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Abstract. Recently, constructive methods became widely used
in commutative algebra. These methods are mainly based on the
theory of Gröbner bases and involutive bases. Due to various ap-
plications, the investigations of effectiveness of constructing of the
Gröbner bases are very urgent. The algorithm of constructing of
the Gröbner bases is bases on considering of S-polynomials and
applying of a normal simplificator. Usually, in order to refine the
algorithm of the Gröbner bases construction, one uses more elab-
orate choice of S-polynomials. The influence of the normal sim-
plificator on the effectiveness of the Gröbner bases construction is
studied insufficiently.

In the paper we try to establish a relation between the theory
of Gröbner bases and the theory of involutive bases. It is known
that any involutive basis contains as a subset the Gröbner basis
of the ideal. It is shown that the involutive basis corresponds to
the Gröbner basis with a fixed normal simplificator. Thus, the
dependence of the effectiveness of the Gröbner basis construction
on the chosen normal simplificator is emphasized. An attempt
to describe the normal simplificators corresponding to involutive
bases is fulfilled.

Let K be a field, R = K[x1, . . . , xn] the ring of polynomials over K,
I an ideal of R. The ideal I as well as the factor-ring R/I are linear
K-spaces, in general, of infinite dimension. How one can find bases
of these spaces? In R considered as a K-space there is a basis which
consists of the set M of all monomials. It is natural to try to partition
the set M into two parts M = M1∪M2 such that the images of elements
from M1 in the factor-ring R/I form a basis of the K-space R/I, and
the elements of the basis of the K-space I correspond one-to-one to the
elements of M2.

Suppose that we have an admissible order on the set of monomials,
i.e. we have a relation < with the following properties:

(1) 1 < m for any non-trivial monomial m;
(2) if t1 < t2 for some monomials t1 and t2, then t1m < t2m for any

monomial m.
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Thus, for any polynomial f we define the leading monomial lm(f) and
the leading coefficient lcoef(f), and the set M is divided into two sub-
sets: M1 consists of the monomials which are not leading monomials
for f ∈ I, and M2 consists of the leading monomials of the elements of
I.

Now the question of constructive description of the sets M1 and M2

arises.
An answer to this question as well as to many other questions of

the constructive theory of polynomial ideals is given by the theory of
Gröbner bases. There are many equivalent definitions of the Gröbner
bases (see, e.g. [5] or [2], in [1, p. 40] these definitions are considered
taking into account the normal simplificator chosen). For example, a
set G ⊂ I is called a Gröbner basis of the ideal I, if any f ∈ I admits
a representation of the form f =

∑N
i=1 cimigi, where ci ∈ K, mi ∈ M ,

gi ∈ G and the condition lm(migi) > lm(mjgj) holds for j > i (a
representation of this form is called a G-representation). Firstly, this
definition is not constructive; secondly, it does not define the Gröbner
basis uniquely. A constructive method of obtaining of a Gröbner basis
is given by the completion algorithm. In order to choose a uniquely
defined basis among all the Gröbner bases of an ideal, we introduce a
notion of an autoreduced set.

A set of polynomials G = {gα : α ∈ I} is called autoreduced, if for any
α ∈ I every monomial which is present in gα with nonzero coefficient
is non-divisible by any monomial lm(gβ) for β 6= α. The Gröbner basis
which is an autoreduced set and whose leading coefficients are equal
to 1 is defined uniquely for any ideal I. We call such a basis by the
autoreduced Gröbner basis.

Suppose that we know the autoreduced Gröbner basis G of an ideal
I. In order to obtain a basis of I considered as a linear space, it is
sufficient to show a procedure which any monomial m ∈ M2 maps into
an element g(m) ∈ G whose leading monomial divides m, i.e. m =
t(m) · lm(g(m)) for a monomial t(m). Then the set of the polynomials
t(m) · g(m) | m ∈ M2 forms a basis of the linear space I. We call any
such a procedure by a normal simplificator.

Example. The simplest normal simplificator can be obtained by enu-
merating the elements of the autoreduced Gröbner basis G in an order
from 1 to k and mapping every monomial m ∈ M2 into the element
gi ∈ G with the minimal index i such that lm(gi)|m. Of course, there
exist more complicated normal simplificators.

Consider this example in detail. Suppose that the autoreduced
Gröbner basis of I consists of polynomials g1, . . . , gk. Then a basis
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of the linear space I can be obtained as the union of the following sets
the set B1 of all the products m · g1, where m ∈ M ;
the set B2 of all the products m · g2 such that lm(m · g2) /∈ lm(B1);
the set B3 of all the products m · g3 such that lm(m · g3) /∈ lm(B1) ∪
lm(B2);
. . .
the set Bk of all the products m ·gk such that lm(m ·gk) /∈

⋃k−1
i=1 lm(Bi).

The same basis can be described in other words.
For any gi we take the maximal subset xi1 , . . . , xis of the variables

such that the product of gi by any monomials containing only these
variables (the set of such monomials will be denoted by S(gi)) belongs
to Bi. We call these variables multiplicative for the monomial lm(gi),
the remaining variables will be called non-multiplicative. We exclude
the monomial gi and all its products by monomials belonging to S(gi)
from Bi. If the set obtained is not empty, then we take there the
minimal monomial g′i and repeat the process for g′i. In this way we
can represent the basis of the linear space I as the union of a finite
family of the sets, each one described by a polynomial and a set of
multiplicative variable for this polynomial. The basis obtained is an
example of an involutive basis. The notion of the involutive basis in
commutative algebra has been introduced by Zharkov and Blinkov [6].

Thus, in order to construct an involutive basis we used the Gröbner
basis, normal simplificator and partition of the variables into multi-
plicative and non-multiplicative for some family of monomials.

Let us recall the algorithm which allows to check whether a given set
is the Gröbner basis of the ideal generated and to construct a gröbner
basis, when we have a system of generators of an ideal I (this algorithm
is known as the completion algorithm).

Let a set of polynomials G and a relation of order < on the set
of monomials be given. In order to verify that G is a Gröbner basis
of the ideal I = (G) with respect to the order <, one uses a normal
simplificator whose choice does not influence the result. We should
form the set of S-polynomials and check that each of these polynomials
can be reduced to zero. Refined versions of the algorithm use different
criteria, which allow diminish the set of S-polynomials considered (e.g.
“triangle rule”).

It has been said that the set of polynomials G = {g1, . . . , gk} and the
normal simplificator allow to form the sets Bi which are obtained by
multiplying the polynomials gi by a set of monomials. S-polynomials
correspond to the polynomials gi and monomials mi such that mi is the
minimal monomial (with respect to division of monomials) satisfying
the condition mi · gi /∈ Bi. In fact, we must check reducibility to zero
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only for theses polynomials (note that in this case we consider not all
S-polynomials, “the triangle rule” works automatically). It is natural
to require the set G to be autoreduced.

The completion algorithm is based on the method of S-polynomials
and differs from the algorithm above by adding nonzero normal forms
of the S-polynomials to the set G. Usually, the normal simplificator,
hence the sets Bi, should be changed after such adding.

As a rule, when refining the algorithms for construction of the Gröbner
bases one improves the enumeration of S-polynomials, and the influ-
ence of the admissible normal simplificators is studied insufficiently.

Up to now we did not restrict the choice of the normal simplificator,
i.e. obtaining of the sets Bi for a given family of polynomials G = {gi}.
Suppose that some relation of “divisibility” |L is fixed on the set of
monomials, and this relation satisfies the following axioms (the axioms
of the involutive division, see, for instance [4]):

(1) u
∣∣
L
v =⇒ u|v (in the sense of usual division);

(2) 1
∣∣
L
u;

(3) u
∣∣
L
w ∧ v

∣∣
L
w =⇒ u

∣∣
L
v ∨ v

∣∣
L
u;

(4) u
∣∣
L
uvw ⇐⇒ u

∣∣
L
uv ∧ u

∣∣
L
uw;

(5) u
∣∣
L
v ∧ v

∣∣
L
w =⇒ u

∣∣
L
w (transitivity).

In the case when the relation u
∣∣
L
v holds, we say that u divides involu-

tively v.
Axioms 3 and 4 in the case of two variables can be illustrated in the

following way:
Let a point (i, j) of the plane represent the monomial xiyj. Then

• for any pair of monomials, the sets of their involutive multimples
either are disjoint or one of them contains the other;

• the set of involutive multiples of a monomial xiyj is either one
point (i, j), or vertical or horizontal half-line starting from this
point, or the angle between the vertical and horizontal half-lines
starting from this point.

The generalization to the case of several variables is obvious.
An involutive division can be determined by defining for every mono-

mial u the set M(u) of its multiplicative variables as the set of variables
such that u divides involutively any product u by a monomial contain-
ing only multiplicative variables. The remaining variables will be called
non-multiplicative for the monomial u (denoted NM(u)).

Examples of involutive divisions:

(1) M(xi1
1 . . . xik

k ) = {xk, . . . , xn} — right Pommaret division.

(2) M(xik
k . . . xin

n ) = {x1, . . . , xk} — left Pommaret division.
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(3) M(xi1
1 . . . xin

n ) = {xk : ik = maxn
m=1 im}.

In the bivariate case the right and left Pommaret divisions can be
illustrated in the following way:
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The geometrical illustration of the third example is the following one:
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We say that a polynomial f is involutively reducible to a polynomial
g with the help of a polynomial h by a monomial m, which is present in
f , if f is reducible to g in the usual sense and lm(h)|Lm. If a relation of
reduction is fixed, then a normal form is defined, which is called in this
case involutive. A generating set G of an ideal I is called an involutive
basis of I if the involutive normal form of any polynomial f ∈ I with
respect to G is equal to 0.

The product of a polynomial f by a variable non-multiplicative for
the leading monomial of f will be called a non-multiplicative extension
of f . A generating set G of an ideal I is an involutive basis of I if and
only if the normal forms of non-multiplicative extension of all elements
of G are equal to zero. This fact implies the standard completion
algorithm for constructing an involutive basis.

The involutive basis of an ideal I can easily be constructed if we
know the autoreduced Gröbner basis G of I and the involutive division.
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This construction is reduced to multiplying the elements of G by non-
multiplicative variables.

If we have an involutive basis G = {gi} and an involutive division,
then we can construct a normal simplificator in the following way: for
any polynomial gi we take the set Bi of its multiplicative multiples; the
set

⋃
i Bi is a basis of the linear space I, and every leading monomial

is present just in one element of this basis; we shall use this basis in
order to construct G-representations.

Of course, not every normal simplificator can be obtained in this
way. The problem arises to describe the normal simplificators which
can be constructed via the involutive bases.

Proposition. If the set of leading monomials of polynomials of an
ideal I can be divided into disjoint cones such that the elements of one
cone is reducible with respect of one polynomial of the basis, then the
appropriate involutive division has the following form:
the multiplicative variables for the vertex of the cone are those which
correspond to the generators and inside the cone the division can be
defined in an arbitrary way.

Proof. Formally, these involutive division
∣∣
L

is given in the following

way: let
∣∣
Ls

be an arbitrary involutive division corresponding to the
cone Cs with the vertex at the monomial s. We set

∀u, v ∈ Cs u
∣∣
L
v ⇐⇒ u

∣∣
Ls

v.

If 6 ∃s : u, v ∈ Cs, then we set u 6
∣∣
L
v. We also set ∀u 1

∣∣
L
u. Let us

verify that the axioms of involutive divisions hold:

(1) u
∣∣
L
v =⇒ ∃s : u ∈ Cs, u

∣∣
Ls

v =⇒ u|v
(2) 1

∣∣
L
u, by the definition of

∣∣
L

(3) u
∣∣
L
w, v

∣∣
L
w =⇒ ∃s1, s2 : u, w ∈ Cs1 , v, w ∈ Cs2 , how-

ever, then Cs1 ∩ Cs2 6= ∅, hence, s1 = s2 =: s. Therefore,
u
∣∣
Ls

w, v
∣∣
Ls

w =⇒ u
∣∣
Ls

v ∨ v
∣∣
Ls

u =⇒ u
∣∣
L
v ∨ v

∣∣
L
u

(4) u
∣∣
L
uvw =⇒ ∃s : u

∣∣
Ls

uvw =⇒ u
∣∣
Ls

uv ∧ u
∣∣
Ls

uw =⇒
u
∣∣
L
uv ∧ u

∣∣
L
uw =⇒ ∃s : u, uv, uw ∈ Cs, u

∣∣
Ls

uv ∧ u
∣∣
Ls

uw =⇒
u
∣∣
Ls

uvw =⇒ u
∣∣
L
uvw

(5) u
∣∣
L
v, v

∣∣
L
w =⇒ ∃s : u, v, w ∈ Cs, u

∣∣
Ls

v, v
∣∣
Ls

w =⇒ u
∣∣
Ls

w =⇒
u
∣∣
L
w

By the definition of
∣∣
L
, any leading monomial of a polynomial from

the ideal is involutively reducible to the vertex of the corresponding
cone, moreover, the involutive normal form is always unique. The
normal simplificator defined by these cones is constructed in the same
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way. Therefore, the correspondence of the normal simplificator to the
involutive division is established. �
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