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Abstract

We provide a polynomial time algorithm for computing theuniversal Gröbner basisof any
polynomial ideal having a finite set of common zeros in fixed number of variables. One ingred
our algorithm is an effective construction of the state polyhedron of any member of the H
scheme Hilbdn of n-long d-variate ideals, enabled by introducing theHilbert zonotopeHdn and
showing that it simultaneously refines all state polyhedra of ideals on Hilbd

n.
 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

The universal Gröbner basisof an idealI in the algebraF[x] := F[x1, . . . , xd ] of
d-variate polynomials over a field is the minimal setU(I) which is simultaneously a
Gröbner basis forI under every monomial order. A finite universal Gröbner basis alw
exists and in a sense is the ultimate generating set ofI for algorithmic purposes. In
particular, for ideals having a finite set of common zeros (variety) over the algebraic c
of F, a universal Gröbner basis reduces the problem of computing the zero set
problem of finding roots ofd univariate polynomials. For instance, consider the sys
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P = {x2
1 − x2, x

2
2 − 7x2 + 6x1, x1x2 − 3x2 + 2x1} of bivariate polynomials; the univers

Gröbner basis of the idealI := ideal(P ) is

U(I)= P ∪
{
x3

1 − 3x2
1 + 2x1, x

3
2 − 5x2

2 + 4x2, x1 + 1

6
x2

2 − 7

6
x2, x2 − x2

1

}

and contains univariate polynomials in each ofx1 and x2. Finding the roots of thes
two polynomials, we conclude that the set of zeros ofP satisfies var(P ) = var(I) ⊆
{0,1,2} × {0,1,4}. Substituting back toP , we find that var(P ) = {(0,0), (1,1), (2,4)},
thereby solving the system.

Thelengthof an idealI in F[x] is theF-dimension of the quotientF[x]/I and is finite if
and only if the set of common zeros ofI over the algebraic closure ofF is finite. Let Hilbdn
be the set ofn-long ideals inF[x] = F[x1, . . . , xd ]; it can be embedded as an algebr
variety in a higher-dimensional space and is referred to as theHilbert schemeof n-long
d-variate ideals. One of the goals of this article is to provide a polynomial time algo
for computing the universal Gröbner basis of any ideal on the Hilbert scheme (see S
4 for the complete formulation):

Theorem 4.2. Fix d . Then there is a polynomial time algorithm that computes the unive
Gröbner basisU(I) of any idealI ∈ Hilbdn usingO(n2d+1(logn)(2d−1)(d−1)) arithmetic
operations.

The computational complexity is measured in terms of the number of arithm
operations over the underlying fieldF. Over the field of rational numbers, the algorithm
(strongly) polynomial time in the Turing computation model, but we will not dwell on
details here.

One ingredient of our algorithm is an effective unified construction, for any i
I ∈ Hilbdn , of its state polyhedronS(I) whose vertices bijectively index the reduc
Gröbner bases ofI . This is done in Section 2, where we introduce thebasis polytope
B(I) of any idealI ∈ Hilbdn and establish the following description of its state polyhed
(see Section 2 for the complete statement).

Theorem 2.4. The state polyhedron ofI ∈ Hilbdn is provided byS(I) := B(I)+ R
d+.

As a corollary, we obtain the following polynomial upper bounds on the numb
reduced Gröbner bases and the size of the universal Gröbner basis of any ideal
Hilbert scheme.

Corollary 2.5. For every fixedd , the following hold for anyn-long d-variate ideal
I ∈ Hilbdn:

(1) the number of distinct reduced Gröbner bases ofI isO(n2d(d−1)/(d+1));
(2) the number of elements in the universal Gröbner basisU(I) is

O(n2d−3+(3d−1)/(d(d+1))).

The cardinality of the set defining the basis polytopeB(I) of I ∈ Hilbdn is typically
exponential inn even for fixedd = 2 and so Theorem 2.4 does not lead directly to
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efficient algorithm for constructing the state polyhedron. We overcome this difficult
introducing, in Section 3, theHilbert zonotopeHdn . Proving thatB(I) is a projection of
a suitable matroid polytope, we show thatHdn is universalfor the Hilbert Scheme in th
following sense:

Theorem 3.5. The Hilbert zonotopeHdn refines the state polyhedronS(I) of everyI ∈
Hilbdn.

Using Theorems 2.4 and 3.5 we are able, in Section 4, to provide the aforemen
polynomial time algorithm for constructing the state polyhedron and universal Grö
basisU(I) of anyI ∈ Hilbdn . In particular, our results apply for the vanishing ideal ofany
point configuration, extending earlier results of [10] for the generic case, and for l
ideals studied earlier in [11].

In Section 5 we interpret some of the notions and demonstrate some of the
discussed herein for the special classes of vanishing ideals of point configuratio
of lattice ideals, the latter having some consequences for the so-called “group relax
of integer programming.

We conclude with a brief discussion, in Section 6, of the embedding of the H
scheme Hilbdn into the Grassmanian ofn-dimensional subspaces of a vector space
dimensionO(n(logn)d−1).

2. The basis polytope and the state polyhedron

A staircase is a setλ ⊆ N
d of nonnegative integer vectors such thatu � v ∈ λ

(coordinatewise) impliesu ∈ λ. Let
(
N
d

n

)
stair denote the finite set ofn-element staircase

in N
d . For d = 2 then-staircases are the Young diagrams ofn. For a staircaseλ, let λ̄ :=

N
d \ λ be its complement inNd and let min(λ̄) be the unique finite set of coordinatewi

minimal vectors inλ̄. Then-staircases inNd are in bijection with the monomial ideals
Hilbdn via Iλ := ideal{xv: v ∈ min(λ̄)}.

Now fix any idealI ∈ Hilbdn . An n-subsetλ ⊂ N
d is basic for I if the congruence

classes moduloI of the monomialsxv with v ∈ λ form a vector space basis for th
quotient spaceF[x]/I , or equivalently, if theF-vector space lin{xv: v ∈ λ} satisfies
lin{xv: v ∈ λ} ∩ I = {0}. If λ is basic then the class[f ] = f + I of anyf ∈ F[x] contains
a unique representative in lin{xv: v ∈ λ}; let [f ]λ denote this unique polynomial satisfyin
[f ]λ ∈ lin{xv: v ∈ λ} andf − [f ]λ ∈ I .

A staircaseλ ∈ (
Nd

n

)
stair is initial for I if its monomial idealIλ is the initial ideal

in≺(I) := ideal{in≺(f ): f ∈ I } of I under some monomial order≺. If λ is initial then
it is also basic and the unique reduced Gröbner basis ofI under≺ is the setGλ(I) :=
{xu − [xu]λ: u ∈ min(λ̄)} consisting of precisely|min(λ̄)| polynomials. LetΛ(I) denote
the set of initial staircases ofI . We shall need the following two propositions on basic s
and initial staircases of an ideal.

Proposition 2.1. Let ≺ be any monomial order and letλ ∈ Λ(I) be the initial staircase
of I satisfyingIλ = in≺(I). Then for any vectoru ∈ N

d \ λ we have[xu]λ ∈ lin{xv: v ∈ λ,
v ≺ u}.



532 E. Babson et al. / Advances in Applied Mathematics 30 (2003) 529–544

very

re

f

very

the
Proof. Let f := xu − [xu]λ ∈ I and let xv = in≺(f ). Then xv ∈ in≺(I) = Iλ hence
v /∈ λ. Sincexu is the only monomial inf with exponent not inλ, it must be thatv = u
hence in≺(f ) = xu, so all monomials involved in[xu]λ are smaller thanxu under≺ as
claimed. ✷
Proposition 2.2. Let ≺ be any monomial order and letλ ∈ Λ(I) be the initial staircase
of I ∈ Hilbdn satisfyingIλ = in≺(I). Letµ be any basic set ofI . Write λ = {λ1, . . . , λn}
and µ = {µ1, . . . ,µn} with λ1 ≺ · · · ≺ λn and µ1 ≺ · · · ≺ µn. Thenλk � µk for each
k = 1, . . . , n.

Proof. Suppose indirectlyµk ≺ λk for somek, and letU := lin{[xµ1]λ, . . . , [xµk ]λ}. Then
µi � µk ≺ λk for all i � k hence[xµi ]λ ∈ lin{xλj : j < k} (clearly if µi ∈ λ and by
Proposition 2.1 ifµi /∈ λ). SoU ⊆ lin{xλj : j < k} hence dim(U) < k. But µ is basic
so {[xµ1]λ, . . . , [xµn]λ} is linearly independent hence so is{[xµ1]λ, . . . , [xµk ]λ}. Thus,
dim(U)= k, a contradiction. ✷

Each vectorw in the nonnegative orthantRd+ partially orders monomialsxv by the
valuew · v. For any genericw this is a total order and hence a monomial order, and e
monomial order arises that way from some genericw ∈ R

d+. The initial ideal ofI under
w is inw(I) := ideal{inw(f ): f ∈ I } and is a monomial ideal ifw is generic. Declare two
non-negative vectorsw andw′ equivalent if inw(I)= inw′(I). The equivalence classes a
relatively open convex cones forming a subdivision ofR

d+ called theGröbner fanof I
(cf. [8]). A vectorw lies in a full-dimensional cone of the Gröbner fan if and only if inw(I)

is a monomial ideal.
The (minimizing)normal coneof a face at a polyhedronP in R

d is the relatively open
cone of those vectorsw ∈ R

d uniquely minimized overP at that face. The collection o
normal cones of all faces ofP is called thenormal fanof P . LetB be any polytope inRd

and letP := B+ R
d+. Then the normal fan of the polyhedronP forms a subdivision ofRd+

and the vertices ofP are precisely those vertices ofB whose normal cone atB contains a
strictly positive vectorw ∈ R

d+.
A polyhedronP in R

d is thestate polyhedron of the idealI (cf. [3]) if the Gröbner fan
of I equals the normal fan ofP . This holds if and only if the setΛ(I) of initial staircases is
in bijection with the vertex set ofP , with w ∈ R

d+ uniquely minimized overP at its vertex
corresponding toλ ∈Λ(I) if and only if the initial monomial ideal ofI underw satisfies
inw(I)= Iλ.

We now describe a construction of the state polyhedron for which this bijection is
natural, in that the vertex corresponding toλ ∈Λ(I) is simply its vector sum

∑
λ ∈ N

d .

Let V dn := ⋃(
N
d

n

)
stair denote the union of alln-staircases inNd . Given an idealI ∈ Hilbdn,

let Γ (I) := {λ⊂ V dn : λ basic forI } denote the finite set of alln-subsets ofV dn basic forI .

Since every initial staircase ofI is basic and is contained inV dn = ⋃(
N
d

n

)
stair we have

Λ(I) ⊆ Γ (I). The following polytope will later enable the efficient computation of
state polyhedron.
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Definition 2.3. The basis polytopeof I ∈ Hilbdn is the convex hull of sums of basic se
of I in V dn ,

B(I) := conv
{∑

λ: λ ∈ Γ (I)
}

⊂ R
d .

The state polyhedron of anyn-longd-variate ideal is provided by the following theore

Theorem 2.4. The state polyhedron ofI ∈ Hilbdn is provided byS(I) := B(I) + R
d+.

Furthermore:

(1) its vertex set is{∑λ: λ ∈Λ(I)} and is in bijection withΛ(I) via the mapλ→ ∑
λ;

(2) a genericw ∈ R
d+ is minimized overS(I) and B(I) at

∑
λ with λ ∈ Λ(I) and

Iλ = inw(I).

Proof. Let w ∈ R
d+ be any generic vector and letλ ∈ Λ(I) be the initial staircase

of I satisfying inw(I) = Iλ. Consider anyµ ∈ Γ (I). Writing λ = {λ1, . . . , λn} and
µ = {µ1, . . . ,µn} with w · λ1 < · · · < w · λn andw · µ1 < · · · < w · µn, we find by
Proposition 2.2 that for eachk we havew ·λk �w ·µk , with equality if and only ifλk = µk
sincew yields a total order. Thus,

w ·
∑
λ=

n∑
k=1

w · λk �
n∑
k=1

w ·µk =w ·
∑
µ

with equality if and only ifλk = µk for all k. We find that for allµ ∈ Γ (I) other than
λ we havew · ∑

λ < w · ∑
µ hencew is uniquely minimized overB(I)+ R

d+ at
∑
λ.

This shows in particular that
∑
λ is indeed a vertex ofS(I) andB(I) and that

∑
µ �= ∑

λ

for anyµ ∈ Γ (I) other thanλ. Since anyλ ∈Λ(I) satisfiesIλ = inw(I) for some generic
w ∈ R

d+, the mapλ→ ∑
λ is indeed a bijection fromΛ(I) onto{∑λ: λ ∈Λ(I)}. Since

generic vectors are dense inR
d+ and a fan is determined by its maximal dimensional co

we find that the Gröbner fan ofI equals the normal fan ofS(I) = B(I)+ R
d+, showing

thatS(I) is indeed the state polyhedron ofI . ✷
Theorem 2.4 remains valid if we replaceB(I) by the convex hullB = conv{∑λ:

λ ∈ Γ } with Γ ⊇Λ(I) any collection of basic sets ofI which contains all initial staircase
of I . In particular, it holds with

Γ =Λ(I) and Γ =
{
λ ∈

(
N
d

n

)
stair

: λ basic forI

}
.

However, these choices do not lend themselves to efficient algorithmic construction
state polyhedron and the universal Gröbner basis. As we shall see, we need to takeΓ to be
the collection of all basic sets ofI contained in some subsetV ⊆ N

d . The smallest such se
yieldingΓ which contains alln-staircases inNd is their unionV dn , leading to our choice
of Γ (I) andB(I).
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Let U(I) denote theuniversal Gröbner basis ofI defined as the union of all reduce
Gröbner bases ofI and hence simultaneously providing a Gröbner basis forI under any
monomial order. Theorem 2.4 yields the following polynomial upper bounds on the nu
of distinct reduced Gröbner bases and the size of the universal Gröbner basis of an
in Hilbdn. The proof is similar to that of [10] for the case of vanishing ideals of p
configurations.

Corollary 2.5. For every fixedd , the following hold for anyn-long d-variate ideal
I ∈ Hilbdn:

(1) the number of distinct reduced Gröbner bases ofI isO(n2d(d−1)/(d+1));
(2) the number of elements in the universal Gröbner basisU(I) is

O(n2d−3+(3d−1)/(d(d+1))).

Proof. Consider anyλ ∈ (
N
d

n

)
stair. Then, for i = 1, . . . , d , eachv ∈ λ satisfiesvi < n

hence theith coordinate value of
∑
λ is less thann2. Thus, the lattice polytopeP =

conv{∑λ: λ ∈Λ(I)} is contained in the cube[0, n2]d and hence hasO(vol(P )(d−1)/(d+1))

= O(n2d(d−1)/(d+1)) vertices (cf. [1]). By Theorem 2.4, the state polyhedronS(I) =
P + R

d+ andP have the same vertex set, giving (1).

Next, for anyλ ∈ (
N
d

n

)
stair, the size of the set min(λ̄) of minimal elements not inλ

isO(n(d−1)/d) (cf. [4]). Since the reduced Gröbner basisGλ of I corresponding toλ has
|min(λ̄)| elements, the product of the bound on any|min(λ̄)| and the bound just establishe
in (1) on the number of reduced Gröbner basis yields the bound in (2) on the size o
unionU(I). ✷

3. The Hilbert zonotope and its universality

While the number of initial staircases ofI ∈ Hilbdn is polynomial inn for any fixed
d by Corollary 2.5, the cardinality ofΓ (I) is typically exponential inn even ford = 2;
for instance, ifI is the bivariate vanishing ideal of any genericn points in the plane ove
an infinite field (see discussion of point configurations in Section 5), then alln-subsets
of V dn are basic, and hence so are alln-staircases inN2 which are in bijection with numbe
partitions ofn. Thus, it is not possible to filterΛ(I) out of Γ (I) and constructB(I) or
S(I) directly in polynomial time.

To overcome this we now introduce, for each pair of positive integersd andn, the
Hilbert zonotopeHdn . As we shall see, it isuniversalfor the Hilbert scheme Hilbdn in that
it provides a refinement of the basis polytopeB(I) and the state polyhedronS(I) of every
idealI ∈ Hilbdn.

Recall thatV dn = ⋃(
N
d

n

)
stair is the union of alln-staircases inNd . Call an element of the

symmetrizationV dn − V dn = {u− v: u,v ∈ V dn } primitive if it is not a nonnegative intege
multiple of another element ofV dn − V dn . Forn� 2 letDdn be the set of primitive elemen
of V dn − V dn , and forn= 1 letDd1 := ±{e1, . . . , ed}. We make the following fundament
definition.
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Definition 3.1. TheHilbert zonotopeHdn is the following Minkowski sum of line segment

Hdn :=
∑
v∈Ddn

[0,1] · v ⊂ R
d .

Note thatDdn = −Ddn is centrally symmetric, hence so isHdn which equivalently can be
defined as

∑[−1,1] · v by summing over only one of each pair{−v, v} of antipodal
primitive elements.

The Hilbert zonotope is well behaved in the following sense.

Proposition 3.2. Fix any d . Then the number of vertices of the Hilbert zonotopeHdn
satisfiesO(n2(d−1)(logn)2(d−1)2); further, in polynomial time using that many arithme
operations, all its vertices can be listed, eachh along with a vectorw(h) uniquely
minimized overHdn at h.

Proof. First note thatV dn = ⋃(
N
d

n

)
stair is given by

V dn =
{
v ∈ N

d :
d∏
i=1

(vi + 1)� n
}

:

indeed, ifv ∈ N
d lies in somen-staircaseλ then the entire box{u ∈ N

d : u� v} is contained
in λ hence

d∏
i=1

(vi + 1)= ∣∣{u ∈ N
d : u� v

}∣∣ � |λ| = n;

conversely, ifv ∈ N
d satisfies

∏d
i=1(vi +1)� n then the box above can be augmented w

multiples of unit vectors to ann-staircaseλ containingv. Now the cardinality of

{
v ∈ N

d :
d∏
i=1

(vi + 1)� n
}

obeys the boundO(n(logn)d−1) (cf. [12]). Thus, the Hilbert zonotopeHdn is the
Minkowski sum of

N := 1

2

∣∣Ddn ∣∣ =O(∣∣V dn ∣∣2) =O(
n2(logn)2(d−1))

line segments and therefore (cf. [6,9]) hasO(Nd−1) vertices which can all be enumerate
eachh along with a vectorw(h) uniquely minimized ath, usingO(Nd−1) arithmetic
operations, giving the claimed bounds.✷
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Example 3.3. We compute the Hilbert zonotopeH2
3 for d = 2,n= 3. Using Proposition 3.2

we find the setH of vertices ofH2
3 which shows that it is a (centrally symmetric) 10-go

as well as the corresponding setW of the linear functionals uniquely minimized at i
various vertices:

V 2
3 =

{[
0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
2
0

]
,

[
0
2

]}
,

D2
3 = ±

{[
1
0

]
,

[
0
1

]
,

[
1

−1

]
,

[
1

−2

]
,

[
2

−1

]}
,

H = ±
{[ −5

5

]
,

[ −5
3

]
,

[ −3
−1

]
,

[ −1
−3

]
,

[
3

−5

]}
,

W = ±
{[

1
−1

]
,

[
3
1

]
,

[
3
2

]
,

[
2
3

]
,

[
1
3

]}
.

We need to recall a few facts about matroids and matroid polytopes. LetM = (V ,Γ )
be a matroid over a finite setV with collection of basesΓ ⊆ 2V . Its matroid polytope
is defined as the convex hullB(M) := conv{1B : B ∈ Γ } ⊂ R

V , where1B denotes the
incidence vectorof B ⊆ V , that is, the{0,1} vector inR

V with supportB. This is a well
known object of importance in combinatorial optimization. Below, letev ∈ R

V denote the
unit vector indexed byv ∈ V .

Proposition 3.4. Every1-face of the matroid polytope is equal toeu−ev for someu,v ∈ V .

Proof. Consider any pairA,B ∈ Γ of bases such that[1A,1B] is an edge (that is, a 1
face) ofB(M), and letw ∈ R

V be a linear functional uniquely maximized overB(M) at
that edge. IfA\B = {u} is a singleton thenB \A= {v} is a singleton as well in which cas
1A − 1B = eu − ev and we are done. Suppose then, indirectly, that it is not, and pic
elementu in the symmetric differenceA$B := (A\B)∪ (B \A) of A andB of minimum
valuewu. Without loss of generality assumeu ∈A \B. Then there is av ∈B \A such that
C :=A \ {u} ∪ {v} is a basis ofM. Since|A$B|> 2,C is neitherA norB. By the choice
of u, this basis satisfiesw · 1C =w · 1A−wu+wv �w · 1A, hence also a maximizer ofw
overB(M), a contradiction. ✷

A polyhedronP is arefinementof a polyhedronQ if the normal fan ofP is a refinemen
of that ofQ, that is, the closure of each normal cone ofQ is the union of closures of norm
cones ofP . The significance of the Hilbert zonotope is now demonstrated by the follo
theorem.

Theorem 3.5. The Hilbert zonotopeHdn is a refinement of both the basis polytopeB(I)
and the state polyhedronS(I) of every memberI of the Hilbert schemeHilbdn of n-long
d-variate ideals.

Proof. Consider anyI ∈ Hilbdn. Let M := (V dn ,Γ (I)) be the matroid overV dn with
collection of basesΓ (I), which is the restriction toV dn of the infinite matroid overNd
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of all basic sets ofI . Let B(M) := conv{1λ: λ ∈ Γ (I)} ⊂ R
V dn be the matroid polytop

ofM and let

π :RV
d
n → R

d : ev �→ v

be the natural projection sending the unit vectorev corresponding tov ∈ V dn to the vector
v ∈ N

d ⊂ R
d . Then for eachλ ∈ Γ (I) we haveπ(1λ)= ∑

λ hence the basis polytope ofI

B(I)= conv
{∑

λ: λ ∈ Γ (I)
}

= conv
{
π(1λ): λ ∈ Γ (I)} = π(

B(M)
)

is a projection of the matroid polytope. Thus, each edge ofB(I) is the projection of
some edge ofB(M) hence, by Proposition 3.4, is equal toπ(eu − ev) = u− v for some
pair u,v ∈ V dn and therefore parallel to some element inDdn . Thus, the Hilbert zonotop
Hdn = ∑

v∈Ddn [0,1] · v is the Minkowski sum of a set of segments containing all e
directions ofB(I) and therefore its normal fan is a refinement of the normal fan ofB(I).

Next, consider any faceF of S(I). ThenF is also a face ofB(I) ⊂ S(I) and hence
the closure of its normal cone atB(I) is a union of closures of normal cones ofHdn . But
Ddn contains all unit vectors which implies that each normal cone ofHdn is contained in the
interior of some orthant. Thus, the closure of the normal cone ofF atS(I) is the union of
the closures of those normal cones ofHdn contained in the normal cone ofF atB(I) which
lie in the nonnegative orthantR

d+. ✷
Let us call the coarsest common refinement of the state polyhedra of all idealsI on

the Hilbert scheme theHilbert polytope. As pointed out to us by D. Bayer, the Hilbe
zonotope may in general be finer than the Hilbert polytope; in particular, it may have
vertices. However, the Hilbert zonotope allows efficient algorithmic treatment while
Hilbert polytope might not.

4. Computing the state polyhedron and universal Gröbner basis

We now use the Hilbert zonotope to efficiently compute the set of initial staircase
state polyhedron and the universal Gröbner basis of any ideal on the Hilbert scheme

Let Udn := {u + ei : u ∈ V dn , 0 � i � d} with e0 := 0 andei the ith unit vector for
1 � i � d . ThenUdn contains, along with everyn-staircaseλ, all vectorsu + ei with u
any vector inλ andei any unit vector, hence also min(λ̄). On the other hand,Udn ⊆ V d2n
and hence, for fixedd , obeys the same upper boundO(n(logn)d−1) on its cardinality as
doesV d2n.

We assume thatI ∈ Hilbdn is presented by its Gröbner basisGλ := {xu− [xu]λ: u ∈
min(λ̄)} under some monomial order≺. Such a presentation, say with respect to the de
reverse lexicographic order, is known to be efficiently computable from any gene
set—see discussion at the end of this section. Given such an ideal we will ne
representative[xu]λ for everyu in the setUdn . We include the short proof of the followin
adaptation of [5, Propoistion 3.1].
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Proposition 4.1. Fix anyd . Then, given any idealI = ideal(Gλ) ∈ Hilbdn, the representa
tives[xu]λ = ∑

v∈λ av,u · xv of all u ∈ Udn can be computed usingO(n3(logn)d−1) arith-
metic operations.

Proof. Compute[xu]λ for the elementsu ∈ Udn in the order≺ as follows. If u ∈ λ
then [xu]λ = xu. If u ∈ min(λ̄) then xu − [xu]λ is in the given reduced Gröbner bas
Gλ from which [xu]λ can be recovered. Otherwises := u − ei ∈ Udn \ λ for some i.
By Proposition 2.1[xs]λ ∈ lin{xt : t ∈ T } with T := {t ∈ λ: t ≺ s}. Now s ≺ u and
t+ei ≺ s+ei = u for all t ∈ T , hence[xs]λ = ∑

t∈T at,sxt and[xt+ei ]λ = ∑
v∈λ av,t+ei xv

for all t ∈ T are already available. Thus

[
xu

]
λ

= [
xs+ei

]
λ

=
∑
t∈T
at,s

[
xt+ei

]
λ

=
∑
t∈T
at,s

∑
v∈λ
av,t+eixv

=
∑
v∈λ

(∑
t∈T
at,sav,t+ei

)
xv

is now obtained usingO(n2) arithmetic operations. Since|Udn | =O(n(logn)d−1) we are
done. ✷

We are finally in position to provide the efficient procedure for computing the s
initial staircases, the state polyhedron and the universal Gröbner basis of any ideal
Hilbert scheme. Theorem 3.5 enables us to bypass the difficulty caused by the expo
size ofΓ (I).

Theorem 4.2. For every fixedd there is a polynomial time algorithm that, given anyn-long
d-variate idealI ∈ Hilbdn, computes its setΛ(I) of initial staircases, its state polyhedro
S(I), and its universal Gröbner basisU(I) usingO(n2d+1(logn)(2d−1)(d−1)) arithmetic
operations.

Proof. First enumerate, as in Proposition 3.2 and hence within the claimed comp
bound, theO(n2(d−1)(logn)2(d−1)2) vertices ofHdn , each vertexh along with a vectorw(h)
uniquely minimized overHdn at h. We claim that any (coordinatewise) positivew(h) on
the list is uniquely minimized overB(I) at

∑
µ for some initial staircaseµ ∈Λ(I) and,

conversely, for everyµ ∈ Λ(I) there is some (possibly many) positivew(h) on the list
uniquely minimized overB(I) at

∑
µ. Consider first any positivew(h) on the list. Since

Hdn refinesB(I) by Theorem 3.5, the vectorw(h) and hence a positive generic perturbat
of it lie in the normal cone of some vertex ofB(I). By Theorem 2.4, this vertex is

∑
µ

for some initial staircaseµ ∈ Λ(I). Conversely, consider any initial staircaseµ ∈ Λ(I).
Then, by Theorem 2.4,

∑
µ is a vertex ofS(I) hence its normal cone is contained in t

interior of the nonnegative orthant. SinceHdn refinesS(I) by Theorem 3.5, this norma
cone contains the normal cone of some (possibly many) vertexh of Hdn . The vectorw(h)
of that vertexh on the list must then be positive.

We proceed to show that for each positivew(h) on the list we can efficiently compute th
minimizing vertex

∑
µ of B(I), the initial staircaseµ, and the reduced Gröbner basisGµ.
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First, compute, as in Proposition 4.1, using the given presentationI = ideal(Gλ) of I
by some reduced Gröbner basis, the representative[xu]λ = ∑

v∈λ av,u · xv of every vector
u ∈ Udn .

Now pick any vertexh of Hdn with w := w(h) positive. Use the following greed
algorithm to find a basic setµ = {µ1, . . . ,µn} ∈ Γ (I): for i = 1, . . . , n pick µi to be
an element inV dn ⊂ Udn of minimal valuew · µi with the property that{[xµj ]λ: j � i}
is linearly independent. Then for any other basic setν ∈ Γ (I), writing ν = {ν1, . . . , νn}
with w · ν1 < · · · < w · νn, we havew · µk � w · νk for all k hencew · ∑

µ � w · ∑
ν.

This shows that
∑
µ minimizesw overB(I) hence, as shown in the first paragraph of t

proof, is the unique minimizing vertex of the positivew(h)=w overB(I), andµ ∈Λ(I)
is the corresponding initial staircase.

The determination ofµ by the greedy algorithm can be efficiently implemented
performing Gaussian elimination on the fly as follows. Totally orderUdn compatibly withw
so that ifu precedesv thenw · u� w · v and letλ= {λ1, . . . , λn} be an arbitrary labeling
of λ. Thus, the coefficientsav,u for all u ∈ Udn andv ∈ λ now form ann× |Udn | matrixA
over F. For eachu ∈ Udn let Au ∈ F

n denote the column of that matrix correspond
to u, with Aui := aλi,u. Now, in the greedy algorithm, fori = 1, . . . , n, pick µi to be the
first element inV dn ⊂ Udn whose columnAµi contains a nonzero coordinateAµik for some
k � i. Apply suitable row operations toA so as to transformAµi to the unit vectorei
while maintainingAµj = ej for all j < i. This consumesO(n · |Udn |) arithmetic operation
perµi , totaling toO(n2 · |Udn |) operations.

Moreover, the updated matrixA at the end of this iterated process is the matrix
coordinates in the new basisµ: for eachu ∈ Udn , the representative[xu]µ is simply read
off from the corresponding column as[xu]µ = ∑n

i=1A
u
i x
µi . Now, the set min(µ̄) consists

precisely of thoseu ∈ Udn \µ with the property that for eachi = 1, . . . , d eitherui = 0 or
u− ei ∈ µ, hence can be quickly filtered out ofUdn . So, within the same complexity boun
of O(n2 · |Udn |) operations we obtain the reduced Gröbner basisGµ := {xu − [xu]µ: u ∈
min(µ̄)} corresponding toµ.

Summarizing, for each positivew(h) on the list of verticesh of Hdn , we can find the
initial staircaseµ ∈Λ(I) for which

∑
µ is the unique minimizer ofw(h) overB(I) and

the corresponding reduced Gröbner basisGµ usingO(n2 · |Udn |) operations. Therefore
the entire setΛ(I) of initial staircases, the state polyhedronS(I) = conv{∑µ: µ ∈
Λ(I)} + R

d+, and the universal Gröbner basisU(I) = ⋃
µ∈Λ(I) Gµ of the given idealI

can be produced using

O
(
n2(d−1)(logn)2(d−1)2 · n2 · n(logn)d−1)

arithmetic operations as claimed.✷
Example 4.3. We compute the universal Gröbner basis of the idealI = ideal(Gλ) ∈ Hilb2

3
for d = 2,n= 3 overF = R, presented byGλ = {x3

1 −3x2
1 +3x1−1, x2−x1+1} which is

its reduced Gröbner basis under the lexicographic order withx2> x1, with λ the staircase
λ = {00,10,20}. First, we obtain the set ofw ∈ R

2+ via the Hilbert zonotopeH2
3 as in

Example 3.3, which isW+ := {31,32,23,13}. Next, we compute the 3× 10 matrixA of
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coefficients of the representatives[xu]λ = a1,u · 1 + a2,u · x1 + a3,u · x2
1 for all u ∈ U2

3 ,
whose rows and columns are indexed byλ andU2

3 respectively, and obtain

A=



00 10 20 30 01 11 21 02 12 03

00 1 0 0 1 −1 0 1 1 1 0
10 0 1 0 −3 1 −1 −3 −2 −2 0
20 0 0 1 3 0 1 2 1 1 0


.

Now consider some vector inW+, sayw := 32. ReorderU2
3 compatibly withw and

suitably permute the columns ofA. Apply the greedy algorithm and find the ne
initial staircaseµ = {00,01,02}. Next apply suitable row operations toA to make the
transformation to the new basis and obtain the following updated matrix, with row
columns suitably re-labeled,

A=



00 01 10 02 11 03 20 12 21 30

00 1 0 1 0 0 0 0 0 0 1
01 0 1 1 0 1 0 2 0 1 3
02 0 0 0 1 1 0 1 1 2 3


.

Now, we have min(µ̄)= {10,03} and so the new reduced Gröbner basis is read off f
the third and sixth columns of the new matrix to beGµ = {x1 − x2 − 1, x3

2}.
Repeating this for each of the other three vectors inW+, we keep getting eitherλ orµ.

We conclude that hereΛ(I)= {λ,µ} consists of two staircases only, the state polyhed
is

S(I)= conv
{∑

λ,
∑

µ
}

+ R
2+ = [30,03]+ R

2+,

and the universal Gröbner basis is

U(I)=Gλ ∪Gµ = {
x3

1 − 3x2
1 + 3x1 − 1, x2 − x1 + 1, x1 − x2 − 1, x3

2

}
.

It is known (cf. [5] and references therein) that the reduced Gröbner basis und
degree reverse lexicographic order of any idealI = ideal(F ) ∈ Hilbdn presented by an

set of generators can be computed in timeO(Dd
2
) whereD is the maximal degree of an

generatorf ∈ F . Thus, Theorem 4.2 also implies, for any fixedd , an efficient algorithm for
computing the state polyhedron and the universal Gröbner basis of any ideal of the
scheme Hilbdn presented by any set of generators using a number of arithmetic oper
polynomial inn andD.

We conclude by pointing out that Theorems 3.5 and 4.2 yield the practical outcom
for eachd andn, a listWd

n of positivew(h) of verticesh of Hdn can be computed onc
and for all, providing auniversal set of monomial ordersfor the Hilbert scheme Hilbdn that
allows the efficient computation of the universal Gröbner basisU(I) of any givenn-long

d-variate idealI .
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5. Examples: point configurations and lattice ideals

We now interpret some of the notions and results discussed above for several
classes of ideals of the Hilbert scheme Hilbd

n. We start with the simple class of monom
ideals.

5.1. Monomial ideals

Recall that the monomial ideals in Hilbdn are in bijection with then-staircases inNd via
Iλ = ideal{xu: u ∈ min(λ̄)}. Consider any such idealIλ. ThenΓ (Iλ)= {λ} is a singleton:
indeed, ifµ is any othern-subset ofNd andu ∈µ \ λ thenxu ∈ lin{xv: v ∈ µ} ∩ Iλ hence
µ is not basic. For any monomial order≺ we have in≺(Iλ)= Iλ henceΛ(Iλ)= {λ} as well.
Thus,B(Iλ) = {∑λ} is a single point and the state polyhedron isS(Iλ) = {∑λ} + R

d+.
For everyu ∈ N

d \ λ we havexu ∈ Iλ hence[xu]λ = 0. Thus, the universal Gröbner bas
of I equals the unique reduced Gröbner basisGλ and are both given byU(Iλ) = Gλ =
{xu: u ∈ min(λ̄)}.

5.2. Point configurations

The vanishing idealIC := {f ∈ F[x]: f (c1) = · · · = f (cn) = 0} of a configuration
C = {c1, . . . , cn} of n distinct points in affine spaceFd is a radical ideal of length
dim(F[x]/IC)� n. Assume throughout this example thatF is infinite, which implies tha
the length ofIC is exactlyn and henceIC ∈ Hilbdn. Forλ= {λ1, . . . , λn} ⊂ N

d let

Cλ :=



c
λ1
1 c

λ2
1 · · · c

λn
1

c
λ1
2 c

λ2
2 · · · c

λn
2

...
...

. . .
...

c
λ1
n c

λ2
n · · · c

λn
n


 , wherec

λj
i =

d∏
k=1

c
λj,k
i,k .

Thenλ is basic forIC if and only if Cλ is nonsingular: indeed, the vector(f (c1), . . . ,
f (cn)) ∈ F

n of evaluations of a polynomialf = ∑n
i=1aix

λi ∈ lin{xλ1, . . . , xλn} at the
points of C is provided byCλ · A and is the zero vector inFn if and only if f
lies in I ; thus, lin{xλ1, . . . , xλn} ∩ IC = {0} if and only if Cλ is nonsingular. Thus
Γ (IC) = {λ ⊂ V dn : det(Cλ) �= 0}; the basis polytope isB(IC) = conv(

∑
λ: λ ∈ Γ (IC)};

the state polyhedron isS(IC) = B(IC)+ R
d+; and the set of initial staircases isΛ(IC) =

{λ ∈ Γ (IC): ∑
λ vertex ofS(IC)}. For every sufficiently generic configuration, say o

satisfying det(Cλ) �= 0 for all λ ⊂ V dn , the state polyhedronS(IC) and the set of initia
staircasesΛ(IC) coincide, respectively, with thecorner cutpolyhedronPdn and the se(
N
d

n

)
cut of n-elementcorner cutsin N

d introduced and studied in [10]. If≺ is a monomial

order andλ ∈ Λ(IC) is the initial staircase with in≺(IC) = Iλ then for everyu ∈ N
d we

have[xu]λ = xu − det(({x} ∪ C)({u}∪λ)) · det−1(Cλ). So the reduced Gröbner basis ofIC
under≺ is

Gλ = {
det

(({x} ∪C)({u}∪λ)) · det−1(Cλ): u ∈ min(λ̄)
}
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and the universal Gröbner basisU(IC) = ⋃
λ∈Λ(IC) Gλ is efficiently computable by ou

methods. This extends the results of [10] where an efficient construction ofU(IC) for
generic configurations only was provided, based on the separable-partitions me
of [2,7].

5.3. Lattice ideals

The binomial ideal of an integer latticeL⊆ Z
d is IL := ideal{xv+ − xv−

: v ∈ L} where
v+, v− ∈ N

d denote the nonnegative and nonpositive parts ofv ∈ N
d with v = v+ − v−.

AssumeL is full-dimensional with determinant det(L)= n implying thatIL has lengthn
henceIL ∈ Hilbdn. An n-subsetλ= {λ1, . . . , λn} is basic forIL if and only if it is a set of
distinct representatives of the congruence classes ofZ

d moduloL, that is, if and only if
for all i �= j we haveλi − λj /∈ L: this follows from the fact thatu− v ∈ L if and only
if xu − xv ∈ IL (cf. [11]). Thus,Γ (IL)= {λ⊂ V dn : i �= j impliesλi − λj /∈ L}; the basis
polytope isB(IL)= conv{∑λ: λ ∈ Γ (IL)}; the state polyhedron isS(IL)= B(IL)+ R

d+;
and the set of initial staircases isΛ(IL) = {λ ∈ Γ (IL): ∑

λ vertex ofS(IL)}. If ≺ is a
monomial order andλ ∈ Λ(IL) is the initial staircase with in≺(IL) = Iλ then for every
u ∈ N

d we have[xu]λ = xuλ with uλ the unique representative inλ with u − uλ ∈ L.
So the reduced Gröbner basis ofIL under≺ is Gλ = {xu − xuλ : u ∈ min(λ̄)} and the
universal Gröbner basisU(IL) = ⋃

λ∈Λ(IL) Gλ is efficiently computable by our method
Here the universal Gröbner basis consists of binomials only, and the set of integer v
T := {u− v: xu − xv ∈ U(IL)} which can be read off at once fromU(IL) is auniversal
test setfor the lattice minimization problem that, given anyx ∈ N

d and anyw ∈ R
d+, asks

for anx∗ ∈ N
d satisfyingx − x∗ ∈L and minimizing the valuew · x.

6. On the coordinatization of the Hilbert scheme

We conclude with a brief discussion of the embedding of the Hilbert schemedn
into the Grassmanian ofn-dimensional subspaces of a vector space of dimen
O(n(logn)d−1).

RecallV dn = ⋃(
N
d

n

)
stair is the union ofn-staircases andUdn = {v + ei : v ∈ V dn and 0�

i � d} with e0 = 0 andei theith unit vector inR
d for 1 � i � d . Throughout this section

assume thatUdn is totally ordered. LetS := F[x1, . . . , xd ], let SUdn := lin{xu: u ∈ Udn } ⊆ S
be theF-linear span of the monomialsxu with u ∈ Udn , and for each idealI ∈ Hilbdn let
IUdn

:= I ∩ SUdn .

Proposition 6.1. The dimension of the vector subspaceIUdn of any idealI ∈ Hilbdn is

p := |Udn | − n.

Proof. Consider the mapφ :SUdn → (S/I) such thatf = ∑
u∈Udn aux

u �→ f + I . Then
ker(φ) = {f ∈ SUdn : f ∈ I } = IUdn

. Hence the mapψ : (SUdn /IUdn ) → (S/I) such that
f + IUdn �→ f + I is injective. Consider any elementg + I of S/I and let[g]λ ∈ SUdn
be the normal form ofg with respect to the reduced Gröbner basis ofI corresponding
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to some initial staircaseλ of I . Thenψ([g]λ + IUdn
) = [g]λ + I = g + I henceψ is

surjective. Therefore,S/I andSUdn /IUdn are isomorphicF-spaces hence dim(SUdn /IUdn )=
dim(S/I)= n and dim(IUdn )= |Udn | − n= p. ✷
Proposition 6.2. Any idealI ∈ Hilbdn is uniquely determined by its vector subspaceIUdn

.

Proof. By definition ofUdn , every reduced Gröbner basis ofI lies in IUdn , implying that

the elements ofIUdn generateI as an ideal. Thus, for anyI, J ∈ Hilbdn, I = J if and only if
IUdn

= JUdn . ✷
Proposition 6.1 shows thatIUdn is a p-dimensional subspace ofSUdn , i.e., a point on

the Grassmanian Gr(SUdn ,p) of p-dimensional subspaces of the|Udn |-dimensional vecto
spaceSUdn . This implies thatIUdn , and therefore, by Proposition 6.2, alsoI , inherits standard
Plücker coordinates from the Grassmanian, leading to an embedding of the Hilbert s
in projective space, as follows. Let(fi)

p

i=1 be any ordered vector space basis forIUdn
with fi = ∑

u∈Udn mi,ux
u, and for ap-subsetν ⊂ N

d let Mν := (mi,u)1�i�p,u∈ν be the
correspondingp× p submatrix of coefficients. The Hilbert scheme is then embedded
projective space by

〈·〉 : Hilbdn → P
(U
d
n
p ): I �→ 〈I 〉 :=

{
det(Mν): ν ∈

(
Udn

p

)}
;

it is well known that the Plücker point〈I 〉 is independent of the choice of basis(fi) of IUdn .
We proceed with the dual embedding into the Grassmanian Gr(SUdn

, n) of n-dimension-
al subspaces ofSUdn . The spaceSUdn is endowed with the standard monomial ba

{xu: u ∈Udn } and corresponding standard inner product〈xu, xv〉 = δu,v . Let I⊥
Udn

⊂ SUdn be

the orthogonal complement ofIUdn in SUdn , which is isomorphic toSUdn /IUdn . Let (hi)ni=1

be any ordered vector space basis forI⊥
Udn

with hi = ∑
u∈Udn ai,ux

u, and for ann-subset

λ ⊂ Udn let Aλ := (ai,u)1�i�n,u∈λ be the correspondingn× n submatrix of coefficients
The dual embedding is then given by

〈·〉⊥ : Hilbdn → P(
Udn
n ): I �→ 〈I 〉⊥ :=

{
det(Aλ): λ ∈

(
Udn

n

)}
.

Next we explain how to actually compute the (dual) Plücker coordinates; note, th

that the number of coordinates isΩ
(
n(logn)d−1

n

)
hence exponential, so this computati

can not be carried out in polynomial time even ford = 2. Let I = ideal(Gλ) ∈ Hilbdn
be presented by its Gröbner basis corresponding to some initial staircaseλ = {λ1, . . .λn}
under some monomial order≺. Compute as in Proposition 4.1 the representative[xu]λ =∑n
i=1ai,ux

λi of everyu ∈ Udn , and fori = 1, . . . , n let hi := ∑
u∈Udn ai,ux

u. Then(hi)ni=1

is an ordered basis ofI⊥
Udn

. With Udn assumed to be totally ordered, we get then× |Udn |
matrix A = (ai,u) of coefficients of this basis; the Plücker coordinates are then rea
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from the minors ofA as〈I 〉⊥ = {det(Aµ): µ ∈ (
Udn
n

)}. In particular, the Plücker coordina
〈I 〉⊥µ := det(Aµ) is nonzero if and only ifµ is basic forI .

We end this paper by observing that, for the following classes of ideals, the Pl
coordinates have a natural simple form.

6.1. Monomial ideals

Let Iλ = ideal{xv: v ∈ min(λ̄)} be the monomial ideal in Hilbdn corresponding to ann-
staircaseλ. Then (see Section 5)λ is the only basic set ofIλ. Therefore the only nonzer

Plücker coordinate is〈I 〉⊥λ and so〈I 〉⊥ = eλ is the unit vector in projective spaceP(
|Udn |
n ).

6.2. Point configurations

Let IC be the vanishing ideal of a configurationC = {c1, . . . , cn} ⊆ F
d with F infinite.

For i = 1, . . . , n let hi := ∑
u∈Udn c

u
i x
u with cui = ∏d

k=1 c
uk
i,k . For any polynomialf =∑

u∈Udn mux
u ∈ SUdn , its inner product withhi satisfies〈f,hi〉 = ∑

u∈Udn muc
u
i = f (ci),

hence is zero if and only iff vanishes onci . Thus,f is orthogonal to lin{h1, . . . , hn} if
and only if it vanishes onC, or equivalently,f ∈ IC . This shows that(hi)ni=1 is an ordered
basis of(IC)⊥Und .

LetA= (ai,u) be then×|Udn | matrix whose rows are indexed by the pointsc1, . . . , cn in
C and columns byu ∈Udn , with ai,u := cui . ThenA is the matrix of coefficients of the bas
(hi)

n
i=1 and hence the Plücker coordinates〈IC〉⊥ of IC can be read off from the minor

of A.
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