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Abstract. We develop a basic theory of &sner bases for ideals in the algebra

of Laurent polynomials (and, more generally, in its monomial subalgebras). For
this we have to generalize the notion of term order. The theory is applied to
systems of linear partial difference equations (with constant coefficients) on
Z". Furthermore, we present a method to compute the intersection of an ideal
in the algebra of Laurent polynomials with the subalgebra of all polynomials.
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1 Motivation and Introduction

Let R be a commutative noetherian ring (e. g. a fidldyr z,,), I' a set, letR"

be theR-module of all maps froni" to R, and letR™ be the R-submodule

of all maps fromI" to R with finite support. There is a natural nondegenerate
bilinear form

(— =) RO xRN — R, (f,)— Y f()gl) .
iel
Let < be a well-order ori". (Then every strictly descending sequence'iis
finite). For 0# f € R™ we define the “degree of”

deg(f) :=max{i e I'| f(i) # 0}
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and the “leading coefficient of”

le(f) == f(deg(f)) .
Forg 4 M < R let

deg(M) = {deg(f)| f e M, f #0}

and
Mt :={geR"|(f,g)=0 forall feM}.

Obviously M+ is anR-submodule oR".

Definition 1.1 Let {0} # W < R be a submodule aR™. Then a family
(Vi)iedegw) IN W is a “triangular basis of W” if and only ifdeg(v;) = i and
le(v;) = 1,foralli € deg(W).

Remark 1.1 Itis clear that every triangular basis is &Abasis ofW. If R is a
field, then there always exists a triangular basi®#ofMNevertheless, in general
it is not possible to compute actually such a basis.

Proposition 1.1 Let W be anR-subspace oR". Assume that there is a tri-
angular basisv;);caeg(w) Of W. Then the map

R r
riWh — RIVEW 0 s o degw)

is an R-linear isomorphism.
Let (¢;);er be the standard basis &t and leth € RT\¢W) Theng :=
r~1(h) can be computed recursively as follows:
Letm be the smallest elementin
If m € deg(W), theng(m) = 0, elseg(m) = h(m).
Leti > m and suppose that(j) has already been computed for gll< .
If i € deg(W),theng(i) = (e; — v;, g), elseg(i) = h(i).

Proof. Letw € W+ suchthat(w) = 0. Supposev # 0. Let; be the smallest
element in the support ab. Thenj € deg(W) andw(j) = (v;, w) = 0.
Contradiction. Hence is injective.

Leti e TandA :={jeT|j<i (e —v)(j)#0}. ThenA is finite.
Sincelc(v;) = 1 we havele; — v;, g) = {(e; — v;, ZjeA g(j)e;), hence the
recursive definition (with respect to the well-ordey of g € R' given above
is correct.

It remains to show thag € W+. If not, then the set

{jedeg(W)|(v;,g) #0]}
would not be empty. Let be its smallest element. Then
0# (vi.g) =(ei —ei + v, 8) = (e, g) — (e —vi,8) =g() —g@)=0.

Contradiction. O
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Now we consider important special cases of the situation abové: beta
submonoid ofZz", +), for instancd™ = Z"~ x N"*, Z", N". In this caseR "
can be considered as the (monomial) subalgeRfa’; i € I'] generated by
the set{ xi=xP.xin|iel } inthe algebraR[xy, ..., x,, x; ..., x; 1] of

> n
Laurent polynomials. We then wrife’, . f(i)x’ € R[x';i € T'] instead of
feRM.
Let W < R[x';i € I'] be an ideal generated by elemerfis..., fi €
R[x';i e T].Thenthesefx'f;|i € I, 1 < j <k } is asystem of generators
of the R-moduleW. Hence

Wh={geR"|Viel, vj, (x'f;g) =0}

:{geer‘v’ieF, Vi, Y fi®)gls+i)=0¢
sel’

i.e. Wt is the set of solutions of the system of difference equations

D fil)gls+i) =0, 1<j=<k iel
sel’
(whereg € R" is the unknown function).

We extend this to a slightly more general situation:R bt a finite set, e’
be a submonoid aofz”, +), and letl” := I'" x B. ThenR" can be considered
as the freeR[x';i € I''] -moduleV := @,_, R[x';i € I''] b. We then write
> icrpen S (. b)x'b € V instead off € R,

Let W < V be an R[x'; i e I''] -submodule ofV, generated by elements
fi.... fe € V. Thenthe se{x'f;|i eI, 1< j <k} is a system ofR-
module generators d¥. Hence

Wh=1geR'|Viel Vj, > > fi(s.d)g(s +i.d)=01
sel deB

i.e. Wt is the set of solutions of the system of difference equations

3 fils.d)g(s+id) =0, 1<j<k iel
(s,d)el’

(whereg € R" = (R®)"" is the unknown function).

If Risafield, Proposition 1.1 reduces the problem of solving this system of
difference equations to the problem of computitag (W) and a triangular basis
of W.If ' = N" (orN" x B ) and< is a term order, this can be done by com-
puting a Gbbner basis of¥. This was first observed and applied by U. Oberst
in[4]. The casd” = Z" was treated in [11] and in [10]. The method there was
to consider the algebra of Laurent polynomi&ls, . . ., x,, xl‘l, el xn‘l] as
the factor algebra

R[x1, ..o, X Y1, ooy Yl /(xayr — 1, oo Xy — 1)
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and to compute a @bner basis of the inverse image of the id@aln

Rlx1, ..., %0, Y1, .oy Yul -

The aim of this paper is to present a direct method: we defidbi@&r bases
with respect to generalized term orders for ideals in the algebra of Laurent
polynomials (and, more generally, in its finitely generated monomial subalge-
bras). For the sake of completeness we do not restrict ourselves to the case
of coefficient fields, but admit coefficients in a commutative noetherian ring
R. Of course, if we want to compute &wner bases, we have to assume ad-
ditionally that we can solve linear equations overi.e. for given elements
r,ri,r2, ..., rr € Rwe should be able to deciderifs anR-linear combination
of ri, rp, ..., 1y, and if so, to compute a parameter form of the affine subspace
{s € R¥| Zf:l ris; =r} of Rk,

Grobner bases for ideals in the algebra of Laurent polynomials @ver
have first been considered in [8], Chapter 10.7. There they were defined with
respectto a specified well-order on the set of Laurent-monomials. Our approach
extends an idea of S. Zampieri, who introduced generalized term orders on the
set of monomials in a polynomial ring in view of applications to the modelling
problem in system theory [6]. @bner bases for monomial subalgebras of
polynomial rings have been studied in [9], Chapter 11. A slightly more general
situation (monomial algebras with no non-constant invertible elements) has
been treated in [7], Chapter 3.

Let R be a commutative noetherian ring, [Btbe a finitely generated sub-
monoid of the groudx’| i € Z"} of power-products in the ring of Laurent
polynomialsR[x, ..., x,, xl‘l, ..., x; Y], and letR[T] be a subalgebra gener-
ated byT'. In Section 2 we define generalized term ordersroand Gibbner
bases (with respect to them) for submodules of finite-dimensionalRff&¢-
modules. We present a method to compute the intersection of an ideal in the
ring of Laurent polynomials with the subring of all polynomials. (This answers
a question of G. Traverso). In Section 3 we formulate and prove an analogon
of Buchberger’s Algorithm for the computation of @mer bases. In Section 4
several examples are discussed, among them those given in [10] and [11]. For
the latter our method yields the results without essential computations.

We assume the reader to be familiar with the theory dftfBer bases with
respect to term orders (see [2], [1] or [3]).

2 Grobner Bases with Respect to Generalized Term Orders

Let R be a commutative noetherian ring, et N- o, and let

R[x,x_l] ‘= R[x1, .. .,x,l,xil, .. .,xn_l
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be the commutative ring of Laurent polynomials oXerThe set
{xi = xxP .. X i e }

of power-products (or terms) iR[x, x~1]is a group, isomorphic t@”".
Let T be a finitely generated submonoid dfx'|i € z"}, e.q.
T={xliez'}orT = {x'|iez" xN'""}.

Definition 2.1 (conic decomposition)A “conic decomposition” ofT is a
finite family(T;);; of finitely generated submonoids®f such that
for eachi € I the group generated b containsT,
for eachi € I the monoidr; contains only one invertible element, and

Urn=r.

iel
Example 2.1 LetT := {x'|i € z" } and letD be the set of all maps from
{1,...,n} to {—1,1}.Ford € D define

T, = {xif(l)nuxg(Z)mz coxdOm o € N } .

Then(T,)4ep is a conic decomposition df.
Example 2.2 LetTy := {x'|i € N" } and letT;| be the monoid generated by

2

e txg o x U (g, xa\ {x

1< j < n.Then(T))o<,<n is a conic decomposition df := {x'liez"}.
The following figures illustrate the conic decompositions defined above for
n=2:

Iz, I,

R S

Notation. For a submonoid of { x |i € 2" } let

RIS] = [ S esle, € R } C Rlx,x ]

ses

be the subalgebra &fx, x 1] generated by$. (If we use the notatiod_, _, cys
we always assume that only finitely manyare not zero). TheR[S] is the
“monomial algebra defined hy'.
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Let V be a finite-dimensional fre®[7T]-module with basisB and let
U := {th|teT,beB}. If (T});¢ is a conic decomposition of, let
U :={th|teT,beB},icl.
(f v = R[T]andB = {1}, thenU; = T;,foralli € I).

Definition 2.2 (generalized term order) Let(7;);c; be a conic decomposition
of T. A “generalized term order” orU for (T;);<; is a total order< on U such
that

b is the smallest element{mb |t € T}, forall b € B,

and

r < simpliestr <ts,foralli e I,s e U;,t € T;, andr € U.

Remark 2.1 If [I| = 1and7T = {x'|i e N}, thenT is a (trivial) conic
decomposition of’. In this case any generalized term order is a term order.
Remark 2.2 Let (T;);c; be a conic decomposition &f, V. = R[T], and

B = {t}, wheret is an invertible element df. ThenU; = ¢T; andz is the
minimal element in = U with respect to every generalized term order for

(T)ier-

The following Lemma shows how to construct a generalized term order on
T and onU.

Lemma 2.1 Let (T;);<; be a conic decomposition @f and letS = {1} or
S := T;forsomej € I.Let<¢ be atotal group order oG : = {x' |i € 2" }
such thatl is the smallest element iand let<z be a total order onB. Let
f T — Q- be a function fulfilling the following conditions:

l.forallz e T\ S: f(t) > 0,

2.foralls,r € T: f(st) < f(s)+ f(@),

3.foralli € I: f|7, is a monoid-homomorphism.
Then the ordekr defined by

r<rsi< fr)y<f@)or(f(ry=f(s)andr <gs),

forall r,s € T, is a generalized term order dh for (T;);¢;.
The order defined by

rb <y sc<< r<rsor(r=sandb <pc),
forallr,s € T, b, c € B, is a generalized term order dii for (7;);c;.

Proof. Conditions 1 and 3 foy imply that 1 is the smallest element’h Let
reT,iecl,s, teT suchthat <7 s. Then

f(r) < f@s)or f(r) = f(s)andr <g s.

In the first case we have

Jt)y = fr)+ f(1) < f(s)+ fQ) = f(s1)
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hencerr <7 st. In the second case we have

[ty < fr)+ f(t) = f(s)+ f@) = f(st) andrt <g st
(since<g is a group order), hence <r st. O

Example 2.3 Let(T,),ep be the conic decomposition defined in Example 2.1.
Define

fltxg o x) = ligl 4 liz2l + ... + |iy]

and
x{xF . oxi <6 xtxy? ... xy ifand only if (iq, ia, . . ., iy) is lexicographically
smaller than(jy, j2, ..., ju). Then<r (defined byf and<) is a generalized

term order orl" for (Ty)4ep-

Example 2.4 Let (T})o<;<. be the conic decomposition defined in Example
2.2. Define

FOEx2 . xiy =i+ 4 iy — (0 + D MINO, i1, iz, . .., in)

and define<; as in Example 2.3. Therr is a generalized term order dh
for (Tj)o<j<n-

Example 2.5 Let (T})o<;<, and<g be as in Example 2.4. Define
FOEx2 . xiy = —min(0, iy, iz, . .., in).

Then< is a generalized term order @hfor (7)o<;<,. All elements ofl, are
smaller than any element @f\ 7p.

Lemma 2.2 (see [6], Lemma 2.3) Every strictly descending sequen@eim
finite. In particular, any subset @ contains a smallest element.

Proof. Lets; > s, > s3 > ...be a strictly descending sequencdinSincel

is finite, it is sufficient to prove the assertion under the assumption that all
are elements df;. But then for allj there exists ne e T; such thats; = ts;
for somek < j. In particular, the sequence

(s1) C (51, 52) C (81, 52,83) C ...

ofideals inz[T;] is strictly increasing. Since the mondidis finitely generated,
the ringZ[T;] is noetherian. This yields the assertion. O

Definition 2.3 Let (T;);<; be a conic decomposition @f and let< be a gen-
eralized term order foX7;)¢;. Let f = ), c,u be a non-zero element in
V,c, € R. Then we define

supp(f) := {u € U|c, # 0} (the “support of ),

It(f) := maxsupp(f) (the “leading term off™),

le(f) - = cu(y), (the “leading coefficient of ™),

Im(f) = le(Hlt(f) (the “leading monomial off”), and

Ti(f):={teT|lt@f) U} iecl.
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Definition 2.4 (Grobner basis) Let W be anR[T]-submodule o andG a
finite subset oV \ {0}.

ThenG is a Grobner basis oV (with respect to a conic decompositi@h );<;
of T and a generalized term ordet on U) if and only if for alli € I the
R[T;]-module

R (Im(f); f #0, f e W, lt(f) € Ui)

is generated by
{im(tg); g € G, 1 € Ti(g) }.

Example 2.6 Let f € V\{0}andW := R[T]f.If Risadomain, ther{ '}

is a Gibbner basis of¥ (with respect to every generalized term order). But for
R .= 74,V .= Z4[X1], f = le +i, andW = Z4[X1]f, theset{f} is
not a GBbner basis oV, since2f = 2 € W.

Proposition 2.1 Let G be a Giobner basis of an idealW in R[xj,

ey X, x{l, ..., x %] with respect to the generalized term ordef defined in

Example 2.5. Fop € R[x1, ..., xp, xl‘l, el x;l] letz(g) € T bethe uniquely
determined power-product such that

ﬂ SilTo = 1(g)Tp .
sesupp(g)
Then{t(g)glg € G} is a Grébner basis oW N R[x1, ..., x,].

Proof. Let f € W. Since<y is the order defined in Example 2/5( f) € Ty
impliessupp(f) € Ty, i.e. f € R[x1, ..., x,]. Hence

R[x1,...,xn] (lm(f)7 f # O’ f € Ws lt(f) € TO)
= Ry, (M) [ #0, f € WA R[xa, ..., xu]).

Letr € To(g) andg € G. Thenit(tg) € To andsupp(tg) < Tp. Therefore

t e ﬂ S_lTo
sesupp(g)

and there is am € Ty such that = r(g)u. Hence{lm(tg); g € G, t € To(g)}
and{im(t(g)g); g € G} generate the same ideal Rjxy, ..., x,]. O

Remark 2.3 Proposition 2.1 yields a method to compute generators of the ideal
W N R[xy, ..., x,], see Example 4.1.

Lemma 2.3 (See [6], Lemma 2.1 and Lemma 2.2)

1. LetN be afinite subset df and leti € 1. Then there is @ € T; such that
pN C T..

2. Let0O# f e V,s,t € T;(f), and letu, v € supp(f) such thatlt(zf) =
tu € Ui, lt(sf) = sv € U;. Thenu = v.
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Proof. 1. The group generated 3y containsT’, hence for every € N there
arer,, s; € T; such that, s, = t. Thentakep := [[,.y7: € T;.

2. Sinceu, v € supp(f), tv < tu andsu < sv. Choosep € T; such that
pu, pv € U;andps, pt € T; (see 1). Then

tu e U;, tv < tu, p2 e T; imply pztv < pztu ,

and

sv e U;, su<sv, p>eT; imply p2su < p?sv.
Hence

(pt)(pv) < (pt)(pu) and (ps)(pu) < (ps)(pv) .
This implies

(ps)(pt)(pv) < (ps)(pt)(pu) and (pt)(ps)(pu) < (pt)(ps)(pv) ,
therefore(ps)(pt)(pv) = (pt)(ps)(pu) andu = v. O

Definition 2.5 LetO # f € V,i € I andt € T;(f). Then define

[
I(f) = t(ttf L lei(f) 1= L) andimi(F) i = (Pl (F)

Remark 2.4 By Lemma 2.3,1t;(f) is well-defined (i.e. does not depend on
the choice ot € T;(f)). Furthermorelc; (f) is the coefficient off atiz (f).

We can computelr; (f) in the following way: choosg € T; such that
p-supp(f) C U; (cf. Lemma 2.3). Thet (pf) € U; andls;(f) = 20,

For the computation of the sefs( f) see chapter 4.

3 Buchberger’s Algorithm for Generalized Term Orders

We maintain the notations of Section 2 and fix a conic decomposifion,
of T and a generalized term orderon U.

Definition 3.1 Let F be a finite subset of \ {0} and let0 # (hf)scr be a
family in R[T]. Then

up((hp)er) i= max { t|(t,v) € |_Jsupp(hs) x supp(f)) ¢ -
feF

Remark 3.1 Consider two families G& (h ) fer, 0 # (h/f)fep in R[T]. Let
u:.= MF((hf)feF) andu’ : = MF((h/f)feF- Then

up((hy 4 h's)per) < max{u, u'}.

(If u # u', thenup((hy + h’f)fep) = max{u, u'}).
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If u e U; andt € T;, then

urp((thy)ser) = tu € U;.

If ' € U;,u <u andr € T;, then

up((thy)ser) < tu'.

If c € Rand(chy)ser # 0, thenug((chy) rer) < u. (If ¢ is not a zero-divisor
iN R, thenur((chy) rer) = u).

Proposition 3.1 Let F be a finite subset df \ {0} and letg € V. Then there
is a family(h ¢) rer in R[T]such that

(hf)rer =00r up((hy)rer) = 1t(g)

and

g = hyf or Img=Y hif) & | JrmmGf); f € F,t € T,(f)) .

feF feF iel

The family(h s) rer can be computed as follows (“Division algorithm”):
Firstseth; :=0, f € F.
While there arec; € R, ty € T such thatim(g) = ;. crlm(tyf),
replaceh by hy +cptyandgbyg — > pcrtsf.
(Note that this “algorithm” is effective only under the hypothesis that we can
solve linear equations oveR).

Proof. We only have to show that the algorithm above terminates after a finite
number of steps. But since in each stefg — > .. cstrf) < lt(g), this
follows from Lemma 2.2 . O

Definition 3.2 Let F, g, h; be as in the proposition above. Then
rem(g, F) .= g — ZfeF h¢ f is “a remainder on division of by F”.
(It is clear thatrem(g, F) is not uniquely determined kyand F).

Proposition 3.2 Let W be a non-zero submodule f.

1. W contains a Gobner basis.

2. LetG be a Gobner basis oWW. Thenf € V is an element oW if and only
if a remainder (or all remainders) on division gfby G is zero.

3. Each Gbbner basis o#¥ generates th&[T]-moduleW.

Proof. 1. For alli € I choose a finite subsé; of {Im(f)| f #0, f € W,
lt(f) € U;} which generates th&[T;]-submoduleg[z1(Im(f); 0 # f, f €
W, It (f) € U;). Then

fewlim(f) e JE

iel
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is a Gbbner basis ofV.
2. follows from Proposition 3.1.
3. follows from 2. O

Remark 3.2 Leti € I and letE C V \ {0}. Then
() rimlt(e): t € Ti(g)) = {0}

gek

if and only if there are element§ g € E such thais; (f) = I5;(f)*b, It;(g) =
It;(g)*c, wherelt;(/)* € T, lt;(g)* € T,b € B,c € B andb # c.

Proposition 3.3 Let G be a finite subset of \ {0} and letW be theR[T]-
submodule o¥ generated byG. Fori € I andE C G let S(i, E) be a finite
system of generators of tiemodule

(cedger € R¥| ) celci(g) = 0

geE

andlet U(i, E) € U; be a finite system of generators of tRET;]-module

() riza(letg); t € Ti(e))
geE
(le. UG, E)=00r (N, Ti(@ti(g) = T,.UG, E)).
Then the following assertions are equivalent:
(1) G is a Grobner basis of¥.
(2) Foralli e I, forall E € G suchthatU (i, E) # ¢, forall s = (sg)4ec €
S(@, E),and forallv € U(i, E):

v
rem ng—g,G =0
(geE I1;(g) )

(Hereﬁ mean%, wherev* andlt; (g)* are the power-productsiR[ 7' ]with
v'h = andlt,»(g)*g =It;(g), forsomeb € B, see Remark 3.2).

Proof. (1) = (2): Since)_
follows from Proposition 3.2.
2 = (1 : Let f e W, f £ 0. We have to show

Im(f) € | Jrmy(im(tg); g € G,1 € Ti(g)) .

iel

v ,
¢k Cs Ty & 1S an element ofV, the assertion

SinceW is generated by, we have

f= Zhgg,

geG
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for someh, € R[T].
Letu := ug((hg)eec). We choose the familyh,),cc such that is minimal,

i.e. if
f=> Hg
geCG
thenu < ug((hy)sec)-
Let j € I be such thak € U;and let
E .= {g € G| thereis ap(g) € supp(hy) such thatp(g)it;j(g) = u} .

ThenE is not empty and for alt € E we havep(g) € T;(g). Letc, € R
be the coefficient ofi, at p(g). If c,lcj(g) # 0, thenlm(h,g) = cylc;j(g)u,
otherwiseh,g = 0 orit(hgyg) < u. Itis clear thatz(f) < u.

If it(f) = u,then

E':={ge€E|lt(heg) =u}

is not empty and
Im(f) =Y Im(heg) = Y cdm(p(g)g) € rr{im(1g); g € G, 1 € Tj(2)).
geLr’ gerl’

Hence it remains to show that( /) cannot be smaller than
If it (f) < u, then

chlci(g) = 0.

geE

Hence there is a familgd,),cs(;, £y In R such that

(Cg)gEG = Z dgs ,

S€S(J,E)

ie.forallg € E,c; = Y c5.r) dsSg- FOrg € E defineh, := ¢,p(g), for
g€ G\ Eleth, := 0. Then

f=) hg =) (hy—h)g+Y heg
geG geG g€E
and
MG((hg - Eg)geG) <Uu.
Now consider

D oheg =Y cop@g = > diY sep(8)g.

geE gek seS(j,E) gekE
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Forg € E we havep(g)ltj(g) = u € Uj andp(g) € T;(g), thusu €
Meer Ti(8)1t;(g). Hence there are € U(j, E) € U; andr € T; such that
rv = u.lLetg(g) € T;(g) be suchthat = g(g)lt;(g),i.e.

q(g) = @)

Then
roq(@ltj(g) =r-v=u= p@lQ),
hencep(g) = r - ¢q(g) and
Y heg = Y dr) seq(g)g.
geE seS(j,E) geE
By (2), for everys € S(j, E) there is a family(k, ;),cc in R[T]such that
D seq(@)8 = Y ke
geE geG
and
uG((kg.s)gec) =1t [ Y seq()g | =:w(s).
gek
Forallg € E we havdr(q(g)g) = v € U; and moreoveEgeE sglci(g) = 0.
Hencew(s) < v € U;. Sincer € Tj, this implies

uG((rkg,s)geG) <r-v=uée€ Uj

(see Remark 3.1). Thus

Zzgg = Z Z dsrkg,s I

g€eE geG \seS(j,E)
and
ug Z dsrkg <u
s€S(j) 2eG

(see Remark 3.1). For ajl € G let

Wyi= (hg—hg)+ Y dirkgs.
se€S(j,E)

then
uc((ge) <u and f = kg,

geG
which contradicts the minimality af. O
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Proposition 3.4 Let R be a principal ideal domain (e.g. a field). Lét be a
finite subset o¥ \ {0} and letW be theR[T]-submodule o¥’ generated by;.
Forielandf,g e Glet U(, f,g) € U; be afinite system of generators
of theR[T;]-module

Rt ef); t € Ti(f)) N grirle(tg); t € T;(g))

(il.e.U@, E) =0orTi(OHlt(HNTi(Iti(g) = Ti.UG, f, g))andletL;(f, g)
be a least common multiple &f; (/) andic;(g). Forv € U(, f, g) define
Li(f,g) v . Li(f,g) v ge

lei(f) I6(f) lei(g) 11 (g)

Then the following assertions are equivalent:

(1) G is a Grobner basis oV .
(2)Foralli e I,forall f,g € G,andforallv e U(, f, g)

S, f’ 8 v) ==

rem(S(, f, g,v),G) = 0.
Proof. LetE C G beasubsetwithatleasttwoelementsandlét|g € E} <

RE  Dbe the standard-basis &” . If R is a principal ideal domain, then

{ ch({fé;) 8 — Llfc(i{;g)ag | f,g € E } is a finite system of generators of

geE

i (codger € R | Y cplei(g) = 0}

(see for example [5], Lemma 3.4). Hence Proposition 3.4 is a Corollary of
Proposition 3.3 . O

Proposition 3.5 (Buchberger’s Algorithm) LetG be afinite subset df \ {0}
and letW be theR[T] -submodule generated lgy. Fori € 7 andE < G let
S(i, E) be afinite system of generators of tRemodule

I (co)geE € RE| chlci(g) = O] and

geE

let U(i, E) C U; be afinite system of generators of tRET;]-module

() rma (2 (g); 1 € Ti(e))

geE

(ile. UG, E)=00r (N, Ti(®)Nti(g) = T,.UG, E)).
By the following algorithm a Gibner basis o#¥ can be computed:
Go .= G,
Gjy1:=G;U ({rem(zgeE sgﬁg, Gjliel, ECGj, seS(i,E),
veU(, E)}\{0}.
If G;+1 = Gj, thenG; is a Grobner basis of .
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Proof. By Proposition 3.3 we only have to show that thereAseaN such that
G = G411 Suppose there is no suchrhenthereis anindexe I suchthatfor
all j € Nthereisan € Nsuchthatth&[7;]-submodulg/m(tg); g € G;,t €
Ti(g)) of @, RIT;]b is strictly contained inlm(tg); g € Gjim,t € Ti(g)).
SinceR|[T;] is noetherian, this is not possible. O

4 Examples

Let F be a finite subset of \ {0}. In order to compute a Gbner basis of the
submodule generated ki, we first have to determine the sdis 1), for all
i €I, f € F.Forthat purpose we use the facts that

T =1
iel
and
T,.T;(f) = Ti(f), foralli e I,

as well as the following two lemmas.

Lemma 4.1 Let(T;),;¢; be a conic decomposition @f such that
gr<7}r17}>rw I, = TEF‘T}

forall i, j € I. (Here ,,.(T; N T;) is the subgroup ofx’|i € Z"} generated by
T; N T;). Let f € Vandi, j € I suchthatl;(f) N T;(f) # @. Then

lt;(f) = lt;(f) and
teTi(f), seiNT;, st e T,(f)NT;(f)implyt € T;(f).

Proof. FromT;(f) N T;(f) # ¥ and the uniqueness of (f) andlt;(f) we
getls;(f) = It;(f) = L.

Now It(tf) = tl € T; andlt(stf) = stl € T; N T;. We have to show that
tl e ]}.

Letv:=st,thentl =s v e (NT,)NT, =T,NT;. Thustl € T;. O

Lemma4.2 Let f € R[T] and let(T;);c; be a conic decomposition @f. If
there exists a subs@t+# J C I such that

(T; = (W and () T;(f) # 0
jelJ jedJ
then

feTand (T;(f)={f

jeJ
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Proof. Lett € (N,., T;(f). Thenit(tf) € (., T, = {1}. Since 1 is the
smallest element iff, we haverf = 1 andr = f~1. O

Remark 4.1 The conic decompositions defined in Examples 2.1 and 2.2 fulfill
the condition in Lemma 4.1.

Hence, if we take for instance the generalized term order defined in Example
2.3 (withn = 2), the following case cannot occufi(f) = Ty, T4(f) =

2
T4.x1 .

Remark 4.2 Let T := {x'|i € Z?} and let< be the generalized term order
with respect tdTy, T1, T») defined in Example 2.4. Using Lemma 4.1 itis easy
to see that thd;(f)’s are always generated by one element and that only six
different cases fo(To(f), T1(f), To(f)) can occur:

/
.

Moreover, the intersection@geE T;(g).1t;(g) (cf. Proposition 3.3) are gen-
erated by one element, i.e. the s&t§, E) contain only one element. Conse-
qguently Buchberger’s algorithm for this generalized term order is particularly
simple.

The following algorithm compute®(f), T1(f) andT>(f) for f e R[T].
Fors = x'x7 € T letey(s) :=ix, k=1,2.

5

=1

W

Y

Algorithm

Input: f € R[T]

Output: To(f), Ta(f), To(f)
If fis a monomial then
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To(f) = To.f L To(f) = T1. f L, To(f) = To. f 1 (Case 1). END
Fork=1to2do

my = —min({ex(s)|s € supp(f)} U{0})

R M

While (t € To(f)) do
t = t.xl_lxz_

r = t.x1x2

While (t € To(f)) do
t = txg

t = t.x1

While (¢ To(f)) do
t = tx2

r = t.xo

If t € T1(f) then

To(f) =Tot, Th(f) = Tv.t, To(f) = To.(t.x, 1y (Case 2). END
If t € To(f) then

To(f) = To.t, Ta(f) = T1.(¢. x ) To(f) =To.t (Case 3) END
If t.x;7tx,t & Ti(f) then

To( f) = To.t, To(f) = Tr.(t.x7Y), To(f) = To.(t.x7 "x; 1) (Case 5). END
If t.x; 1, & To(f) then

To( f) To.t, To(f) = To.(t.x7 %), Ta(f) = To.(t.x, ") (Case 6). END
To(f) = To.t, Ti(f) = Th.(t.x; x5 2), To(f) = To.(t.x7 *x, ) (Case 4). END
End of Algorithm.

For the conic decomposition defined in Example 2.1 the analogous algo-

rithm is slightly more complicated (in this case thg f/)’s may be generated
by more than one element) but still not costly.

Example 4.1 We compute a Gibner basis with respectto the generalized term
order defined i |n Example 2.5 of the idgéil generated by := x;%x; 2 4 x3
andg := x1x, 3+ xyxpin Q[x1, x2, x; -1 Xy ]

Let F = {f, g}.
Now

1t(f) —xl x2 e Ty N Ty,

lto(f) = Xz, To(f) To- x2x2; I(f) = x7%x5 %, Ta(f) = Ty - x1x2;
lto(f) = xq Xz » To(f) = Tz - x1x2;

lt(g) = xlx2 e T>.

Sincelt(g) € To(f) - lto(f) we may replacg by
—rem(g, {f}) = x3x2 — x1x2 =: hy andF by {f, h}.

Since
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It(hy) = xfo e To;
Ito(h1) = x3x2, To(h1) = TO'xl_llxz_ll; Ity(h1) = x1x2, To(h1) = Ti-x7%x5 %
Itr(hy) = xfxz, To(hy) =T5 - Xy Xy

Now

F. Pauer, A. Unterkircher

To(f) - lto(f) N To(hy) -ltg(hy) = To-x2x3, S(O, f, ha, x2x3) = 14+ x5 =1 hy,
T1(f) - 1ta(f) N T1(hy) - Ita(hy) = Tr.xq "x2,
S, f, ha, xl_lxz) = x1_3x2_3 + x1x2 =! hp, rem(hy, F) = hy;

We have

It(hy) = x5 € ToN Ty,
Ito(h2) = x3, To(ha) = To; It1(h1) = x5, Ti(ho) = Ty;

lta(hy) = 1, To(h) = T, - x5+ andTo(ho)lto(h2) N To(h)lio(hy) =
To - xfxg, S(0, hq, hy, xfxg) = —xg — xf =—ho+1— xf.

Leths :=x2 — 1 andF := {f, ha, ha, h3}.

All further S-polynomials reduce to 0. Thus the set

. -2 -2 2 .3 4 2
G = {x] “x; "+ x5, x{x2 — x1x2, x5 — 1, x7 — 1}

is a Gibbner basis of¥ and

(x™|m € Z%) \

U

0<i<2,geG

Ti(®)lti(g) = {x"|m e A},

whereA = {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2), (0, 3), (1, 3)}.

Hence for ally : A — @ there is a unique solution: Z? — @ of the
system of difference equations

2(=2+ 51, =2+ 52) +2(51,2+52) =0

Z(14 51, =34+ s52) +2(1+ 51,1452 =0,

for all (s1, s2) € Z?, such that|, = y (see chapter 1).

o

o

o

o

o

o

o

o

o o

o o

(o)

o

By Proposition 2.1 the s¢t2x2 f, x3 — x1x2, x5 +1, x2 — 1} is a Gibbner basis
of WN@Q[x1, x2]. The reduced Gibner basis oW NQ[x1, x2] is {x5+1, xZ—1}.
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Example 4.2 We compute a Gibner basis with respect to the generalized
term order defined in Example 2.3 of the ideal generated by xl’lxg + x2
andg = x1—2x2—1 + x1in @Q[xq, x2, xl_l, xz_l].

LetF = {f, g}.

We get

It(f) = x{*x2 € Tz,

I(f) = x2. To(f) = Ty xax3 5 1a(f) = x1 %2, To(f) = To - x5

lis(f) = x; %2, T3(f) = Ts- x5 % lta(f) = x2, Tu(f) = Ta- x2x; 7

lt(g) =xq x;l e Tz;

I11(g) = x1, Ta(g) = T1 - x1 U Ty - X2 12(g) = x1 %%y ", Ta(g) = To - x; 'x2;
lta(g) = x1 x5 ", Ta(g) = T 1;1ta(g) = x1, Ta(g) = Tu - x1.

Sincelt(g) € Ts(f).lt3(f) we replaceg by rem(g, {f}) = xz_l —1=:¢"and
F by {f, ¢g'}. Now

lt(g") = x;t € TsN Ty;

It1(g") = =1, Ti(g) = Tr.xz; It2(g") = =1, To(g") = To.x2;

lta(g)) = x;7%, Ta(g)) = Ta.1: l1a(g) = x; %, Ta(g) = Tu.1;

rem(f,{g'}) = x;*+Lland{x;* + 1, x,1 — 1} is a GBbner basis.

Example 4.3 (compare [10], section 5) L&t := {x'|i € Z?}, V = R[T]?
and let{eq, e2} be the standard basis &f. We extend the generalized term
order< on T defined in Example 2.3 to a generalized term ordgron U =
{te; |teT,i=1,2}:

pei <y qej & p<qgor[p=gqgandi <]
for all p, g € R[xy, xz,xil, x;l], i,je{l 2}

Let W be theR[T]-submodule generated by

lex2—1+x2+x2—l xlxg—l
= and - — — .
81 ( x7 o — x1 82 Byt =t 42

We obtain

It(g1) = 2x1x, - e1 € Ty;

It1(g1) = —x1-e2, T1i(g1) = T1 - x1x2;

Ita(g1) = x; %2+ €2, Ta(g1) = To-x; " U Tz - x5
Ita(g1) = x5+ - e1, Ta(g1) = Tz - x1 x5 5

Ita(g1) = 2x1x, ' - e1, Ta(gr) = Ty~ 1;

It(g2) = x2x; " ez € Ty;

It1(g2) = x1x2 - e1, Ti(g2) = T1 - X1 X2}
l12(g2) = x1x5 - e1, Ta(g2) = To - x1
It3(g2) = —x, - e, T3(g2) = T3~ x7 x5
It4(g2) = x3x; " - ez, Ta(g2) = Ta-x;
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Since
rRiallt@f); t € T,(f)) Nrirlle(tg); t € Ti(g)) = {0},

the setU (i, f, g) is empty, for 1< i < 4, hence Proposition 3.4 immediately
implies that{g1, g-} is a Gbbner basis of¥.
The following figures illustrate the sets; and A,, defined by

reiimez?y\ | Tolu(g) = {x"ejlme Ay}, j=1,2.
1<i<4, 1<k=<2

Example 4.4 For a single partial difference equation o#r(given by a Lau-
rent polynomialf € R[xy, ..., x,, x;l, ..., x71]) we only have to determine

the setdl; (f).lt;(f),i € I.
Letn = 2 and let< be the generalized term order defined in Example

2.3. Then a set of “initial data” for the difference equation associated:te
X1y T+ xq 4 x4+ x b ([11], Section 5) is

fme?Ix" ¢ | J Ti(H) 1)

1<i<4
={(k,0)keZ}U{0,kIkeZ}U{(-1k)Ik € Z}.
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