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Grobner basis and the problem of contiguous relation
By
Nobuki Takayama

(Tokushima University, Japan)

§0. Introduction

In this paper we answer the following problem.

Problem. ([12], 54-60) Find a systematic method to obtain contiguous relations

( or ladders ) of hypergeometric functions of several variables.

The problem is classical, but we need to answer the problem in the recent
study of hypergeometric solutions of Toda equation [11],[15]. Contiguous re-
lations are also used to make correspondence between Lie algebra and special
functions. The correspondence yields formulas of special functions [13].

We present a new algorithm to obtain contiguous relations of hypergeometric
functions of several variables. The author implemented the algorithm on the
computer algebra system REDUCE3.2.

Our algorithm is based on Buchberger’s algorithm that constructs a Grobner
basis( [3] ). But we need to generalize the notion of Grobner basis to the following
rings.

Let k be a field of characteristic 0. A ring of differential operators with

rational function coefficients

0 0

k(xl,...,.'ljn)[a—xl,...,%]

is denoted by A. A product in A is defined by the relation

0 0

 r. = pa— 51..7
c%cix] %é?miJr J



where 9;; is Kronecker’s delta.

Let A; be a difference operator defined by
DNif( Ay s Xy dm) = fFO, o+ 1 A ).

A ring of difference-differential operators with rational function coefficients

]C()\l,...,)\m,$1,...,xn)[Al,...,Am,—

is denoted by .A(m,n). Note that A(0,n) = A.

Buchberger [3] found Buchberger’s algorithm that constructs Grébner basis
of an ideal of a polynomial ring. His algorithm has been extended in many fields.
Zacharias [17] found the efficient algorithm that solves a linear indefinite equation
in a polynomial ring and is based on the Grobner basis. These algorithms are
extended to modules by [1],[14],[8]. Galligo [9] also extended them to modules
over the rings of differential operators.

In §1 we generalize Buchberger’s algorithm and the algorithm to solve a
linear indefinite equation to a class of modules that include A(m,n). There
is no published Buchberger’s algorithm for A(m,n), but we can generalize the
algorithm by the same idea with Buchberger’s original work. We remark that
Bergman [2] essentially suggested these algorithms.

In §2 we state the algorithm to obtain contiguous relations. The notion of
Grobner basis for A, A(m, n) plays a crucial role. We present the explicit formula
of the contiguous relation of Appell’s F; with respect to the parameter « (see
[7] 5.7 on the Appell’s functions ). It is a new formula. The first motivation of
the paper was to answer the question ”Is F; a hypergeometric solution of Toda

equation?”. The answer is negative by the formula.



§1. Grobner basis.

We define G := {0, 1,2,...} and G, := G|J{w} where w is a symbol that is not
an element of G. G is a commutative semigroup with respect to ‘4+’. We define
w+k=w,k € G,. Itis a natural extension of ‘4+’ to G,,. The action of G? on

(G,)? is defined by
G x GL > ((ki,... kq), (i1,...,0q)) > (k1 +i1,..., kg +1iq) € GL.

Let I be a subset of (G,)9. I is a monoideal iff G141 C I. Let k; be elements
of GI. < ki,....ke>is Uj<;<o(ki +G?). Any set of monoideals [;(i = 1,2,...)
satisfies the ascending chain condition, i.e. if I; C I; 11, then there exists iy such
that I;, = I; for all 7 > 1.

Let R be an associative ring (with unit) and M be a left R module. Suppose
that ‘deg’ is a map from M to (G,)? where g is a natural number and fixed. Let
> be a linear order on the deg(M). We suppose that ‘deg’ and > satisfies the
following conditions (1.1) ~ (1.8) in the sequel.

(1.1) F =0 iff deg(F) = (w,...,w).

(1.2) Vk € deg(M), k = (w,...,w).

(1.3) If deg(F) > deg(G), then deg(F + G) = deg(F) and deg(cF') = deg(cQ)
for Ve € R\{0}.

(1.4) If deg(F') = deg(G), then deg(F + G) < deg(F') and deg(cF) = deg(cG)
for Ve € R\{0}.

(1.5) Ve € R\{0}, < deg(cF) >C< deg(F) >.

(1.6) If < deg(G) >C< deg(F') >, then deg(G) = deg(F).

(1.7) If < deg(G) >C< deg(F) > and F # 0, then 3h € R such that

deg(G — hF) < deg(G).
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Let cm(F, G) be a set
{deg(cF)|c € R} [{deg(dG)|d € R}.
If cm(F, G) = {(w, ...,w)}, then
lem(F,G) := (w,...,w)

else

lem(F, G) := minimum of cm(F,G) \ {(w,...,w)}.

(1.8) < em(F,G) >C< lem(F,G) >.

The existence of the minimum follows on the fact that (deg(M), <) is well-

founded set, i.e.

Proposition 1-1. If deg(F;) = deg(F;11)(i > 1), then there exists a number i

such that deg(F;) = deg(F;,)(i > ip).

Proof. Suppose that

deg(F;) > deg(Fit1)

for all i. Let Sy be < deg(Fy),...,deg(F)) >. Since Sj is a mono-ideal, there
exists a number k such that Sy = Siki1. Hence it follows that there exists a
number i such that deg(Fj4+1) €< deg(F;,) > (ip < k). We have deg(Fy+1) =
deg(F;,) by (1.6). It is a contradiction.

Let G;(i = 1,...,m) be elements of the module M and G be {G1,...,Gn,}.
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Definition 1-1. Let F' be an element of M. F' is weakly reducible by G iff F' # 0
and < deg(F) >C< deg(G1),...,deg(Gy,) >. F is weakly irreducible by G iff F

is not weakly reducible by G.

If F' is weakly reducible by G , then there exist h € R and G; such that
deg(F—hG;) < deg(F') by the (1.7). We say that F' can be rewritten to F'—hG; in
the case. We call the rewriting procedure the weak reduction. By the proposition
1-1, we can verify that a weak reduction by G terminates in finite steps.

Let F,G be elements of M. If lem(F,G) = (w, ...,w), we define the critical
pair of F and G as

sp(F,G) :=0.

If lem(F,G) # (w,...,w), there exists ¢,d € R such that deg(cF) = deg(dG) =
lem(F,G). We have < deg(dG) >C< deg(G) > by (1.5). The condition (1.7)
says that there exists h € R such that deg(cF — hG) < deg(cF') = lem(F, G) and

deg(cF) = deg(hG). We define the critical pair of F and G as

sp(F,G) := cF — hG.

There is ambiguity in our definition of the critical pair sp(F, G). We choose one

of the elements that satisfies the definition of the critical pair and fix it.
Example 1-1.

A left ideal R of the ring A(m,n) is left A(m,n) submodule of A(m,n). Let
an order >; on G™ be a lexicographic order, i.e.
1, Pm) =1 (a1, @) HE P > @ o (P = @ and (p1,- .., Pm—1) 71
(q1,-- s gm-1)),

and an order >4 on G™ be a total order, i.e.
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(P1s--y0n) =2 (q1s - sqn) i P14+ P>+ 4+ qn)or (pr+...+pp =
@1+ ...+¢qpand (p1 > q or (p1 =q and (p2,...,pn) >2 (g2,.--,aqn))))-

We define an order > on G™ x G" = G™™ as
(v1,v2) = (wy,wz) iff vg =9 ws or (vy =wy and vy =1 wy),
where vy, w; € G™,v9,wo € G™. Put

0 0
deg(Y  ax A7 L Al (5 =)0 () =, (a0 #0)

Pt 0x1
and deg(0) := (w,...,w) , where k = (k1,...,kmin) and a = (a1,...,Qmin)-
‘deg’ and > satisfies the conditions (1.1) ~ (1.8).
Example 1-2. (cf. [1], [8], [14], [9] )
Let R be an associative ring (with unit). Suppose that there exists a map
deg,: R — (Gy,)"

and an order >, that satisfies the condition (1.1) ~ (1.8). R" is a left R module.

We define a ‘deg’ as

deg:R" > (FW, ..., F") —
(Ql, ceey Qi—la degl(F(Z)), e ,Qr) € (Gw)rn,
where Q, = (w,...,w) (n — tuple), Vj deg, (F®) =1 deg,(F))

and if deg, (F®) = deg,(F\), then j > i.

We define an order > as

(Ql, .. .,Qi_l,degl(F(i)), . 797") >~ (ng R ,Qj_l,degl(F(j)), .. .,QT)
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iff deg, (F@) =1 deg,(FYW) or (deg,(F®) = deg, (FY) and i < j). Tt satisfies

the conditions (1.1) ~ (1.8).

Let (LMW,... L®) be a R submodule of M generated by L) € M(i =

1,...,p).

Algorithm 1-1. ( Buchberger’s algorithm, [3] )
input: {LM, ... L} : generator of the submodule (LM, ... L®).
output: G : Grébner basis of (LM, ..., L),
G:=0;8:={LW, . .. L@},
while S # () do
begin G:=GJS; S:=10;
while there is a weakly reducible element in G do
begin
Lg :=one of the weakly reducible element of G;
G =G\ {Lo};
L := Lo;
repeat weak reduction of L
until L becomes weakly irreducible by G ;
if L #0 then G :=G|J{L};
end;

for

all combinations (P,Q) (P # Q) of the elements of G
do begin
T.= Sp(P7 Q)a

repeat weak reduction of T
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until T becomes weakly irreducible by G ;
if T #0 then S :=SU{T} ;

end;

end;

The chain of the mono-ideals generated by deg(d), d € S satisfies the
ascending chain condition. Therefor we can verify that the algorithm 1-1 termi-

nates in finite steps ( [3] ).

Definition 1-2. The output G of the algorithm 1-1 is called the Grébner basis

of the left R submodule (L™, ... L®).

Let G = {G1,...,G.,} be a Grobner basis of the finitely generated left R
submodule R of the left R module M. We fix the Grobner basis. A representa-

tion of the element D of R on G is an element @ of R™ such that

m
D=>" (@iGi,  where = (a1, ... am).
1=

The element D of R may have more than one representation on G. The following

proposition is an immediate consequence of the definition of the Grobner basis.

Proposition 1-2. sp(G;,G;) = ﬁgij)Gi — ﬁgij)Gj (i # j) has a representation
50 = (889 DY such that deg(s,(:j)Gk) < deg(sp(G;,Gy)) for all k.

Theorem 1-1. (cf. [3], [2] ) Suppose that G = {G1,...,Gy} is a Grébner basis

of a submodule R, then

| <deg(L) >=< deg(G1),...,deg(Gm) > .
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That is to say, N € M is weakly reducible by G or equal to 0 if N € R.

Proof. Let h = (h1,...,hy) be an element of R™. We set
deg(h) := Maxi—1, . [deg(h;Gy)],
M (R) := t{h;|deg(h;G;) = deg(h),1 < i < m}.
Suppose that L € ® and L # 0. If we prove that L has a representation h
such that deg(L) = deg(h), the proof is completed by (1.5). So the proof of the
theorem is reduced to proving that if L = >\ h;G; and deg(h) > deg(L), then

we can construct a representation j of L such that

=,

deg(j) < deg(h) or M(j) < M(h).

If deg(h) > deg(L), then we have M(h) > 2 by (1.3). We can suppose that

deg(h) = deg(h1Gy) = deg(hsGs) (renumber the indexes of G, if necessary). We
have sp(G1,G2) = ¢1G1 — coGa,deg(c1G1) = deg(caG2) and < deg(h1G1) >C<

deg(c1G1) > by (1.8). Therefore there exists ¢ € R such that
deg(h1G1 — ge1G1) < deg(h1Gh)

by (1.7). We have

L= hlGl — qchl + qchl + Z thz

i>2

= (h1 — qc1)G1 + q 5p(G1, Ga2) + qeaGa + > hiGi

i>2

= (h1 — qcl)Gl +q Z Sl(le)Gk + qeoGo + Z h;G;.
k=1

i>2

12



Put

J1:=h1 —qc1 + qsgu)’

ja = s> + qes + ho,
jii=hi+as? (0 #1,2).
j satisfies the conclusion. g
Once we construct the Grobner basis, we can obtain a special solution of a
linear indefinite equation. We will describe the procedure. It is the same as the
well known procedure for the polynomial ring ( see [17],[1], [8], [14] ).

Let C; (i =1,...,¢) and D be elements of M and R be a left R

submodule of M generated by C;(i = 1,...,¢). A linear indefinite equation

¢
Z.ilxici =D .z, €R (1.9)

has a solution (z1,...,z,) iff D € R. We can construct a Grébner basis G =
{Grlk = 1,...,m} of R by the algorithm 1-1. Hence it follows that we can

express G; by {C;li =1,...,¢} explicitly

G=Y" e

Therefore we have

So we may solve



to solve the (1.9). If D € R, then there exists a sequence of weak reduction of

D by G such that

Fik. _Sik+1G :Fz

Tht1

nggq_laFZo:D)a

k-+17(

F;, =0.

Eliminating F;, from the above sequence, we obtain one special solution of

> re1kGr = D.

§2. Answer to the problem .

Let fa(x1,...,2,) be a hypergeometric function with a parameter A. A differ-

ential operator H) that satisfies

Hyfx = fxn (2.1)

is an step-up operator, and a differential operator B) that satisfies

Bafx = fra1 (2.2)
is a step-down operator.
Example 2-1. Put
o (a,m)(8,m)
faaﬁufy;x - —Ima
( )= 2 Womyrom)
d
Ha = L7 )
(xdw + )
Bu=——{a(l—2) = +(y—a~fz))
a — N« Y .



We have

Hof(a,8,7i2) = fla+1,8,7;2),
Baf(aaﬁafy;x) = f(Oé - 1557773:)

The pair of identities (2.1) and (2.2) is called a contiguous relation ( or
ladder). The problem is that ”Find an algorithm to obtain a step-up operator
and a step-down operator”.

It is well known ([7],[12]) that fy is a solution of a system of partial differ-

ential equations

DMf =0, DN e, (i=1,...,0.

Let R) be the left ideal of the ring of differential operators A generated by

DZQ‘) (t=1,...,¢) and G = {GE/\)M =1,...,m} be the Grobner basis of Rj.

Proposition 2-1. If we have a step-up operator Hy (resp. a step-down operator
B, ), then a step-down operator Byy1 ( resp. a step-up operator Hyx_1 ) is a

solution of a linear indefinite equation in A
S XGY 4 By =1, (23)

(resp.

> XG4 Hy By =1,

)

where X;, Bxi1 (resp.Hy_1) are unknown elements.
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Proof. We prove the first case . Let (Xi,..., X, Bay1) be a solution of

(2.3). Since GZ(-)‘)fA =0 and H)f\x = fa+1, we have

Zi:lXiGz(')\)f)\ + BaiHafa=1- fa
By Hy = fia

Bxi1far1 = fa

The equation (2.3) has a solution iff the left ideal generated by G J{H\} is

equal to A. The condition holds if ) is a left maximal ideal and H) & R).

Proposition 2-2. If R is left maximal and fy # 0, then Hy and B, are

unique by modulo R ).

Proof. We prove the uniqueness of Hy. Suppose that

Hyfr = fai1, Hyfa = frg1 and Hy # Hy mod R).

We have (H)y —lfI,\)fA =0, Hy — Hy g Ry, and RNyf\ = 0. Since R, is left

maximal, Hy — H, and R, generates A. Therefore we have 1- f, = 0. It is a

contradiction. g

Proposition 2-3. (a) If the system of differential equations R f = 0 is irre-
ducible, then R is left maximal.

(b) Suppose that any solution f of Rxf = 0 has regular singularities on the
n-dimensional projective space and that the dimension of the solution space of
the system of differential equations Ry f = 0 is finite. R is irreducible iff the

monodromy group of the solution of R f = 0 is irreducible.
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Proof of (a). Suppose that Ry is not left maximal. we have the operator P
such that
(%Avp) - A? (§R>\7P) #A

A solution space of equations (R, P)f = 0 is a proper subspace of the solution
space of the equations R, f = 0. It means that Ry f = 0 is reducible. g

The fact (b) is well known, so we omit the proof.

Proposition 2-4.

n n
xZ(Zizlaiéxi + ag + rak) = (Zizlai(sa:i + CL())ZE};,

where a; (i =0,...,n) andr are complex numbers and 0,; = xi% )

Proof. By a calculation. g
Let

Li({a]}, {b]})
= szl(ijlagéwi + a{)) - (ms)THq (ijlbzéxl + b‘(j)), (24)

j=1

where {ag } {b‘l7 } are complex numbers and r is an integer. By the proposition

2-4, we have

Li({al b DD bFous+66) = (O bkdus + b6 Li{al}, {b1}),

where

b= (i#0orj#k),
b = bl + b,

17



Hence it follows that if the function f({a’},{6?};21,...,2,) is a solution of the

partial differential equation Ly({a!}, {b/})f = 0, then
"oaks k J J.
(D, bFoes +b6) S ({al}, (bl }se, . )

is a solution of the partial differential equation Lg({al}, {6?})f = 0.
The differential operators that define the hypergeometric functions of several
variables consist of the operators of the form (2.4). So either a step-up or a step-

down operator is of the form

n
k K
c- (E Z.Ilbi Ozi +bp),
where ¢ is a constant for a normalization.

Algorithm 2-1.

input: A system of partial differential equations
DV =0 (i=1,...,0),

that defines a hypergeometric function of several variables.

output: Step-up operator H) and step-down operator B) .

begin
Construct a Gréobner basis {GZQ‘)}
of the left ideal generated by {D,E)‘)} ;
Find Hy ( resp. By ) by the proposition 2-4 ;
Solve the linear indefinite equation (2.3) ;

18



Do weak reduction of Byy1 ( resp. Ha—1 ),
then we obtain the output ;

end;

We remark that the contiguous relation of the holonomic solution of the
Euler-Poisson-Darboux equation or harmonic equation of Darboux with respect
to the parameters that are contained in these equations can be obtained by the
algorithm 2-1 if the equation (2.3) has a solution. See [10] and [16] on these

equations.

Example 2-2

Appell’s Fy is

(@m+n)(Gm+n) .,
(L m) (L m,m) )

Fy(a, 8,775 2,9) = )

m,n=0

Put

L3 = 6,(6, +7 — 1) — (65 + 6, + @) (6, + 6, + ),
LY = 6,0, +7' = 1) = y(0s + 8y + ) 8z + 8, + ),
then Fy is the solution of

LWf=1%f=0, f0,0)=1.

Put k := C(B,7,7) and A = k(z,y)[Z, 8%]. Let R, be the left ideal of A

generated by Lga) and Lga). Put

1
H, = 5(5” + 6, + ), (2.5)

19



then

HQF4(CI,5,’7,’Y/;ZL',?J) = F4(O! + 1757’73’7,;3373/)'

We use the ‘deg’ and > of the example 1-1. The Grobner basis of R,, is

N
a2 " oz y8y2 78y’

2 82
2_ —
8x8y+<y y(1 flf))ay2 +(a+8+1—7)x

(0t By — (1-2)) 2+ ap,

&U oy

3

0
22 (x? — 2wy — 2x 4+ 9% — 2y + )W + lower order terms.

Solve the linear indefinite equation (2.3). We have

1 0 0 02
Boy1 = C(Co+C1a—+CQa—+038 2)

where
c==2-a+y -D(—a+y+7 - 2)(-a+y-1),

co = 203 +402Bx + 40 By — 2028 — 4o’y — 4a®y' +8a? — 3afyx — baByy +
aBy —baBy'z—3a8y'y+aBy +10abx +10afy — 4aB+ 2092 + 6ayy — 10ary +
200y — 1000y + 100 + 2672y + 2677 2 4 2677y — 36vx — Ty + By + 267 >z —

70y w=307'y+B7 +661+68y —26-2727 +277— 277 877~ 67427 ~67' +4,

= z(4a’x + 4o’y — 40? + 2aBx — 208y — 203 — bayxr — 3ayy + bay —
S5avy'x — 3ay'y + bary' + 12ax + 8ay — 12a — By + Byy + By — By + 'y +
By + 2Bz — 20y — 26+ 7%z + 9%y — 9 + 397w + 7'y — 37y — 6yz — dyy +
67 + 27"°x — 29'° — 8y'z — 29y + 8y + 8z + 4y — 8),

20



co = 4o’y + 4a?y? — 402y — 2aBzy + 208y* — 208y — 3ayzy — Sayy? +
Sayy +2ay 2% — Tay' vy — dary'z — 3ay'y? + ay'y + 20y +8axy + 120y — 120y +
Byazy — Byy* + Byy + B wy — BY'y* + By'y — 2By + 2By — 20y +27°y* — 277y —
VY T2+ 30y Ty + 297 2+ 297y 4y 'y — 1y — 2yry — 8y +8yy— 22 +3y  xy+

272z + %y — " + 2927 — 8y'wy — 4"z — 4y'y? + 29"y + 29 + day + 8y* — 8y,
c3=32a—v—~ +2)y(x? - 22y — 2x +y* -2y +1).

This is a new formula.

Proposition 2-5. Suppose that o,v,7, v+ € Z and 2ac — (v + ') # 0. If
the monodromy group of Fy(«, 3,7v,7'; x,y) is irreducible, then any ladder of F}

with respect to the parameter «
(Ha—i—n; Ba+n)7 (n € Z)

is not a ladder of Laplace.

Proof. Since the monodromy group is irreducible, then H, and B, are
unique by modulo R, by the proposition 2-2 and 2-3. The step-down operator
B, (2.6) is weakly irreducible by the Grobner basis of the ideal R). Hence it
follows that (2.6) is the lowest degree expression of the step-down operator by
the order > of the example 1-1. Therefore we cannot construct a ladder which
consists of first order operators ( see [15] on the ladder of Laplace). j

We conclude that Fy(a + n,3,7,7';x,y) is not a hypergeometric solution
of Toda equation in the context of [11],[15]. A complete list of hypergeometric
solutions of Toda equation will be presented in a future paper.

We use (deg, ) defined in the example 1-1 in the sequel. We can obtain a

difference contiguous relation by constructing a Grébner basis in the ring A(1, n)
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by (deg, >). We write A for A; in the sequel. Let Dg)‘), e ,DEA) be differential

operators that define hypergeometric functions of several variables and H) be a

step-up operator.
Proposition 2-6. Put
R :=(DWM,..., DM Hy — Ay).

If
dimk(k,xl,...,xn)A(17n)/% < 400,

then the Grébner basis of the ideal R by (deg, =) contains an element

L e k()\,.ﬁﬂl, .. ,ZL’n)[Al]

Proof. If there exists no such element in the Grobner basis, AL —AJ (i # §)

is weakly irreducible by the Grobner basis of the ideal . Therefore we have
Ay =D ER (i # )
by the theorem 1-1. It means

.....

It is a contradiction. |y

Example 2-3. Let

be the step-up operator of the Gauss hypergeometric function and D(()A) be

0? 5,
r1(1 —961)@ +y=—A+5+ 1)951]8—:51 — AB.
1
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Put k := C(3,7). Grébner basis of the ideal (D™, Hy — A1) of the ring A(1, 1)

by (deg, >) is

L=O+1)1-2) AT +y =20+ D)+ A +1-B)z1] A +(A+1—7),

0
— — AL+
8.’171 1+

we have

LF()\7577;$1) =0.

It is the well known difference contiguous relation of Gauss hypergeometric func-

tion.
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