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Abstract 

Let D be a Dedekind domain with quotient field K, let x be a single variable, and let I be 
an ideal in D[x]. In this paper we will describe explicitly the structure of a Griibner basis for 
I and we will use this Grijbner basis to compute the primary decomposition of I. This Grijbner 
basis also has a property similar to that of strong Grijbner bases over PID’s ([7], see also [I]). 
@ 1997 Elsevier Science B.V. 
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1. Introduction 

Let D be a Dedekind domain with .quotient field K and let x be a single variable. 

Let I be an ideal in D[x]. The main result in Section 2 is a structure theorem for a 

special Griibner basis for I. First, in Proposition 2.2, we factor out the greatest common 

divisor of I which, by Corollary 2.8, reduces the problem to the case of ideals J such 

that J n D # (0). In this case we show, in Theorem 2.4, that J has a Griibner basis 

of the form G = {al, azh~, . . . , athr}, where al s a2 5Z. . . Sat are ideals in D, IQ,. . . , h, 
are manic polynomials in D[x] of increasing degree satisfying one additional condition. 

This structure theorem is similar to the one of Szekeres [lo] and Lazard [7] in the case 

where D is a PID (see also [l]). In Corollary 2.5 we give a uniqueness result for this 

Grijbner basis. We show, in Corollary 2.9, that this Griibner basis has the following 

“strong Griibner basis” property: if g E J then there is an i such that ai lt(hi)J It(g), 

where It(f) denotes the leading term of the polynomial f. In Corollary 2.11 we show 
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that the ai’s are essentially the invariant factors of D[x]/J when this D-module is 

torsion and finitely generated. 

In Section 3 we use the results of Section 2 to obtain a primary decomposition for 

any ideal I in D[x]. First, in Theorem 3.3, we show that I = (c(f)-‘f) n a[x] n 

(al,a2h2,..., at_iht_i,ht), where f EK[x] is a greatest common divisor of I, c(f) is 

its content, a is an ideal in D, and the remaining ideal is determined in Theorem 2.4 

as above. The primary decomposition of the first ideal is determined by the prime 

factorization of f in K[x]. The primary decomposition of the second ideal is determined 

by the prime factorization of a in D. We use a technique of Lazard [7] to compute the 

primary decomposition of the third ideal. This is done in two steps. In Theorem 3.5 

we first compute the maximal ideals containing the third ideal. For each of these we 

compute, in Theorem 3.6, the associated primary component. 

In Section 4 we summarize the algorithm and discuss the computational prerequisites 

for D in order to implement the constructions presented in the previous two sections. 

Two examples of Dedekind domains for which these constructions can be carried out 

are the ring of integers of an algebraic number field (see [4]) and the quotient ring 

k[y,z]/(f ), where k is a field and f (y,z) defines a non singular curve (see [5]). We 

give an example of these constructions for D = Z[G]. 

We will adopt the following notation. For polynomials f 1,. . . , fs E K[x], we denote 

by Vi,... , fs) the D [xl-submodule of K[x] generated by f 1,. . . , fs. In particular, if 

f l,...,fs ~D[xl, then (fl,..., fs) is the ideal in D [x] generated by f 1,. . . , fs. Simi- 

larly, if al,..., a,EK, we denote by (al,..., a,)~ the D-submodule of K generated by 

al,. . . , a,. For f E K[x] we denote by lc( f ), lp( f ), and It(f) the leading coefficient, 

leading power product and leading term of f, respectively. Also, for a subset S C D[x], 

we define Lt(S) = (It(f) 1 f E S). Finally, we say that G is a Grijbner basis for an 

ideal I of D [x] provided that G s I and Lt(G) = Lt(l). See [l] for more details and 

equivalent definitions of a Griibner basis. 

2. GrSbner bases for ideals in D(x] 

Let f be a polynomial in K[x]. We define the content of f, denoted c(f ), to be the 

D-module generated by the coefficients of f. Of course c(f) is a fractional ideal of D. 

It is well known that the Gauss Lemma holds in this situation, that is, if f, g E K[x] 

then 

c(f 9) = c(f )c(g). 

(As noted in [2], this is readily proved by localizing at each non-zero prime ideal 

of D.) 

It is also useful to note the following elementary fact. 

Lemma 2.1. Let f E K[x]. Then the D[x]-module (c(f)-If) is an ideal of D[x]. 

Zndeed (c(f)-‘f)=fK[x]nD[x]. So ifgED[x], then gE(c(f)-‘f) ifandonly if 

f divides g in K[x]. 
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We first factor out a greatest common divisor over K of an ideal. 

Proposition 2.2. Let f 1,. . . , fs E D[x] and I = (fi,. . . , fs). Let f be a greatest com- 

mon divisor of f 1,. . . , fS in K[x]. Then J = c(f )jI is an ideal in D[x] such that 

JnD# (0). 

Moreover, I = (c(f)-‘f)J. 

Proof. To see that J is an ideal in D[x], we note that, in K[x], we can write fi = f gi 
for some giEK[x], for i=l,..., S. Thus, c(fi)=c(f)c(gi)cD, and SO (c(f)gi) ~D[x]. 

Therefore, c( f )$I = (c( f )gl, . . . , c( f )gS) CD [xl. 

Now, in K[x], we can write f = C:=, lifi for some 8i E K[x]. Therefore, we can 

find 0 # d ED such that df = xi=, d/i fi, where d/i ED [x]. Therefore, df E I and 

hence, since c(df) = dc( f) CD, we have (dc(f )) &J n D and so J fl D # (0). 
The equality I = (c(f )-‘f)J is clear. 0 

We note that the discussion in the last paragraph of the previous proof gives an 

effective method for determining non-zero elements in J 17 D which uses only the 

Euclidean Algorithm in K[x]. 
Our strategy is to first determine the structure of a special Grobner basis for J and 

use it to get a special Grobner basis for 1. We first give the following definition. 

Definition 2.3. Let I be an ideal in DE], let at, az,. . . , a, be ideals in D, and let 

ht,hz,... , h, be polynomials in D[x]. We say that G={alhl, azhz,. . . , a,ht} is a Griibner 

basis for I provided that given any set of generators {aij 1 1 5 j 5 vi} for oi, 1 5 i < t, 
in D we have that {aijhi 1 1 <j 5 vi, 1 5 i 5 t} is a Grijbner basis for 1. 

Since, in the situation of Definition 2.3, the leading term ideal Lt(1) of I is equal to 

(aij lt(hi) 1 1 2 j < vi, 1 2 i 5 t) = (ai lt(hi) 1 1 5 i 5 t), 

in order to verify the condition in Definition 2.3, it suffices to verify that we have a 

Griibner basis for any single set of generators for each of the ai’s. 

Theorem 2.4. Let J be an ideal in D[x] such that J n D # (0). Then there exists a 
Griibner basis G for J of the form 

G = {al, a2h2,. . , atht), 

where at Sa2S.. . S a, are ideals in D, hz, . . . , ht are manic polynomials in D [x] with 

deg(hz) < deg(h3 ) <. ..<deg(h,), andfor i=2,...,t- 1 we have 

hi+1 E (hi,ai’ai_lhi_l,...,ai’a2h2,ai’al). 

Conversely, any such set G satisfying the above conditions is a Griibner basis for the 
ideal it generates. 
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Proof. Let G be any Griibner basis for J. We will modify G to obtain a Grijbner basis 

for J which has the desired form. Assume the distinct degrees of the elements of G 

are vi <v~<...<v~. For i = l,..., t let Gi = {g E G 1 deg(g) 5 Vi} and let ai denote 

the ideal in D generated by {lc(g) 1 g E Gi}. Since J r7 D # (0) and G is a Grobner 

basis for J, we have that vi = 0 and so al = (G~)D. 

We first note that for i= l,...,t- 1 we have 

aGiei(Gi+i) g(Gi). (1) 

To see this, let g E Gi+i - Gi and d E aGiiai. (Note that a;\a, is an ideal in D, since 

ui 2 ai+i.) Then d lc(g) E ai, say 

d lc(g) = c dy lc(f), where df ED. 

fE4 

Define 

h = dg _ c dfX”‘+I--d%(f)f. 

fE9 

Then h E J and deg(h) < deg(g) = Vi+10 Since G is a Grobner basis for J, h must 

reduce to zero using G, and it is clear that only g E Gi can be used. Thus, we must 

have h E (Gi), and SO dg E (Gi) as desired. 

We next show that for i = 1, . . . , t, we have 

(Gi) C a&l. (2) 

This can be seen using induction on i. Clearly for i = 1 we have (Gt) = al [xl. Now 

assume that the result is true for i. By Eq. (1) and the induction hypothesis, we have 

aG\ai(Gi+i) &(Gi) C ai[x], and SO we are done. 

It follows from Eq. (2) that, for each i = 1 , . . . , t, we have that a;’ (Gi) is an 

ideal in D[x]. This ideal must contain a polynomial hi of degree vi which is manic, 

since we have C SEG_ a,lc(g) = 1, for some aB E a;‘, and we may take hi = 

c SEG, .$‘Z-des(~)g E D’[x]. 

Since G and {al, azhz, . . . , a,ht} C_ J have the same leading term ideal, the set 

{al, a&, . . . , a,h,} is also a Griibner basis for J. If for some i, ai = ai+l, then the 

polynomials in ai+lhi+l can be reduced using aihi and SO the polynomials ai+lhi+l are 

not needed in the Grijbner basis. Thus, we may assume that al S a2 Z. . . S a,. We now 

replace G by {al, a2h2,. . . , atht} SO that Gi = {ai,azhz,. . .,aihi}. 

It remains to show that for i = 2,. . . , t - 1 

hi+1 E (hi,ai1ai_lhi_l,...,Qi’a2h2,ai’al). 

Since, by construction, hi+1 E acii(Gi+i), we have 

(aihi+i) C_aGiiai(Gi+i) c(Gi) = (ai,ak...,cihi), 

by Eq. (l), and this gives the desired result. 
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To prove the converse, let us assume that we have a collection of polynomials in 

D[x] and ideals in D as in the statement of the theorem. We prove by induction on i 
that {ai, azhz, . . . , Uihi} is a Grijbner basis for the ideal it generates. 

Clearly, {ai} is a Griibner basis for the ideal it generates and now we assume 

the result for i. We will show that for any homogeneous syzygy of the leading 

terms of { ai, ah,. . . , ai+lhi+l}, the corresponding S-polynomial reduces to zero using 

{al, azh2,. . ., ai+lhi+i} (see, e.g. [l] for this equivalent definition of a Grijbner basis). 

For 8 = 1,. . . , i + 1, let ad = (aej 1 1 5 j 5 t/)0. Any homogeneous syzygy gives rise 

to an equation of the form 

i+l tc 

x x C[jjxy’+l-y’CZ[j lt(h{) = 0, 
t=l j=l 

where cej ED. Therefore, since he is manic, we have 

i+l t 

F x cejaej = 0 

e=l j=l 

and, hence, 

&Cl 

c Ci+l,jai+l,j E ai. 

j=l 

Since, by hypothesis aihi+l ~(CII, azh2,. . . , aihi), we have 

i+l 4 

~~c~j”?+‘-“‘~~jh~E(Ul,a2h2,...,aihi), 
t=l j=l 

and so reduces to zero using {al, azhz, . . . , aihi}, since, by induction, this set is a 

Griibner basis. q 

The Grijbner basis given in Theorem 2.4 has the following uniqueness property. 

Corollary 2.5. Let J be an ideal of D[x] such that JflD # (0). Let G={al, azhz,. . . , 
a,h,} and G’ = {a{,aihi,..., ai, hi,} be two Griibner bases of the type given in 
Theorem 2.4. Then t = t’, deg(hi) = deg(hl) for 2 5 i 5 t, and for 1 5 i 5 t, 
ai = af and (~1, azh2,. . . , aihi) = (~1, azhi,. . . , aih:). 

Proof. We prove by induction on i that ai = ai and deg(hi) = deg(hf). To begin 

the induction, we note that al = J n D = ai. So assume the result for 1 5 j 5 

i - 1. If deg(hi) > deg(hi), then, since ajhf c J, ajhi can be reduced by G. If j is 

largest such that deg(hj) < deg(hi) then 1 5 j 5 i - 1 and ajlt(hj)]ailt(hj). Since 

aj = a: by induction, and the polynomials hj and hi are manic, we have that aj]aj, 

which contradicts the fact that ajS$. Thus deg(hi) 5 deg(h:) and so, by symmetry, 
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deg(&)=deg(hi). A similar argument shows that a:lai and ailal and so ai = ai. Again, 

a similar argument shows that t = t’. The last statement is an easy induction. q 

In the next corollary we show that the polynomials hi arise as certain greatest com- 

mon divisors modulo certain prime ideals in D. For a similar result, see [6]. 

Corollary 2.6. Let J be an ideal of D[x] such that JnD # (0). Let G={a1,azh2,. . ., 

a,ht) be the Griibner basis given in Theorem 2.4. Also, let p be a prime ideal in D 
dividing ai but not at. Let i be least such that p does not divide ai. Then the image 
of hi in (D/p)[x] is the generator of the image of J in (D/p)[x]. 

Proof. Let h, and 7 be the image of hi and J in (D/p)[x], respectively. By the choice 

of i, we have J = (hi,...,- ht). We prove by induction on j that Zi+i E (hi). Since 

hi+1 E (hi,a,‘at-lhi-l, . . . , a;‘al), we have hi+i E (hi). For j> 0, we have hi+I+l E 
(hi+j, aGioi+j-lhi+i-l,. . . , a;\al), and SO S;i+j+l E (h,+j, . . . ,hi), and SO, by induction 

hypothesis, hi+j+i E (Zi). 0 

We next prove a result that allows us to give a Griibner basis for the original ideal I. 

Corollary 2.7. Let I be an ideal of D[x] and let a be a fractional ideal of D such 
that aI C D[x]. Then 

Lt(al) = aLt(l).’ 

Thus ifG= {gl,..., gt}cI, then {gl,..., gt} is a Griibner basis for I if and only if 

{agl,..., ag,} is a Griibner basis for al. More generally, zf f E K[x] then {gl,. . . , gt} 

is a Griibner basis for I tf and only tf { ac( f )-’ f 91,. . . , ac (f )-’ f gt} is a Griibner 
basis for at(f)-‘fI. 

Proof. We first assume that I f7D # (0). Then it follows from Theorem 2.4 that I has 

a Grobner basis G = {al, a2h2,. . . , atht} of the type described there. By the converse in 

Theorem 2.4 we see that aG = {aai, aazhz,. . . , aa,h,} is a Grobner basis for al. Thus 

it is clear that Lt(d) = aLt(1) in this case. 

‘We note that this result is very similar to Theorem 3.6 in [3] and, indeed, can be proved in the same way, 

using the flatness of ideals in D. We can, in fact, make a general statement which includes both our result 
and Theorem 3.6 in [3]: 

Proposition. Let R be a commutative ring and let M be an R-module. Then the following are equivalent: 

(1) For all positive integers n, variables xt , . . . ,.x,, term orders on R [xl,. . . ,x,1, and ideals I c R[xl , . . . ,x,1 
we have 

Lt(lM[x,, . J,]) = Lt(z)M[xl, . . ,xJ 

(2) M is a flat R-module. 
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For an arbitrary ideal I, we write I = c( f )-’ f J as in Proposition 2.2. We choose 

d,e E D such that de(f)-’ &D and ef ED[x]. It is clear that if h eD[x] and H is 

any ideal in D[x], then Lt(hH) = lt(h)Lt(H). Then, using the first case, we have 

deLt(al) = Lt(deaZ) = Lt(dc(f)-‘ef aJ) = elt(f)Lt(dc(f )-‘aJ) 

= elt(f)aLt(dc(f)-‘J) = aLt(dc(f)-‘efJ) = aLt(deZ) = deaLt(l) 

from which the desired result is obtained. 

The last statement follows immediately. 0 

Combining Theorem 2.4 and Corollary 2.7 we obtain: 

Corollary 2.8. Let I be an ideal in D[x]. Then there exists a Griibner basis G for Z 

of the form 

G = {c(f)-‘fal,c(f )-‘f azh2,. . . ,cCf>-lfarhl, 

where aiSazS... S a, are ideals in D, hz, . . . , hl are manic polynomials in D [x] with 

deg(hz) < deg(h3 ) <. ..<deg(h,), andfor i=2,...,t- 1 we have 

We also have the following analog of the concept 

PID (see [8] or [l]). 

of a strong Griibner basis over a 

Corollary 2.9. Let Z be an ideal of D [x]. Then I has a Griibner basis G = { blgl, . . . , 

btgr}, such that, for each i, bi is a fractional ideal of D, gi E K[x] and bigi CD [xl, 
with the following property: for ail g E I there is an i such that bi lt(gi)j It(g). 

Proof. Let bi = c(f )-‘ai and gi = fhi in Corollary 2.8. NOW let g E I. Since we have 

b1Sb2S. . . S bt, g can be reduced using bigi, where i is the largest index such that 

deg(gi) 5 deg(g). Therefore bi lt(gi)] It(g) as desired. 0 

Using this corollary and the fact that every ideal in a Dedekind domain D can be 

generated by one or two elements, we also have 

Corollary 2.10. Let Z be an ideal of D [xl. Then I has a GrCbner basis H = {hl, . . . , 

h,} such that for all h#O in I, h can be reduced by either a single hi or by two hi’s. 

For a final corollary, we consider the D-module A4 = D[x]/J for an ideal J of D[x]. 
Now, M is torsion as a D-module if and only if J II D # {0}, which we assume. 

Moreover, M is finitely generated as a D-module if and only if J contains a manic 

polynomial (since this is equivalent to the coset of x being integral over D), which 

we further assume. In this case, we know that M is a direct sum of cyclic D-modules, 

M S D/b, @ . . . @D/b, where b,(b,_iJ... (bi. (This is the analogue of the classical 
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result concerning finitely generated torsion modules over PID’s and is obtained by first 

using the Chinese Remainder Theorem and then localizing the module at primes of D.) 
Alternatively, when M is given as the quotient of a free D-module F by a submodule 

E, then there is a free basis et,. . . , t, of F such that E is the internal direct sum 

E = blel @ . . . CB b,e,. The ideals bt,. . . , b, are called the invariant factors of M. We 

will see how to get this representation explicitly for M = D[x]/J from Theorem 2.4. 

In the notation of Theorem 2.4, using Corollary 2.9, we note that J contains a manic 

polynomial if and only if a, = D. Let F = D[x]/(ht) and E = J/(h,). Then A4 ?G! F/E 
and F is free of rank n = vt (recall that deg(hi) = vi). Let bt = at and dt = 1 + (h,). 

For 1 < v 2 v2 let 6, = at and f,, = a?’ + (h,). In general, for 1 < j < t and for 

Vj + 1 5 V < Vj+l let b, = aj and e, =xy-vJ-lhj + (h,). 

Corollary 2.11. Assume that J G D[x] is an ideal such that M = D[x]/J is a finitely 
generated torsion D-module. Then, with the notation above, a free D-basis for F is 

{fl, . . , ,t’,} and E is the internal direct sum E = bt8t @ ’ . . CD b,e,. Thus the ideals 

61 , . , . , b, are the invariant factors of A4 = D[x]/J. 

Proof. Since & (1 5 v 5 vI = n) is defined by a polynomial of degree v - 1 and ht 
has degree n > v - 1 it is clear that {et,. . . , t,} is a free basis for F. It then suffices 

to show that E = bt/r 63. . . CD b,e,. So let f E J. Then, since ht is manic, we can write 

f = htq + r for some polynomials q, r ED [x] with deg(r) <n. Now I E J and so, by 

Corollary 2.9 there is a j such that lt(ajhj)] It(r). It is then clear that if deg(r) = v - 1, 

we have lc(r) E b, and we can write r = b,e, + rl, where deg(rt ) < v - 1 and b, E 6,. In 

this way we get a representation off + (h,) =r+ (h,) as an element of btet @. . .$b,L,. 

To conclude this section we observe that the ideals ci in Theorem 2.4 arise natu- 

rally in a different way. Indeed, if n is a positive integer and if we define c,(J) = 
(lc( f )I f E J, deg( f) 5 n)o, then it is easy to see that en(J) = ai, where i is the greatest 

index such that vi 5 n. We note that the ideals c,(J) are also obtained in [9] with 

explicit formulas using resultants. 

3. Primary decomposition for ideals in D[x] 

Let Z CD [x] be an ideal. In this section we will give an algorithm for determining 

a primary decomposition for I. The starting point will be Proposition 2.2. We will first 

show how to turn this product decomposition into an intersection of ideals and then 

show how we can compute the primary decomposition of each of these ideals. We will 

obtain three types of ideals: 

l a[x] for ideals a G D, 
0 (c(f )-‘f) for polynomials f EK[x]. 
l Ideals J as in Theorem 2.4 with a, = D = (1)~. 
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The primary decomposition of the first two ideals is easily done (see Proposition 3.4 

and the discussion before it) and that of the third ideal can be obtained by adopting 

the ideas of Lazard [7]. 

We begin with two results which show how to change a product of certain ideals 

into an intersection. 

Lemma 3.1. Let a be an ideal in D and let f EK[x]. Then 

G(f)-*f) = a[~] n (c(f)-‘f). 

Proof. The inclusion a(c(f)-‘f) & a[x]n(c(f)-‘f) IS c 1 ear. For the reverse inclusion, 

let h E a[~] n (c (f )-’ f) . Then, using Lemma 2.1, in K[x] we have that h = fg for some 

g cK[x]. By the Gauss Lemma, c(h) = c(f)c(g) C a, and so (c(f)g) 5 a[x]. Thus, we 

have 

(h) = (c(f)sHc(f)-‘f) C ~MWT’f) = aWT’_f)~ 

as desired. 0 

Proposition 3.2. Let a be an ideal of D, A be an ideal of D[x], and let f E K[x]. 

Then 

(1) a(A,c(f)-‘f)=a[xln(aA,c(f)-‘f) 

(2) (c(f )-‘f )(a,4 = (c(f )-‘f) n hc(f )-‘f4. 

Proof. Using Lemma 3.1, we have 

a(A + (c(f )-‘f )I = aA + dc(f )-‘f) 

= aA + a[x] n (c(f )-‘f) 

= Nxl n W + (c(f I-‘f )I 

since UA C a[x]. The second identity is proved in the same way. 0 

We are now ready to decompose an ideal I = (f 1, . . . , fs) 2 D[x] into an intersection 

for which we can compute a primary decomposition for each piece. Let f be the 

greatest common divisor of f 1,. . . , fs in K[x]. Set Jr = c(f )+I. As noted after the 

proof of Proposition 2.2, we may determine a non-zero ideal a contained in Jt n D. 
Set J = (a,I). Then we may write J = (at, a2h2,. . . , ath,) as in Theorem 2.4 (note that 

this is not the same J as in Proposition 2.2). 

Theorem 3.3. In the notation above, we have that 

Proof. By Proposition 3.2, part (2), we have Z= (c(f)-‘f)Jl = (c(f)-‘f)(a,J1) = 
(c(f)-‘f) n J. Th en, using the representation of J in Theorem 2.4 and noting 
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that at)ai for all i, we have J = al(at1al,at1azh2,...,a,‘at-lht_l,ht) = a@] fl (al, 

a&, . . . , at_rht_r, h,), using Proposition 3.2, part (l), since h, is manic (and so 

c(h,) = D). 0 

The method for determining the primary decomposition of the ideal a,[x] is easy 

and well-known. Namely, in D write a, = p:’ . . . p:‘, for distinct prime ideals pr, . . . , pv 

of D. Then each $‘[x] is p&xl-primary and 

a&] = nfl [x] n . . s n p: [x] 

is the primary decomposition of at[x]. 

Next we find the primary decomposition of (c(f)-‘f). The relevant facts are sum- 

med up in the following proposition. 

Proposition 3.4. (1) rf p, q E K[x] ure relatively prime, then (c(p)-' p) (c(q)-‘q) = 

(c(P)-‘P) ” (c(q)_‘q). 
(2) If p EK[x] is irreducible, then (c(p)-“p”) is (c(p)-’ p)-primary. 

(3) Zff~K[x] and f = p;’ .. . p$ is the prime factorization off in K[x], then 

(c(f)-‘f) = (~(P~)-QP;‘) 0.47 (~(P~)-~YP:) 

is the primary decomposition of (c( f )-‘f ). 

Proof. (1) Let a E c(p)-‘[xl be such that up E (c(q)-‘4). Then, in K[x], q divides 

up and so qla; set a = qr. Now c(q)c(r) = c(a) G c(p)-’ implies c(r) G c(p)-‘c(q)-’ 
and so ap = rpq has the desired form. 

(2) Let f, g E D[x] with f g E (c(p)-“p”) and g @ (c(p)-“p”). Then, using 

Lemma 2.1, we see that in K[x] we have pe does not divide g and so p divides 

f and thus pe divides f” and so f” E (c(p)-=pe). Similarly, we see that (c(p)-lp) 
is a prime ideal. Then, since (c(p)-‘~)~ = (c(p)-=pe), ,/m = (c(p)-‘p), 
we are done. 

(3) This is clear from parts (1) and (2). 0 

Following [7], we now show how to compute the primary decomposition of the ideal 

J in Theorem 2.4 for the case a, = (1)~ = D (see Theorem 3.3). We may assume that 

t 2 2. Since we have a,_1 [at-2] . . . Ial, the ideal bi = a;‘ai_r is an ideal in D for 

i=2 ,..., t. Thus, 

J = (bzbs . . . bt, bs . . . bthz, . . . , btht_l, h,), 

where lt(hi) = xv’, ~2 < vg <. . . < vt, and 

hi+1 E (hi, bihi-1,. e e 2 b3 . . . bihz, 6263 * * . bi). 

We first show how to compute the prime ideals containing J. That is, as we shall see, 

since J is zero-dimensional, we compute all of the maximal ideals containing J. 
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Theorem 3.5. Let P be a prime ideal of D[x]. Then in the notation above: 
(1) J C P if and only if there is an i 2 2 such that (bi, hi) C P. 
(2) Let i=2,3,..., t. Zf (bi, hi) C P, then P = (p, v) where p is a prime ideal factor 

of bi and v is an irreducible factor of hi module p. 
(3) Zf J C P, then P is maximal. 

Proof. To prove (1 ), let J C P. Then bzbs . . . b, &P, so that there exists i 2 2 such 

that bi &P, and we choose i largest with that property. NOW bi+t . . . bthi C P, but 

bi+i . . . b, 9 P by the choice of i, and SO hi E P. Therefore (bi, hi) C P. For the con- 

verse, let i 2 2 and assume that (bi, hi) C P. First note that for j = 1,. . . , i we have 

bj+t . . . b,hj c(bi, hi). Moreover for j = i + 1,. . . t, since hj E (hj-1, bj_ihj-2,. . . , b2. . . 

bj-i), it is an easy induction on j to show that 

and SO bj+t . . * b,hj c(bi, hi) for j = i + 1,. . . , t, as well. We now see that J c(bi, hi). 
SO, since (bi, hi) G P, we have J C P. 

We now prove (2). Let (bi, hi) C P. Since bi 2 P, a prime ideal factor of bi, say p, 

is contained in P. Note that the ideal p is a maximal ideal of D, and so, since hi is 

manic, we easily see that there is a v E P which is an irreducible factor of hi modulo p. 

Since (p,v) is a maximal ideal of D[x] and is contained in P we have P = (p,v). 
Statement (3) is now immediate. 0 

Now that we know the maximal ideals containing J we can determine the primary 

ideals associated to them. Since J is zero-dimensional, these are precisely the ideals 

that occur in the primary decomposition of J. So let A4 be such a maximal ideal. 

Choose i such that (bi, hi) 5 A4 and, as in the theorem, choose a prime ideal factor 

p of bi and an irreducible factor v of hi modulo p such that A4 = (p, v). Let m be 

the largest power of p dividing bzbs . . . b,. Now, since in the proof of Theorem 3.5 

we saw that Jc(bi,hi), we have ht E (bi, hi) c M. Since v generates the image of A4 

in (D/p)[x], we have that v divides h, modulo p. Let n be the largest power of v 

dividing h, modulo p and write h, - u”w (mod p) for some w ED [x] with w prime 

to v modulo p. 

Theorem 3.6. With the notation above, let V, WE D[x] be such that 

ht E VW (mod p”), V E v” (mod p), and W = w (mod p). 

Then Q= (pm, bs . . . bth2,. . . , b,h,_ 1, V) is M-primary and is the M-primary component 
of J. 

Proof. It is easy to see that J c Q C M = (p, v). In order to show that Q is M-primary, 

it is well-known that it &ices to show that pm C Q and vnm E Q. The former is clear. 

For the latter write V = vR + p for p E p[x] so that vnm = (V - p)” E Q. 
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Let Q’={f~D[xl 1 J: fQM}. Th en it is well known that Q’ is the M-primary 

component of J; so we show that Q’ = Q. Let f E Q’ and let g E J: f -hf. Then fg E 
J C Q. Since Q is M-primary, and g $! A4 = fl we see that f E Q. Thus, Q’ G Q. 

It remains to show that Q C Q’. Since 62. ’ . b,pem and p are relatively prime ide- 

als in D and p CM we see that there is an a E b2.. . btp-“’ such that a $! M. 

We have up”’ CM and SO pm C Q’. Since bi+i + + . bthi G J and 1 6 M, we see that 

bi+i . . . bthi c Q’. Finally, we need V E Q’. Now W $L M, since if we could write 

W = p + hu for some p E p[x] and h ED [x] we would have w = W 5 hv (mod p) 

which contradicts the choice of w. Thus there is a b E bz . . - b,pP” such that Wb 6 M. 

Then writing VW = h, + q for q E pm[x] we see that 

and so we see that V E Q’. q 

We note that the computation of V and W can be done using Hensel’s Lemma. 

(See [4] for the case where D = h; the computational issues in Dedekind domains are 

similar.) 

Finally, we note that if we use the constructions described in this section, we do 

not get, in general, a minimal primary decomposition of I. We do get a minimal 

decomposition of each of the ideals in the decomposition of Z in Theorem 3.3, but 

primary ideals from one of them may be contained in primary ideals of another. 

4. The algorithm and an example 

In this section we summarize the constructions given in the previous sections and 

we discuss their implementation. So let the ideal Z = (f 1,. . . , fs) G D[x] be given. 

We first show how to compute the Grijbner basis of Theorem 2.4 and Corollary 2.8. 

The first step is to compute a greatest common divisor f in K[x] (using the Euclidean 

Algorithm) and factor c(f )-‘f out of I. The second step is to compute a Grijbner basis 

for J = c(f )fI. This can be done using the generalization of Buchberger’s Algorithm 

to rings as presented, say, in [8] (see also [I]). We next convert this Griibner basis 

into the one given in Theorem 2.4 following the steps in the proof of Theorem 2.4. 

The final Griibner basis for Z is obtained by multiplying through by c( f )-‘f. 

We next discuss the computation of a primary decomposition of I. As above, we 

first use the Euclidean Algorithm to compute a greatest common divisor f in K[x] and 

factor c( f )-’ f out of Z to obtain the ideal J1 = c(f) +Z. We again use the Euclidean 

Algorithm to compute non-zero elements of JI rl D, and we let a be the ideal in D 

generated by these elements. (A different choice of a will lead to a possibly different 

ideal J, and so a possibly different primary decomposition of Z.) Next, we compute 

a Grijbner basis for J = (a,Z) and transform it into the form of Theorem 2.4. We 

now have the representation of Z as in Theorem 3.3. Then we factor f into its prime 

factorization in K[x]. Moreover, we factor the ideal a, into its prime ideal factors in D. 
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We use these factorizations to obtain the primary decompositions of (c(f)-‘f) and 

a,[~] as described in Proposition 3.4 and the discussion preceding it. The next step is 

to factor all of the ideals bi = ai’Qi_t into prime ideals. For each prime ideal p which 

divides bi, we compute the prime factorization of hi in (D/p)[x]. Finally, for each 

irreducible factor u of hi modulo p, (p, V) is a maximal ideal belonging to J and so 

we compute the primary component Q which belongs to J and which is (p,u)-primary 

using Theorem 3.6. 

We now summarize the computational assumptions we need to make in order to 

carry out the constructions described above. 

l To compute the special Grijbner basis we need to be able to: 

(1) Solve the ideal membership problem in D. 

(2) Compute syzygy modules in D. 

(3) Compute the inverse of fractional ideals of D. 

(4) Perform the Euclidean Algorithm in K[x]. 

l To compute the primary decomposition we need to be able to: 

(1) Do all of the above. 

(2) Compute prime factorizations of ideals in D. 

(3) Compute prime factorizations of polynomials in K[x]. 

(4) Compute prime factorizations of polynomials in (D/p)[x]. 

(5) Perform Hensel lifting. 

We give an example of the above construction in D = Z[fl]. 

Example 4.1. Throughout this example we let a = fl. Also, we use the following 

notation for prime ideals in H[cr]. Let p be a prime in Z for which -5 is a quadratic 

residue. Then for a fixed u such that u2 = -5 (mod p), we set p, = (p,u + a)~[~] and 

pk = (p,u - a)~[~]. We note that p;’ = ip; and pi = (2)ztU]. 

We use the notation set in the previous sections. 

We consider the ideal I = (ft,f2, f3, f& fs) c(Z[a])[x], where 

fl = (26 + 22~)~ + (-28 + 16~) 

f2 = (12 - 30~)~ + (54 - ~LX), 

f3 = (6 + 6a)x2 + (4 + 4cr)x + (4 + 4a), 

f4 = (4 + 2a)x3 + (-14 + 2a)x2 + (-2846 + 48~)~ - (1034 + 930a), 

fs = (2 -2x)x’ + (7147 + 2457~)~~ + (-1718 + 3198~)~~ 

+(3 - 3a)x2 + (372 - 3701x)x + 740. 

We wish to compute a primary decomposition of 1. 

We first compute a greatest common divisor f for fl, f2, f3, f4, f5 in K[x]. We fmd 

f = 3x + (1 + a), so that c(f) = (3,l + ~)zt~] = p3. To find an ideal a contained in 

J1 nZ[cl] =c(f)~In+[~]=~~;1nZ[cc], it is enough to compute p3f(fl, f2) = (26+ 

22a, -28 + 16cr, 12 - 3Ocr, 54 - 6or)ztcc) = 2~; = (6,2 - 2&tal. 
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Therefore, we have J = (2pi, I). We now compute a Grobner basis for J. 

After inter-reducing the seven polynomials 6,2 - 2c1, fi, fz, f3, f4, fs, we obtain 

d, = 6, 

42 = 2 - 2x, 

8s = (4 + 4c()X + (4 + 4a), 

8.q = (1 + 3a)x4 + 4x3 + (3 - 3a)x2 + 2czx + 2. 

It is straightforward, but tedious, to verify that these four polynomials form a Grijbner 

basis for J = (2&J). So we have 

ai = (6,2 - 2&tal = 2~: = P;P~ 

a2 = (62 - 2~~4 + 4$~1~1 = (2)21al = ~22, 

as = (6,2 - 2a, 4 + 4a, 1 + 3a)~[~l = p2. 

We now compute the polynomials h2 and h3 of Theorem 2.4. Since, 

a;‘(Gz) = :(2p&,L3) = (3,l - cc,(2+2cr)x+(2+2a)), 

and 1 = -3 + 2( 1 - a) + (2 + 2a), we can choose 

h2 = -3X + 2( 1 - a)x + (2 + 2x)X + (2 + 2a) = X + (2 + 2cr). 

We can now replace es by p$hz = 2h2. Similarly, we can choose 

1+a 
h3 = (-3 + a)2h2x3 - 2t4 

=x4 - (34+ 10a)x3 -9x2 +(5 - a)_~-(1 +a)~a;‘(Gs). 

(This polynomial could be simplified using p2pg and p2hl, but this does not simplify 

the rest of the computation.) So we obtain a Grijbner basis G for J of the form in 

Theorem 2.4, 

G = (n:n:>&,n,h3]. 

Therefore we have, as in Theorem 3.3 

I= n p,]~l n (n;p;, n%, hs). 

We note that both (ipi f) and p2[x] are prime ideals of (Z[a])[x]. So it remains to 

compute a primary decomposition of (p;pi, pghz, h3). 

We have 

b2=a;‘al=pi and 6s = a2 = pg. 

So we first compute the maximal ideals which contain (bz,hz) =(p~,x+(2+2a)). There 

is only one such maximal ideal, namely Mi = (p;,x+ 1). Next we compute the maximal 
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ideals which contain (bj, hs) = (2, x4 - (34 + 10a)x3 - 9x2 + (5 - c~)x - (1 + a)). Since 

h3 z x4 +x2 E x2(x + 1)2 (mod p2), there are two such maximal ideals, M2 = (p2,n), 

and M3 = (p2,x + 1). 

We now compute the primary components of ($+I$, pzhz,h3) which correspond to 

the three maximal ideals Mt,M2,M3. For Ml, we first note that h3 E x4 +x3 +x + 1 = 

(x + 1)4 (mod p$), and so (using the notation of Theorem 3.6) V = (x + 1)4 and 

the primary component corresponding to MI is Qt = (p;, 2h2, (n + 1)4). For A42, since 

h3 r~~(x+l)~ (modp,), we have m=n=2, u=x and w=(x+~)~. We need 

to find, since 2 E pI$ ~1, ~2 such that V =x2 + (1 - CI)U~, W = (x + 1)’ + (1 - a)~2 with 

h3 E VW (mod pi). We have 

h3zx4+x2+(1-tl)x-(1-a) 

Evw 

=x4 +x2 + (1 - a)x2u2 + (1 - a)(x2 + l)ul (mod pi), 

and we may choose ut = x + 1 and ~2 = x. Therefore the primary component corre- 

sponding to A42 is Q2 = (p:, pih2,x2 + (1 - a)(x + 1)) = (2,x2 + (1 - a)x + (1 - a)). 

Similarly, the primary component corresponding to A43 is Q3 = (2,x2 + (1 - a)x + 1). 

Therefore, we have 

I= 
( > 

fp;f II p2[xl n (&&,(x + 1j4) n (2,x2 + (1 - u)x + (1 - a)) 

n (2,x2 + (1 - U)X + 1). 
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