1h0 − λ0h0)

2 + (λ1 − λ0)
2

= |λ1 − λ0|
√

t2
0 + h2

0 + 1�
√

3|λ1 − λ0| �
√

3ε1/(2d)e3. �
Now, let �Q = (λ0t0, λ0h0, λ0) be a regular point on�V such that there existsQ = (λ1t0, λ1h0, λ1) ∈ V

with ‖�Q − Q‖2 �
√

3ε1/(2d)e3 (see Theorem 5). In this situation, we consider the tangent plane to�V at
�Q; i.e.,

T (x, y, z) = nx(x − λ0t0) + ny(y − λ0h0) + nz(z − λ0),

where(nx, ny, nz) is the unitary normal vector to�V at �Q. Then, taking into account Theorem 5 we bou
the value|T (Q)| as follows:
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∣T (Q)∣ � |nx| · |λ1t0 − λ0t0| + |ny| · |λ1h0 − λ0h0| + |nz| · |λ1 − λ0|
� ‖�Q − Q‖2

(|nx| + |ny| + |nz|
)
� 3

√
3ε1/(2d)e3.

Therefore, reasoning as in Section 2.4 of (Farouki and Rajan, 1988) one deduces the following theo

Theorem 6. The surface�V is contained in the offset region of the surfaceV at distance3
√

3ε1/(2d)e3.
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