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Abstract.

It is a classical problem to find contiguous relations of hypergeometric func-

tions of several variables. Recently Kametaka[11] and Okamoto[15] have devel-

oped the theory of hypergeometric solutions of Toda equation. We need to find

the explicit formulas of contiguous relations ( or ladders ) to construct the hy-

pergeometric solutions of Toda equation explicitly. We present an algorithm to

obtain contiguous relations of hypergeometric functions of several variables. The

algorithm is based on Buchberger’s algorithm [3] on the Gröbner basis.
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Gröbner basis and the problem of contiguous relation

By

Nobuki Takayama

(Tokushima University, Japan)

§0. Introduction

In this paper we answer the following problem.

Problem. ([12], 54-60) Find a systematic method to obtain contiguous relations

( or ladders ) of hypergeometric functions of several variables.

The problem is classical, but we need to answer the problem in the recent

study of hypergeometric solutions of Toda equation [11],[15]. Contiguous re-

lations are also used to make correspondence between Lie algebra and special

functions. The correspondence yields formulas of special functions [13].

We present a new algorithm to obtain contiguous relations of hypergeometric

functions of several variables. The author implemented the algorithm on the

computer algebra system REDUCE3.2.

Our algorithm is based on Buchberger’s algorithm that constructs a Gröbner

basis( [3] ). But we need to generalize the notion of Gröbner basis to the following

rings.

Let k be a field of characteristic 0. A ring of differential operators with

rational function coefficients

k(x1, . . . , xn)[
∂

∂x1
, . . . ,

∂

∂xn
]

is denoted by A. A product in A is defined by the relation

∂

∂xi
xj = xj

∂

∂xi
+ δij ,
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where δij is Kronecker’s delta.

Let 4i be a difference operator defined by

4if(λ1, . . . , λi, . . . , λm) = f(λ1, . . . , λi + 1, . . . , λm).

A ring of difference-differential operators with rational function coefficients

k(λ1, . . . , λm, x1, . . . , xn)[41, . . . ,4m,
∂

∂x1
, . . . ,

∂

∂xn
]

is denoted by A(m,n). Note that A(0, n) = A.

Buchberger [3] found Buchberger’s algorithm that constructs Gröbner basis

of an ideal of a polynomial ring. His algorithm has been extended in many fields.

Zacharias [17] found the efficient algorithm that solves a linear indefinite equation

in a polynomial ring and is based on the Gröbner basis. These algorithms are

extended to modules by [1],[14],[8]. Galligo [9] also extended them to modules

over the rings of differential operators.

In §1 we generalize Buchberger’s algorithm and the algorithm to solve a

linear indefinite equation to a class of modules that include A(m,n). There

is no published Buchberger’s algorithm for A(m,n), but we can generalize the

algorithm by the same idea with Buchberger’s original work. We remark that

Bergman [2] essentially suggested these algorithms.

In §2 we state the algorithm to obtain contiguous relations. The notion of

Gröbner basis for A,A(m,n) plays a crucial role. We present the explicit formula

of the contiguous relation of Appell’s F4 with respect to the parameter α (see

[7] 5.7 on the Appell’s functions ). It is a new formula. The first motivation of

the paper was to answer the question ”Is F4 a hypergeometric solution of Toda

equation?”. The answer is negative by the formula.
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§1. Gröbner basis.

We define G := {0, 1, 2, . . .} and Gω := G
⋃{ω} where ω is a symbol that is not

an element of G. G is a commutative semigroup with respect to ‘+’. We define

ω + k = ω, k ∈ Gω. It is a natural extension of ‘+’ to Gω. The action of Gq on

(Gω)q is defined by

Gq ×Gq
ω 3 ((k1, . . . , kq), (i1, . . . , iq)) 7→ (k1 + i1, . . . , kq + iq) ∈ Gq

ω.

Let I be a subset of (Gω)q. I is a monoideal iff Gq + I ⊆ I. Let ki be elements

of Gq
ω. < k1, . . . , k` > is

⋃
1≤i≤`(ki + Gq). Any set of monoideals Ii(i = 1, 2, . . .)

satisfies the ascending chain condition, i.e. if Ii ⊆ Ii+1, then there exists i0 such

that Ii0 = Ii for all i ≥ i0.

Let R be an associative ring (with unit) and M be a left R module. Suppose

that ‘deg’ is a map from M to (Gω)q where q is a natural number and fixed. Let

Â be a linear order on the deg(M). We suppose that ‘deg’ and Â satisfies the

following conditions (1.1) ∼ (1.8) in the sequel.

(1.1) F = 0 iff deg(F ) = (ω, . . . , ω).

(1.2) ∀k ∈ deg(M), k º (ω, . . . , ω).

(1.3) If deg(F ) Â deg(G), then deg(F ± G) = deg(F ) and deg(cF ) Â deg(cG)

for ∀c ∈ R\{0}.
(1.4) If deg(F ) = deg(G), then deg(F ± G) ¹ deg(F ) and deg(cF ) = deg(cG)

for ∀c ∈ R\{0}.
(1.5) ∀c ∈ R\{0}, < deg(cF ) >⊆< deg(F ) >.

(1.6) If < deg(G) >⊆< deg(F ) >, then deg(G) º deg(F ).

(1.7) If < deg(G) >⊆< deg(F ) > and F 6= 0 , then ∃h ∈ R such that

deg(G− hF ) ≺ deg(G).
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Let cm(F,G) be a set

{deg(cF )|c ∈ R}
⋂
{deg(dG)|d ∈ R}.

If cm(F, G) = {(ω, . . . , ω)}, then

lcm(F, G) := (ω, . . . , ω)

else

lcm(F, G) := minimum of cm(F,G) \ {(ω, . . . , ω)}.

(1.8) < cm(F, G) >⊆< lcm(F, G) >.

The existence of the minimum follows on the fact that (deg(M),≺) is well-

founded set, i.e.

Proposition 1-1. If deg(Fi) º deg(Fi+1)(i ≥ 1), then there exists a number i0

such that deg(Fi) = deg(Fi0)(i ≥ i0).

Proof. Suppose that

deg(Fi) Â deg(Fi+1)

for all i. Let Sk be < deg(F1), . . . , deg(Fk) >. Since Sk is a mono-ideal, there

exists a number k such that Sk = Sk+1. Hence it follows that there exists a

number i0 such that deg(Fk+1) ∈< deg(Fi0) > (i0 ≤ k). We have deg(Fk+1) º
deg(Fi0) by (1.6). It is a contradiction.

Let Gi(i = 1, . . . , m) be elements of the module M and G be {G1, . . . , Gm}.
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Definition 1-1. Let F be an element of M . F is weakly reducible by G iff F 6= 0

and < deg(F ) >⊆< deg(G1), . . . , deg(Gm) >. F is weakly irreducible by G iff F

is not weakly reducible by G.

If F is weakly reducible by G , then there exist h ∈ R and Gi such that

deg(F−hGi) ≺ deg(F ) by the (1.7). We say that F can be rewritten to F−hGi in

the case. We call the rewriting procedure the weak reduction. By the proposition

1-1, we can verify that a weak reduction by G terminates in finite steps.

Let F, G be elements of M . If lcm(F, G) = (ω, . . . , ω), we define the critical

pair of F and G as

sp(F, G) := 0.

If lcm(F, G) 6= (ω, . . . , ω), there exists c, d ∈ R such that deg(cF ) = deg(dG) =

lcm(F, G). We have < deg(dG) >⊆< deg(G) > by (1.5). The condition (1.7)

says that there exists h ∈ R such that deg(cF −hG) ≺ deg(cF ) = lcm(F, G) and

deg(cF ) = deg(hG). We define the critical pair of F and G as

sp(F, G) := cF − hG.

There is ambiguity in our definition of the critical pair sp(F, G). We choose one

of the elements that satisfies the definition of the critical pair and fix it.

Example 1-1.

A left ideal < of the ring A(m,n) is left A(m, n) submodule of A(m,n). Let

an order Â1 on Gm be a lexicographic order, i.e.

(p1, . . . , pm) Â1 (q1, . . . , qm) iff pm > qm or (pm = qm and (p1, . . . , pm−1) Â1

(q1, . . . , qm−1)),

and an order Â2 on Gn be a total order, i.e.
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(p1, . . . , pn) Â2 (q1, . . . , qn) iff (p1 + . . . + pn > q1 + . . . + qn) or (p1 + . . . + pn =

q1 + . . . + qn and (p1 > q1 or (p1 = q1 and (p2, . . . , pn) Â2 (q2, . . . , qn)))).

We define an order Â on Gm ×Gn = Gm+n as

(v1, v2) Â (w1, w2) iff v2 Â2 w2 or (v2 = w2 and v1 Â1 w1),

where v1, w1 ∈ Gm, v2, w2 ∈ Gn. Put

deg(
∑

k¹α

ak 4k1
1 . . .4km

m (
∂

∂x1
)km+1 . . . (

∂

∂xn
)km+n) := α, (aα 6= 0)

and deg(0) := (ω, . . . , ω) , where k = (k1, . . . , km+n) and α = (α1, . . . , αm+n).

‘deg’ and Â satisfies the conditions (1.1) ∼ (1.8).

Example 1-2. (cf. [1], [8], [14], [9] )

Let R be an associative ring (with unit). Suppose that there exists a map

deg1: R → (Gω)n

and an order Â1 that satisfies the condition (1.1) ∼ (1.8). Rr is a left R module.

We define a ‘deg’ as

deg: Rr 3 (F (1), . . . , F (r)) 7→

(Ω1, . . . , Ωi−1,deg1(F
(i)), . . . , Ωr) ∈ (Gω)rn,

where Ωk = (ω, . . . , ω) (n− tuple), ∀j deg1(F (i)) º1 deg1(F (j))

and if deg1(F (i)) = deg1(F (j)), then j ≥ i.

We define an order Â as

(Ω1, . . . , Ωi−1, deg1(F
(i)), . . . , Ωr) Â (Ω1, . . . , Ωj−1, deg1(F

(j)), . . . , Ωr)
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iff deg1(F (i)) Â1 deg1(F (j)) or (deg1(F (i)) = deg1(F (j)) and i < j). It satisfies

the conditions (1.1) ∼ (1.8).

Let (L(1), . . . , L(p)) be a R submodule of M generated by L(i) ∈ M(i =

1, . . . , p).

Algorithm 1-1. ( Buchberger’s algorithm, [3] )

input: {L(1), . . . , L(p)} : generator of the submodule (L(1), . . . , L(p)).

output: G : Gröbner basis of (L(1), . . . , L(p)).

G := ∅;S := {L(1), . . . , L(p)};
while S 6= ∅ do

begin G := G⋃S; S := ∅ ;

while there is a weakly reducible element in G do

begin

L0 :=one of the weakly reducible element of G;

G := G \ {L0};
L := L0;

repeat weak reduction of L

until L becomes weakly irreducible by G ;

if L 6= 0 then G := G⋃{L};
end;

for

all combinations (P, Q) (P 6= Q) of the elements of G
do begin

T := sp(P,Q);

repeat weak reduction of T
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until T becomes weakly irreducible by G ;

if T 6= 0 then S := S⋃{T} ;

end;

end;

The chain of the mono-ideals generated by deg(d), d ∈ S satisfies the

ascending chain condition. Therefor we can verify that the algorithm 1-1 termi-

nates in finite steps ( [3] ).

Definition 1-2. The output G of the algorithm 1-1 is called the Gröbner basis

of the left R submodule (L(1), . . . , L(p)).

Let G = {G1, . . . , Gm} be a Gröbner basis of the finitely generated left R

submodule < of the left R module M . We fix the Gröbner basis. A representa-

tion of the element D of < on G is an element ~a of Rm such that

D =
∑m

i=1
aiGi, where ~a = (a1, . . . , am).

The element D of < may have more than one representation on G. The following

proposition is an immediate consequence of the definition of the Gröbner basis.

Proposition 1-2. sp(Gi, Gj) = û
(ij)
i Gi − û

(ij)
j Gj (i 6= j) has a representation

~s(ij) = (s(ij)
1 , . . . , s

(ij)
m ) such that deg(s(ij)

k Gk) ¹ deg(sp(Gi, Gj)) for all k.

Theorem 1-1. (cf. [3], [2] ) Suppose that G = {G1, . . . , Gm} is a Gröbner basis

of a submodule <, then

⋃

L∈<
< deg(L) >=< deg(G1), . . . , deg(Gm) > .
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That is to say, N ∈ M is weakly reducible by G or equal to 0 if N ∈ <.

Proof. Let ~h = (h1, . . . , hm) be an element of Rm. We set

deg(~h) := Maxi=1,...,m [deg(hiGi)],

M(~h) := ]{hi|deg(hiGi) = deg(~h), 1 ≤ i ≤ m}.

Suppose that L ∈ < and L 6= 0. If we prove that L has a representation ~h

such that deg(L) = deg(~h), the proof is completed by (1.5). So the proof of the

theorem is reduced to proving that if L =
∑m

i=1hiGi and deg(~h) Â deg(L), then

we can construct a representation ~j of L such that

deg(~j) ≺ deg(~h) or M(~j) < M(~h).

If deg(~h) Â deg(L), then we have M(~h) ≥ 2 by (1.3). We can suppose that

deg(~h) = deg(h1G1) = deg(h2G2) (renumber the indexes of Gi, if necessary). We

have sp(G1, G2) = c1G1 − c2G2,deg(c1G1) = deg(c2G2) and < deg(h1G1) >⊆<

deg(c1G1) > by (1.8). Therefore there exists q ∈ R such that

deg(h1G1 − qc1G1) ≺ deg(h1G1)

by (1.7). We have

L = h1G1 − qc1G1 + qc1G1 +
m∑

i≥2

hiGi

= (h1 − qc1)G1 + q sp(G1, G2) + qc2G2 +
m∑

i≥2

hiGi

= (h1 − qc1)G1 + q

m∑

k=1

s
(12)
k Gk + qc2G2 +

m∑

i≥2

hiGi.
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Put

j1 := h1 − qc1 + qs
(12)
1 ,

j2 := qs
(12)
2 + qc2 + h2,

ji := hi + qs
(12)
i , (i 6= 1, 2).

~j satisfies the conclusion.

Once we construct the Gröbner basis, we can obtain a special solution of a

linear indefinite equation. We will describe the procedure. It is the same as the

well known procedure for the polynomial ring ( see [17],[1], [8], [14] ).

Let Ci (i = 1, . . . , `) and D be elements of M and < be a left R

submodule of M generated by Ci(i = 1, . . . , `). A linear indefinite equation

∑`

i=1
xiCi = D ,xi ∈ R (1.9)

has a solution (x1, . . . , x`) iff D ∈ <. We can construct a Gröbner basis G =

{Gk|k = 1, . . . , m} of < by the algorithm 1-1. Hence it follows that we can

express Gi by {Ci|i = 1, . . . , `} explicitly

Gk =
∑`

i=1
bi
kCi.

Therefore we have

∑m

k=1
ykGk =

∑`

i=1
(
∑m

k=1
ykbi

k)Ci

=
∑`

i=1
xiCi = D.

So we may solve
∑m

k=1
ykGk = D,
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to solve the (1.9). If D ∈ <, then there exists a sequence of weak reduction of

D by G such that

Fik
− sik+1Gik+1 = Fik+1 , (0 ≤ k ≤ q − 1, Fi0 = D),

Fiq = 0.

Eliminating Fik
from the above sequence, we obtain one special solution of

∑m
k=1ykGk = D.

§2. Answer to the problem .

Let fλ(x1, . . . , xn) be a hypergeometric function with a parameter λ. A differ-

ential operator Hλ that satisfies

Hλfλ = fλ+1 (2.1)

is an step-up operator, and a differential operator Bλ that satisfies

Bλfλ = fλ−1 (2.2)

is a step-down operator.

Example 2-1. Put

f(α, β, γ; x) =
∞∑

m=o

(α, m)(β,m)
(1,m)(γ,m)

xm,

Hα =
1
α

(x
d

dx
+ α),

Bα =
1

γ − α
{x(1− x)

d

dx
+ (γ − α− βx)}.
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We have

Hαf(α, β, γ;x) = f(α + 1, β, γ; x),

Bαf(α, β, γ;x) = f(α− 1, β, γ; x).

The pair of identities (2.1) and (2.2) is called a contiguous relation ( or

ladder). The problem is that ”Find an algorithm to obtain a step-up operator

and a step-down operator”.

It is well known ([7],[12]) that fλ is a solution of a system of partial differ-

ential equations

D
(λ)
i fλ = 0, D

(λ)
i ∈ A, (i = 1, . . . , `).

fλ(0, . . . , 0) = 1.

Let <λ be the left ideal of the ring of differential operators A generated by

D
(λ)
i (i = 1, . . . , `) and G = {G(λ)

i |i = 1, . . . , m} be the Gröbner basis of <λ.

Proposition 2-1. If we have a step-up operator Hλ (resp. a step-down operator

Bλ ), then a step-down operator Bλ+1 ( resp. a step-up operator Hλ−1 ) is a

solution of a linear indefinite equation in A

∑m

i=1
XiG

(λ)
i + Bλ+1Hλ = 1, (2.3)

(resp.

∑m

i=1
XiG

(λ)
i + Hλ−1Bλ = 1,

)

where Xi, Bλ+1 (resp.Hλ−1) are unknown elements.
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Proof. We prove the first case . Let (X1, . . . , Xm, Bλ+1) be a solution of

(2.3). Since G
(λ)
i fλ = 0 and Hλfλ = fλ+1, we have

∑m

i=1
XiG

(λ)
i fλ + Bλ+1Hλfλ = 1 · fλ

Bλ+1Hλfλ = fλ

Bλ+1fλ+1 = fλ.

The equation (2.3) has a solution iff the left ideal generated by G⋃{Hλ} is

equal to A. The condition holds if <λ is a left maximal ideal and Hλ 6∈ <λ.

Proposition 2-2. If <λ is left maximal and fλ 6≡ 0 , then Hλ and Bλ are

unique by modulo <λ.

Proof. We prove the uniqueness of Hλ. Suppose that

Hλfλ = fλ+1, H̃λfλ = fλ+1 and Hλ 6= H̃λ mod <λ.

We have (Hλ − H̃λ)fλ = 0, Hλ − H̃λ 6∈ <λ and <λfλ = 0. Since <λ is left

maximal, Hλ − H̃λ and <λ generates A. Therefore we have 1 · fλ = 0. It is a

contradiction.

Proposition 2-3. (a) If the system of differential equations <λf = 0 is irre-

ducible, then <λ is left maximal.

(b) Suppose that any solution f of <λf = 0 has regular singularities on the

n-dimensional projective space and that the dimension of the solution space of

the system of differential equations <λf = 0 is finite. <λ is irreducible iff the

monodromy group of the solution of <λf = 0 is irreducible.
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Proof of (a). Suppose that <λ is not left maximal. we have the operator P

such that

(<λ, P ) ⊂ A, (<λ, P ) 6= A.

A solution space of equations (<λ, P )f = 0 is a proper subspace of the solution

space of the equations <λf = 0. It means that <λf = 0 is reducible.

The fact (b) is well known, so we omit the proof.

Proposition 2-4.

xr
k(

∑n

i=1
aiδxi + a0 + rak) = (

∑n

i=1
aiδxi + a0)xr

k,

where ai (i = 0, . . . , n) and r are complex numbers and δxi = xi
∂

∂xi
.

Proof. By a calculation.

Let

Lk({aj
i}, {bj

i})

:=
∏p

j=1
(
∑n

i=1
aj

i δxi + aj
0)− (xs)r

∏q

j=1
(
∑n

i=1
bj
i δxi + bj

0), (2.4)

where {aj
i}, {bj

i} are complex numbers and r is an integer. By the proposition

2-4, we have

Lk({aj
i}, {b̃j

i})(
∑n

i=1
bk
i δxi + bk

0) = (
∑n

i=1
bk
i δxi + bk

0)Lk({aj
i}, {bj

i}),

where

b̃j
i = bj

i (i 6= 0 or j 6= k),

b̃k
0 = bk

0 + rbk
s .
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Hence it follows that if the function f({aj
i}, {bj

i}; x1, . . . , xn) is a solution of the

partial differential equation Lk({aj
i}, {bj

i})f = 0, then

(
∑n

i=1
bk
i δxi + bk

0)f({aj
i}, {bj

i};x1, . . . , xn)

is a solution of the partial differential equation Lk({aj
i}, {b̃j

i})f̃ = 0.

The differential operators that define the hypergeometric functions of several

variables consist of the operators of the form (2.4). So either a step-up or a step-

down operator is of the form

c · (
∑n

i=1
bk
i δxi + bk

0),

where c is a constant for a normalization.

Algorithm 2-1.

input: A system of partial differential equations

D
(λ)
i fλ = 0 (i = 1, . . . , `),

that defines a hypergeometric function of several variables.

output: Step-up operator Hλ and step-down operator Bλ .

begin

Construct a Gröbner basis {G(λ)
i }

of the left ideal generated by {D(λ)
i } ;

Find Hλ ( resp. Bλ ) by the proposition 2-4 ;

Solve the linear indefinite equation (2.3) ;
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Do weak reduction of Bλ+1 ( resp. Hλ−1 ),

then we obtain the output ;

end;

We remark that the contiguous relation of the holonomic solution of the

Euler-Poisson-Darboux equation or harmonic equation of Darboux with respect

to the parameters that are contained in these equations can be obtained by the

algorithm 2-1 if the equation (2.3) has a solution. See [10] and [16] on these

equations.

Example 2-2

Appell’s F4 is

F4(α, β, γ, γ′; x, y) =
∞∑

m,n=0

(α, m + n)(β, m + n)
(1,m)(1, n)(γ, m)(γ′, n)

xmyn.

Put




L
(α)
1 = δx(δx + γ − 1)− x(δx + δy + α)(δx + δy + β),

L
(α)
2 = δy(δy + γ′ − 1)− y(δx + δy + α)(δx + δy + β),

then F4 is the solution of

L
(α)
1 f = L

(α)
2 f = 0, f(0, 0) = 1.

Put k := C(β, γ, γ′) and A := k(x, y)[ ∂
∂x , ∂

∂y ]. Let <α be the left ideal of A

generated by L
(α)
1 and L

(α)
2 . Put

Hα :=
1
α

(δx + δy + α), (2.5)
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then

HαF4(α, β, γ, γ′; x, y) = F4(α + 1, β, γ, γ′; x, y).

We use the ‘deg’ and Â of the example 1-1. The Gröbner basis of <α is

x
∂2

∂x2
+ γ

∂

∂x
− y

∂2

∂y2
− γ′

∂

∂y
,

2xy
∂2

∂x∂y
+(y2−y(1−x))

∂2

∂y2
+(α+β+1−γ)x

∂

∂x
+((α+β+1)y−γ′(1−x))

∂

∂y
+αβ,

2y2(x2 − 2xy − 2x + y2 − 2y + 1)
∂3

∂y3
+ lower order terms.

Solve the linear indefinite equation (2.3). We have

Bα+1 =
1
c
(c0 + c1

∂

∂x
+ c2

∂

∂y
+ c3

∂2

∂y2
), (2.6)

where

c = −2(−α + γ′ − 1)(−α + γ + γ′ − 2)(−α + γ − 1),

c0 = 2α3 +4α2βx+4α2βy−2α2β−4α2γ−4α2γ′+8α2−3αβγx−5αβγy +

αβγ−5αβγ′x−3αβγ′y+αβγ′+10αβx+10αβy−4αβ +2αγ2 +6αγγ′−10αγ +

2αγ′2− 10αγ′+10α+2βγ2y +2βγγ′x+2βγγ′y− 3βγx− 7βγy +βγ +2βγ′2x−

7βγ′x−3βγ′y+βγ′+6βx+6βy−2β−2γ2γ′+2γ2−2γγ′2+8γγ′−6γ+2γ′2−6γ′+4,

c1 = x(4α2x + 4α2y − 4α2 + 2αβx − 2αβy − 2αβ − 5αγx − 3αγy + 5αγ −
5αγ′x − 3αγ′y + 5αγ′ + 12αx + 8αy − 12α − βγx + βγy + βγ − βγ′x + βγ′y +

βγ′ + 2βx − 2βy − 2β + γ2x + γ2y − γ2 + 3γγ′x + γγ′y − 3γγ′ − 6γx − 4γy +

6γ + 2γ′2x− 2γ′2 − 8γ′x− 2γ′y + 8γ′ + 8x + 4y − 8),
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c2 = 4α2xy + 4α2y2 − 4α2y − 2αβxy + 2αβy2 − 2αβy − 3αγxy − 5αγy2 +

5αγy+2αγ′x2−7αγ′xy−4αγ′x−3αγ′y2 +αγ′y+2αγ′+8αxy+12αy2−12αy+

βγxy−βγy2 +βγy+βγ′xy−βγ′y2 +βγ′y−2βxy+2βy2−2βy+2γ2y2−2γ2y−

γγ′x2+3γγ′xy+2γγ′x+2γγ′y2−γγ′y−γγ′−2γxy−8γy2+8γy−γ′2x2+3γ′2xy+

2γ′2x + γ′2y− γ′2 + 2γ′x2 − 8γ′xy− 4γ′x− 4γ′y2 + 2γ′y + 2γ′ + 4xy + 8y2 − 8y,

c3 = 3(2α− γ − γ′ + 2)y(x2 − 2xy − 2x + y2 − 2y + 1).

This is a new formula.

Proposition 2-5. Suppose that α, γ, γ′, γ + γ′ 6∈ Z and 2α − (γ + γ′) 6= 0. If

the monodromy group of F4(α, β, γ, γ′; x, y) is irreducible, then any ladder of F4

with respect to the parameter α

(Hα+n, Bα+n), (n ∈ Z)

is not a ladder of Laplace.

Proof. Since the monodromy group is irreducible, then Hα and Bα are

unique by modulo <α by the proposition 2-2 and 2-3. The step-down operator

Bα (2.6) is weakly irreducible by the Gröbner basis of the ideal <λ. Hence it

follows that (2.6) is the lowest degree expression of the step-down operator by

the order Â of the example 1-1. Therefore we cannot construct a ladder which

consists of first order operators ( see [15] on the ladder of Laplace).

We conclude that F4(α + n, β, γ, γ′;x, y) is not a hypergeometric solution

of Toda equation in the context of [11],[15]. A complete list of hypergeometric

solutions of Toda equation will be presented in a future paper.

We use (deg,Â) defined in the example 1-1 in the sequel. We can obtain a

difference contiguous relation by constructing a Gröbner basis in the ring A(1, n)
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by (deg,Â). We write λ for λ1 in the sequel. Let D
(λ)
1 , . . . , D

(λ)
` be differential

operators that define hypergeometric functions of several variables and Hλ be a

step-up operator.

Proposition 2-6. Put

< := (D(λ)
1 , . . . , D

(λ)
` ,Hλ −41).

If

dimk(λ,x1,...,xn)A(1, n)/< < +∞,

then the Gröbner basis of the ideal < by (deg,Â) contains an element

L ∈ k(λ, x1, . . . , xn)[41].

Proof. If there exists no such element in the Gröbner basis, 4i
1−4j

1 (i 6= j)

is weakly irreducible by the Gröbner basis of the ideal <. Therefore we have

4i
1 −4j

1 6∈ < (i 6= j)

by the theorem 1-1. It means

dimk(λ,x1,...,xn)A(1, n)/< = +∞.

It is a contradiction.

Example 2-3. Let

Hλ =
1
λ

(x1
∂

∂x1
+ λ)

be the step-up operator of the Gauss hypergeometric function and D
(λ)
0 be

x1(1− x1)
∂2

∂x2
1

+ [γ − (λ + β + 1)x1]
∂

∂x1
− λβ.
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Put k := C(β, γ). Gröbner basis of the ideal (D(λ)
0 ,Hλ −41) of the ring A(1, 1)

by (deg,Â) is





L = (λ + 1)(1− x1)42
1 +[γ − 2(λ + 1) + (λ + 1− β)x1]41 +(λ + 1− γ),

∂

∂x1
− λ41 +λ.

we have

LF (λ, β, γ; x1) = 0.

It is the well known difference contiguous relation of Gauss hypergeometric func-

tion.
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