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Abstract. We develop a basic theory of Gröbner bases for ideals in the algebra
of Laurent polynomials (and, more generally, in its monomial subalgebras). For
this we have to generalize the notion of term order. The theory is applied to
systems of linear partial difference equations (with constant coefficients) on
Zn. Furthermore, we present a method to compute the intersection of an ideal
in the algebra of Laurent polynomials with the subalgebra of all polynomials.
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1 Motivation and Introduction

Let R be a commutative noetherian ring (e. g. a field,Z or Zm), 0 a set, letR0

be theR-module of all maps from0 to R, and letR(0) be theR-submodule
of all maps from0 to R with finite support. There is a natural nondegenerate
bilinear form

〈−, −〉 : R(0) × R0 −→ R, (f, g) 7−→
∑
i∈0

f (i)g(i) .

Let < be a well-order on0. (Then every strictly descending sequence in0 is
finite). For 0 6= f ∈ R(0) we define the “degree off ”

deg(f ) := max{ i ∈ 0 | f (i) 6= 0 }
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and the “leading coefficient off ”

lc(f ) := f (deg(f )) .

For∅ 6= M ⊆ R(0) let

deg(M) := { deg(f ) | f ∈ M, f 6= 0 }
and

M⊥ := {
g ∈ R0 | 〈f, g〉 = 0, for all f ∈ M

}
.

ObviouslyM⊥ is anR-submodule ofR0.

Definition 1.1 Let {0} 6= W ≤ R(0) be a submodule ofR(0). Then a family
(vi)i∈deg(W) in W is a “triangular basis of W” if and only ifdeg(vi) = i and
lc(vi) = 1, for all i ∈ deg(W).

Remark 1.1 It is clear that every triangular basis is anR-basis ofW . If R is a
field, then there always exists a triangular basis ofW . Nevertheless, in general
it is not possible to compute actually such a basis.

Proposition 1.1 Let W be anR-subspace ofR(0). Assume that there is a tri-
angular basis(vi)i∈deg(W) of W . Then the map

r : W⊥ −→ R0\deg(W), g 7−→ g|0\deg(W)

is anR-linear isomorphism.
Let (ei)i∈0 be the standard basis ofR(0) and leth ∈ R0\deg(W). Theng :=
r−1(h) can be computed recursively as follows:
Letm be the smallest element in0.

If m ∈ deg(W), theng(m) = 0, elseg(m) = h(m).
Let i > m and suppose thatg(j) has already been computed for allj < i.

If i ∈ deg(W), theng(i) = 〈ei − vi, g〉, elseg(i) = h(i).

Proof. Letw ∈ W⊥ such thatr(w) = 0. Supposew 6= 0. Letj be the smallest
element in the support ofw. Thenj ∈ deg(W) andw(j) = 〈vj , w〉 = 0.
Contradiction. Hencer is injective.

Let i ∈ 0 and1 := { j ∈ 0 | j < i, (ei − vi)(j) 6= 0 }. Then1 is finite.
Sincelc(vi) = 1 we have〈ei − vi, g〉 = 〈ei − vi,

∑
j∈1 g(j)ej 〉, hence the

recursive definition (with respect to the well-order<) of g ∈ R0 given above
is correct.

It remains to show thatg ∈ W⊥. If not, then the set{
j ∈ deg(W) | 〈vj , g〉 6= 0

}
would not be empty. Leti be its smallest element. Then

0 6= 〈vi, g〉 = 〈ei − ei + vi, g〉 = 〈ei, g〉 − 〈ei − vi, g〉 = g(i) − g(i) = 0 .

Contradiction. �
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Now we consider important special cases of the situation above: Let0 be a
submonoid of(Zn, +), for instance0 = Zn−m ×Nm, Zn, Nn. In this caseR(0)

can be considered as the (monomial) subalgebraR[xi; i ∈ 0] generated by
the set

{
xi = x

i1
1 . . . xin

n | i ∈ 0
}

in the algebraR[x1, . . . , xn, x
−1
1 , . . . , x−1

n ] of

Laurent polynomials. We then write
∑

i∈0 f (i)xi ∈ R[xi; i ∈ 0] instead of
f ∈ R(0).

Let W ≤ R[xi; i ∈ 0] be an ideal generated by elementsf1, . . . , fk ∈
R[xi; i ∈ 0] . Then the set

{
xifj | i ∈ 0, 1 ≤ j ≤ k

}
is a system of generators

of theR-moduleW . Hence

W⊥ = {
g ∈ R0 | ∀i ∈ 0, ∀j, 〈xifj , g〉 = 0

}

=
{

g ∈ R0 | ∀i ∈ 0, ∀j,
∑
s∈0

fj (s)g(s + i) = 0

}
,

i.e.W⊥ is the set of solutions of the system of difference equations∑
s∈0

fj (s)g(s + i) = 0, 1 ≤ j ≤ k, i ∈ 0

(whereg ∈ R0 is the unknown function).
We extend this to a slightly more general situation: LetB be a finite set, let0′

be a submonoid of(Zn, +), and let0 := 0′ × B. ThenR(0) can be considered
as the freeR[xi; i ∈ 0′] -moduleV := ⊕

b∈B R[xi; i ∈ 0′] b. We then write∑
i∈0′,b∈B f (i, b)xib ∈ V instead off ∈ R(0).

Let W ≤ V be an R[xi; i ∈ 0′] -submodule ofV , generated by elements
f1, . . . , fk ∈ V . Then the set

{
xifj | i ∈ 0′, 1 ≤ j ≤ k

}
is a system ofR-

module generators ofW . Hence

W⊥ =
{

g ∈ R0 | ∀i ∈ 0′, ∀j,
∑
s∈0′

∑
d∈B

fj (s, d)g(s + i, d) = 0

}
,

i.e.W⊥ is the set of solutions of the system of difference equations∑
(s,d)∈0

fj (s, d)g(s + i, d) = 0, 1 ≤ j ≤ k, i ∈ 0′

(whereg ∈ R0 ∼= (RB)0
′
is the unknown function).

If R is a field, Proposition 1.1 reduces the problem of solving this system of
difference equations to the problem of computingdeg(W) and a triangular basis
of W . If 0 = Nn (or Nn ×B ) and< is a term order, this can be done by com-
puting a Gr̈obner basis ofW . This was first observed and applied by U. Oberst
in [4]. The case0 = Zn was treated in [11] and in [10]. The method there was
to consider the algebra of Laurent polynomialsR[x1, . . . , xn, x

−1
1 , . . . , x−1

n ] as
the factor algebra

R[x1, . . . , xn, y1, . . . , yn]/〈x1y1 − 1, . . . , xnyn − 1〉
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and to compute a Gröbner basis of the inverse image of the idealW in

R[x1, . . . , xn, y1, . . . , yn] .

The aim of this paper is to present a direct method: we define Gröbner bases
with respect to generalized term orders for ideals in the algebra of Laurent
polynomials (and, more generally, in its finitely generated monomial subalge-
bras). For the sake of completeness we do not restrict ourselves to the case
of coefficient fields, but admit coefficients in a commutative noetherian ring
R. Of course, if we want to compute Gröbner bases, we have to assume ad-
ditionally that we can solve linear equations overR, i.e. for given elements
r, r1, r2, . . . , rk ∈ R we should be able to decide ifr is anR-linear combination
of r1, r2, . . . , rk, and if so, to compute a parameter form of the affine subspace
{s ∈ Rk| ∑k

i=1 risi = r} of Rk.
Gröbner bases for ideals in the algebra of Laurent polynomials overZ

have first been considered in [8], Chapter 10.7. There they were defined with
respect to a specified well-order on the set of Laurent-monomials. Our approach
extends an idea of S. Zampieri, who introduced generalized term orders on the
set of monomials in a polynomial ring in view of applications to the modelling
problem in system theory [6]. Gröbner bases for monomial subalgebras of
polynomial rings have been studied in [9], Chapter 11. A slightly more general
situation (monomial algebras with no non-constant invertible elements) has
been treated in [7], Chapter 3.

Let R be a commutative noetherian ring, letT be a finitely generated sub-
monoid of the group{xi | i ∈ Zn} of power-products in the ring of Laurent
polynomialsR[x1, . . . , xn, x

−1
1 , . . . , x−1

n ], and letR[T ] be a subalgebra gener-
ated byT . In Section 2 we define generalized term orders onT and Gr̈obner
bases (with respect to them) for submodules of finite-dimensional freeR[T ]-
modules. We present a method to compute the intersection of an ideal in the
ring of Laurent polynomials with the subring of all polynomials. (This answers
a question of G. Traverso). In Section 3 we formulate and prove an analogon
of Buchberger’s Algorithm for the computation of Gröbner bases. In Section 4
several examples are discussed, among them those given in [10] and [11]. For
the latter our method yields the results without essential computations.

We assume the reader to be familiar with the theory of Gröbner bases with
respect to term orders (see [2], [1] or [3]).

2 Gröbner Bases with Respect to Generalized Term Orders

Let R be a commutative noetherian ring, letn ∈ N>0, and let

R[x, x−1] := R[x1, . . . , xn, x
−1
1 , . . . , x−1

n ]
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be the commutative ring of Laurent polynomials overR. The set{
xi := x

i1
1 x

i2
2 . . . xin

n | i ∈ Zn
}

of power-products (or terms) inR[x, x−1]is a group, isomorphic toZn.
Let T be a finitely generated submonoid of

{
xi | i ∈ Zn

}
, e.g.

T = {
xi | i ∈ Zn

}
or T = {

xi | i ∈ Zm × Nn−m
}
.

Definition 2.1 (conic decomposition)A “conic decomposition” ofT is a
finite family(Ti)i∈I of finitely generated submonoids ofT , such that

for eachi ∈ I the group generated byTi containsT ,
for eachi ∈ I the monoidTi contains only one invertible element, and⋃

i∈I

Ti = T .

Example 2.1 Let T := {
xi | i ∈ Zn

}
and letD be the set of all maps from

{ 1, . . . , n } to { −1, 1} . Ford ∈ D define

Td : =
{

x
d(1)m1
1 x

d(2)m2
2 . . . xd(n)mn

n | m1, . . . , mn ∈ N
}

.

Then(Td)d∈D is a conic decomposition ofT .

Example 2.2 Let T ′
0 : = {

xi | i ∈ Nn
}

and letT ′
j be the monoid generated by

{x−1
1 x−2

2 . . . x−1
n } ∪ {x1, x2, . . . , xn} \ {xj },

1 ≤ j ≤ n. Then(T ′
j )0≤j≤n is a conic decomposition ofT := {

xi | i ∈ Zn
}
.

The following figures illustrate the conic decompositions defined above for
n = 2:
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Notation. For a submonoidS of
{
xi | i ∈ Zn

}
let

R[S] :=
{ ∑

s∈S

css | cs ∈ R

}
⊆ R[x, x−1]

be the subalgebra ofR[x, x−1] generated byS. (If we use the notation
∑

s∈S css

we always assume that only finitely manycs are not zero). ThenR[S] is the
“monomial algebra defined byS”.
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Let V be a finite-dimensional freeR[T ]-module with basisB and let
U : = { tb | t ∈ T , b ∈ B }. If (Ti)i∈I is a conic decomposition ofT , let
Ui : = { tb | t ∈ Ti, b ∈ B }, i ∈ I .
(If V = R[T ] andB = { 1}, thenUi = Ti , for all i ∈ I ).

Definition 2.2 (generalized term order) Let(Ti)i∈I be a conic decomposition
of T . A “generalized term order” onU for (Ti)i∈I is a total order< onU such
that

b is the smallest element in{tb | t ∈ T }, for all b ∈ B,
and
r < s impliestr < ts, for all i ∈ I , s ∈ Ui , t ∈ Ti , andr ∈ U .

Remark 2.1 If |I | = 1 andT = {
xi | i ∈ Nn

}
, thenT is a (trivial) conic

decomposition ofT . In this case any generalized term order is a term order.

Remark 2.2 Let (Ti)i∈I be a conic decomposition ofT , V = R[T ], and
B = { t }, wheret is an invertible element ofT . ThenUi = tTi andt is the
minimal element inT = U with respect to every generalized term order for
(Ti)i∈I .

The following Lemma shows how to construct a generalized term order on
T and onU .

Lemma 2.1 Let (Ti)i∈I be a conic decomposition ofT and letS := {1} or
S := Tj for somej ∈ I . Let<G be a total group order onG : = {

xi | i ∈ Zn
}

such that1 is the smallest element inS and let<B be a total order onB. Let
f : T −→ Q≥0 be a function fulfilling the following conditions:

1. for all t ∈ T \ S: f (t) > 0,
2. for all s, t ∈ T : f (st) ≤ f (s) + f (t),
3. for all i ∈ I : f |Ti

is a monoid-homomorphism.
Then the order<T defined by

r <T s :⇐⇒ f (r) < f (s) or (f (r) = f (s) and r <G s),

for all r, s ∈ T , is a generalized term order onT for (Ti)i∈I .
The order defined by

rb <U sc :⇐⇒ r <T s or (r = s and b <B c),

for all r, s ∈ T , b, c ∈ B, is a generalized term order onU for (Ti)i∈I .

Proof. Conditions 1 and 3 forf imply that 1 is the smallest element inT . Let
r ∈ T , i ∈ I , s, t ∈ Ti such thatr <T s. Then

f (r) < f (s) or f (r) = f (s) andr <G s.

In the first case we have

f (rt) ≤ f (r) + f (t) < f (s) + f (t) = f (st)
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hencert <T st . In the second case we have

f (rt) ≤ f (r) + f (t) = f (s) + f (t) = f (st) andrt <G st

(since<G is a group order), hencert <T st . �
Example 2.3 Let (Td)d∈D be the conic decomposition defined in Example 2.1.
Define

f (x
i1
1 x

i2
2 . . . xin

n ) := |i1| + |i2| + . . . + |in|
and
x

i1
1 x

i2
2 . . . xin

n <G x
j1
1 x

j2
2 . . . x

jn
n if and only if (i1, i2, . . . , in) is lexicographically

smaller than(j1, j2, . . . , jn). Then<T (defined byf and<G) is a generalized
term order onT for (Td)d∈D.

Example 2.4 Let (Tj )0≤j≤n be the conic decomposition defined in Example
2.2. Define

f (x
i1
1 x

i2
2 . . . xin

n ) := i1 + . . . + in − (n + 1) min{0, i1, i2, . . . , in}
and define<G as in Example 2.3. Then<T is a generalized term order onT
for (Tj )0≤j≤n.

Example 2.5 Let (Tj )0≤j≤n and<G be as in Example 2.4. Define

f (x
i1
1 x

i2
2 . . . xin

n ) := − min{0, i1, i2, . . . , in}.
Then<T is a generalized term order onT for (Tj )0≤j≤n. All elements ofT0 are
smaller than any element ofT \ T0.

Lemma 2.2 (see [6], Lemma 2.3) Every strictly descending sequence inT is
finite. In particular, any subset ofT contains a smallest element.

Proof. Let s1 > s2 > s3 > . . .be a strictly descending sequence inT . SinceI

is finite, it is sufficient to prove the assertion under the assumption that allsj

are elements ofTi . But then for allj there exists not ∈ Ti such thatsj = tsk

for somek < j . In particular, the sequence

〈s1〉 ⊂ 〈s1, s2〉 ⊂ 〈s1, s2, s3〉 ⊂ . . .

of ideals inZ[Ti ] is strictly increasing. Since the monoidTi is finitely generated,
the ringZ[Ti ] is noetherian. This yields the assertion. �

Definition 2.3 Let (Ti)i∈I be a conic decomposition ofT and let< be a gen-
eralized term order for(Ti)i∈I . Letf = ∑

u∈U cuu be a non-zero element in
V , cu ∈ R. Then we define

supp(f ) : = { u ∈ U | cu 6= 0 } (the “support off ”),
lt (f ) : = maxsupp(f ) (the “leading term off ”),
lc(f ) : = clt (f ), (the “leading coefficient off ”),
lm(f ) : = lc(f )lt (f ) (the “leading monomial off ”), and
Ti(f ) : = { t ∈ T | lt (tf ) ∈ Ui }, i ∈ I .
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Definition 2.4 (Gröbner basis) Let W be anR[T ]-submodule ofV andG a
finite subset ofW \ {0}.
ThenG is a Gröbner basis ofW (with respect to a conic decomposition(Ti)i∈I

of T and a generalized term order< on U ) if and only if for all i ∈ I the
R[Ti ]-module

R[Ti ]〈 lm(f ); f 6= 0, f ∈ W, lt (f ) ∈ Ui 〉
is generated by

{ lm(tg); g ∈ G, t ∈ Ti(g) }.
Example 2.6 Letf ∈ V \{0} andW : = R[T ]f . If R is a domain, then{ f }
is a Gr̈obner basis ofW (with respect to every generalized term order). But for
R : = Z4, V : = Z4[x1], f := 2x1 + 1, andW := Z4[x1]f, the set { f } is
not a Gr̈obner basis ofW , since2f = 2 ∈ W .

Proposition 2.1 Let G be a Gröbner basis of an idealW in R[x1,

. . . , xn, x
−1
1 , . . . , x−1

n ] with respect to the generalized term order<T defined in
Example 2.5. Forg ∈ R[x1, . . . , xn, x

−1
1 , . . . , x−1

n ] let t (g) ∈ T be the uniquely
determined power-product such that⋂

s∈supp(g)

s−1T0 = t (g)T0 .

Then{t (g)g|g ∈ G} is a Gröbner basis ofW ∩ R[x1, . . . , xn].

Proof. Let f ∈ W . Since<T is the order defined in Example 2.5,lt (f ) ∈ T0

impliessupp(f ) ⊆ T0, i.e.f ∈ R[x1, . . . , xn]. Hence

R[x1,...,xn]〈lm(f ); f 6= 0, f ∈ W, lt (f ) ∈ T0〉
= R[x1,...,xn]〈lm(f ); f 6= 0, f ∈ W ∩ R[x1, . . . , xn]〉.

Let t ∈ T0(g) andg ∈ G. Thenlt (tg) ∈ T0 andsupp(tg) ⊆ T0. Therefore

t ∈
⋂

s∈supp(g)

s−1T0

and there is anu ∈ T0 such thatt = t (g)u. Hence{lm(tg); g ∈ G, t ∈ T0(g)}
and{lm(t (g)g); g ∈ G} generate the same ideal inR[x1, . . . , xn]. �

Remark 2.3 Proposition 2.1 yields a method to compute generators of the ideal
W ∩ R[x1, . . . , xn], see Example 4.1.

Lemma 2.3 (See [6] , Lemma 2.1 and Lemma 2.2)
1. LetN be a finite subset ofT and leti ∈ I . Then there is ap ∈ Ti such that
pN ⊆ Ti .
2. Let0 6= f ∈ V , s, t ∈ Ti(f ), and letu, v ∈ supp(f ) such thatlt (tf ) =
tu ∈ Ui , lt (sf ) = sv ∈ Ui . Thenu = v.
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Proof. 1. The group generated byTi containsT , hence for everyt ∈ N there
arert , st ∈ Ti such thatr−1

t st = t . Then takep : = ∏
t∈N rt ∈ Ti .

2. Sinceu, v ∈ supp(f ), tv ≤ tu and su ≤ sv. Choosep ∈ Ti such that
pu, pv ∈ Ui andps, pt ∈ Ti (see 1). Then

tu ∈ Ui, tv ≤ tu, p2 ∈ Ti imply p2tv ≤ p2tu ,

and
sv ∈ Ui, su ≤ sv, p2 ∈ Ti imply p2su ≤ p2sv.

Hence
(pt)(pv) ≤ (pt)(pu) and (ps)(pu) ≤ (ps)(pv) .

This implies

(ps)(pt)(pv) ≤ (ps)(pt)(pu) and (pt)(ps)(pu) ≤ (pt)(ps)(pv) ,

therefore(ps)(pt)(pv) = (pt)(ps)(pu) andu = v. �

Definition 2.5 Let0 6= f ∈ V , i ∈ I andt ∈ Ti(f ). Then define

lti(f ) : = lt (tf )

t
, lci(f ) : = lc(tf ) andlmi(f ) : = lci(f )lti(f ) .

Remark 2.4 By Lemma 2.3, lti(f ) is well-defined (i.e. does not depend on
the choice oft ∈ Ti(f )). Furthermore,lci(f ) is the coefficient off at lti(f ).

We can computelti(f ) in the following way: choosep ∈ Ti such that
p.supp(f ) ⊆ Ui (cf. Lemma 2.3). Thenlt (pf ) ∈ Ui andlti(f ) = lt (pf )

p
.

For the computation of the setsTi(f ) see chapter 4.

3 Buchberger’s Algorithm for Generalized Term Orders

We maintain the notations of Section 2 and fix a conic decomposition(Ti)i∈I

of T and a generalized term order< onU .

Definition 3.1 Let F be a finite subset ofV \ {0} and let0 6= (hf )f ∈F be a
family inR[T ]. Then

uF ((hf )f ∈F ) : = max


 tv | (t, v) ∈

⋃
f ∈F

(supp(hf ) × supp(f ))


 .

Remark 3.1 Consider two families 06= (hf )f ∈F , 0 6= (h′
f )f ∈F in R[T ]. Let

u : = uF ((hf )f ∈F ) andu′ : = uF ((h′
f )f ∈F . Then

uF ((hf + h′
f )f ∈F ) ≤ max{u, u′} .

(If u 6= u′, thenuF ((hf + h′
f )f ∈F ) = max{u, u′}).
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If u ∈ Ui andt ∈ Ti , then

uF ((thf )f ∈F ) = tu ∈ Ui .

If u′ ∈ Ui , u < u′ andt ∈ Ti , then

uF ((thf )f ∈F ) < tu′ .

If c ∈ R and(chf )f ∈F 6= 0, thenuF ((chf )f ∈F ) ≤ u. (If c is not a zero-divisor
in R, thenuF ((chf )f ∈F ) = u).

Proposition 3.1 LetF be a finite subset ofV \ {0} and letg ∈ V . Then there
is a family(hf )f ∈F in R[T ]such that

(hf )f ∈F = 0 or uF ((hf )f ∈F ) = lt (g)

and

g =
∑
f ∈F

hf f or lm(g−
∑
f ∈F

hf f ) 6∈
⋃
i∈I

R[Ti ]〈lm(tf ); f ∈ F, t ∈ Ti(f )〉 .

The family(hf )f ∈F can be computed as follows (“Division algorithm”):
First sethf := 0, f ∈ F .
While there arecf ∈ R, tf ∈ T such thatlm(g) = ∑

f ∈F cf lm(tf f ),
replacehf byhf + cf tf andg byg − ∑

f ∈F cf tf f .
(Note that this “algorithm” is effective only under the hypothesis that we can
solve linear equations overR).

Proof. We only have to show that the algorithm above terminates after a finite
number of steps. But since in each steplt (g − ∑

f ∈F cf tf f ) < lt (g), this
follows from Lemma 2.2 . �

Definition 3.2 LetF, g, hf be as in the proposition above. Then
rem(g, F ) : = g − ∑

f ∈F hf f is “a remainder on division ofg byF ”.
(It is clear thatrem(g, F ) is not uniquely determined byg andF ).

Proposition 3.2 LetW be a non-zero submodule ofV .
1. W contains a Gr¨obner basis.
2. LetG be a Gröbner basis ofW . Thenf ∈ V is an element ofW if and only
if a remainder (or all remainders) on division off byG is zero.
3. Each Gr̈obner basis ofW generates theR[T ]-moduleW .

Proof. 1. For alli ∈ I choose a finite subsetEi of { lm(f ) | f 6= 0, f ∈ W,

lt (f ) ∈ Ui} which generates theR[Ti ]-submoduleR[Ti ]〈lm(f ); 0 6= f, f ∈
W, lt (f ) ∈ Ui〉. Then {

f ∈ W | lm(f ) ∈
⋃
i∈I

Ei

}
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is a Gr̈obner basis ofW .
2. follows from Proposition 3.1.
3. follows from 2. �

Remark 3.2 Let i ∈ I and letE ⊆ V \ {0}. Then⋂
g∈E

R[Ti ]〈lt (tg); t ∈ Ti(g)〉 = {0}

if and only if there are elementsf, g ∈ E such thatlti(f ) = lti(f )∗b, lti(g) =
lti(g)∗c, wherelti(f )∗ ∈ T , lti(g)∗ ∈ T , b ∈ B, c ∈ B andb 6= c.

Proposition 3.3 Let G be a finite subset ofV \ {0} and letW be theR[T ]-
submodule ofV generated byG. For i ∈ I andE ⊆ G let S(i, E) be a finite
system of generators of theR-module

 (cg)g∈E ∈ RE |
∑
g∈E

cglci(g) = 0




and let U(i, E) ⊆ Ui be a finite system of generators of theR[Ti ]-module⋂
g∈E

R[Ti ]〈lt (tg); t ∈ Ti(g)〉

(i.e.U(i, E) = ∅ or
⋂

g∈E Ti(g)lti(g) = Ti.U(i, E)).

Then the following assertions are equivalent:
(1) G is a Gröbner basis ofW .
(2) For all i ∈ I , for all E ⊆ G such thatU(i, E) 6= ∅, for all s = (sg)g∈G ∈
S(i, E), and for allv ∈ U(i, E):

rem


∑

g∈E

sg

v

lti(g)
g, G


 = 0 .

(Here v
lti (g)

means v∗
lti (g)∗ , wherev∗ andlti(g)∗ are the power-products inR[T ]with

v∗b = v andlti(g)∗b = lti(g), for someb ∈ B , see Remark 3.2).

Proof. (1) ⇒ (2) : Since
∑

g∈E cs
v

lti (g)
g is an element ofW , the assertion

follows from Proposition 3.2.
(2) ⇒ (1) : Let f ∈ W , f 6= 0. We have to show

lm(f ) ∈
⋃
i∈I

R[Ti ]〈lm(tg); g ∈ G, t ∈ Ti(g)〉 .

SinceW is generated byG, we have

f =
∑
g∈G

hgg ,
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for somehg ∈ R[T ].
Let u : = uG((hg)g∈G). We choose the family(hg)g∈G such thatu is minimal,
i.e. if

f =
∑
g∈G

h′
gg

thenu ≤ uG((h′
g)g∈G).

Let j ∈ I be such thatu ∈ Ujand let

E : = {
g ∈ G | there is ap(g) ∈ supp(hg) such thatp(g)ltj (g) = u

}
.

ThenE is not empty and for allg ∈ E we havep(g) ∈ Tj (g). Let cg ∈ R

be the coefficient ofhg at p(g). If cglcj (g) 6= 0, thenlm(hgg) = cglcj (g)u,
otherwisehgg = 0 or lt (hgg) < u. It is clear thatlt (f ) ≤ u.
If lt (f ) = u, then

E′ : = {
g ∈ E | lt (hgg) = u

}
is not empty and

lm(f ) =
∑
g∈E′

lm(hgg) =
∑
g∈E′

cglm(p(g)g) ∈ R[Tj ]〈lm(tg); g ∈ G, t ∈ Tj (g)〉.

Hence it remains to show thatlt (f ) cannot be smaller thanu.
If lt (f ) < u, then ∑

g∈E

cglci(g) = 0.

Hence there is a family(ds)s∈S(j,E) in R such that

(cg)g∈G =
∑

s∈S(j,E)

dss ,

i.e. for all g ∈ E, cg = ∑
s∈S(j,E) dssg. Forg ∈ E definehg : = cgp(g), for

g ∈ G \ E let hg : = 0. Then

f =
∑
g∈G

hgg =
∑
g∈G

(hg − hg)g +
∑
g∈E

hgg

and

uG((hg − hg)g∈G) < u .

Now consider∑
g∈E

hgg =
∑
g∈E

cgp(g)g =
∑

s∈S(j,E)

ds

∑
g∈E

sgp(g)g .



Gröbner Bases for Ideals in Laurent Polynomial Rings 283

For g ∈ E we havep(g)ltj (g) = u ∈ Uj and p(g) ∈ Tj (g), thusu ∈⋂
g∈E Tj (g)ltj (g). Hence there arev ∈ U(j, E) ⊆ Uj andr ∈ Tj such that

r.v = u. Let q(g) ∈ Tj (g) be such thatv = q(g)ltj (g), i.e.

q(g) = v

ltj (g)
.

Then
r · q(g)ltj (g) = r · v = u = p(g)ltj (g) ,

hencep(g) = r · q(g) and∑
g∈E

hgg =
∑

s∈S(j,E)

dsr
∑
g∈E

sgq(g)g .

By (2), for everys ∈ S(j, E) there is a family(kg,s)g∈G in R[T ]such that∑
g∈E

sgq(g)g =
∑
g∈G

kg,sg

and

uG((kg,s)g∈G) = lt


∑

g∈E

sgq(g)g


 = : w(s) .

For allg ∈ E we havelt (q(g)g) = v ∈ Uj and moreover
∑

g∈E sglcj (g) = 0.
Hencew(s) < v ∈ Uj . Sincer ∈ Tj , this implies

uG((rkg,s)g∈G) < r · v = u ∈ Uj

(see Remark 3.1). Thus

∑
g∈E

hgg =
∑
g∈G


 ∑

s∈S(j,E)

dsrkg,s


 g ,

and

uG





 ∑

s∈S(j)

dsrkg,s




g∈G


 < u

(see Remark 3.1). For allg ∈ G let

h′
g : = (hg − hg) +

∑
s∈S(j,E)

dsrkg,s ,

then
uG((h′

g)g∈G) < u and f =
∑
g∈G

h′
gg ,

which contradicts the minimality ofu. �
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Proposition 3.4 Let R be a principal ideal domain (e.g. a field). LetG be a
finite subset ofV \ {0} and letW be theR[T ]-submodule ofV generated byG.
For i ∈ I andf, g ∈ G let U(i, f, g) ⊆ Ui be a finite system of generators
of theR[Ti ]-module

R[Ti ]〈lt (tf ); t ∈ Ti(f )〉 ∩ R[Ti ]〈lt (tg); t ∈ Ti(g)〉
(i.e.U(i, E) = ∅ or Ti(f )lti(f )∩Ti(g)lti(g) = Ti.U(i, f, g)) and letLi(f, g)

be a least common multiple oflci(f ) andlci(g). For v ∈ U(i, f, g) define

S(i, f, g, v) := Li(f, g)

lci(f )

v

lti(f )
f − Li(f, g)

lci(g)

v

lti(g)
g ∈ W .

Then the following assertions are equivalent:
(1) G is a Gröbner basis ofW .
(2) For all i ∈ I , for all f, g ∈ G, and for allv ∈ U(i, f, g)

rem(S(i, f, g, v), G) = 0 .

Proof. LetE ⊆ Gbe a subset with at least two elements and let
{
δg | g ∈ E

} ⊆
RE be the standard-basis ofRE . If R is a principal ideal domain, then{

Li(f,g)

lci (f )
δf − Li(f,g)

lci (g)
δg | f, g ∈ E

}
is a finite system of generators of

 (cg)g∈E ∈ RE |
∑
g∈E

cglci(g) = 0




(see for example [5], Lemma 3.4). Hence Proposition 3.4 is a Corollary of
Proposition 3.3 . �

Proposition 3.5 (Buchberger’s Algorithm) LetG be a finite subset ofV \{0}
and letW be theR[T ] -submodule generated byG. For i ∈ I andE ⊆ G let
S(i, E) be a finite system of generators of theR-module

 (cg)g∈E ∈ RE |
∑
g∈E

cglci(g) = 0


 and

let U(i, E) ⊆ Ui be a finite system of generators of theR[Ti ]-module⋂
g∈E

R[Ti ]〈lt (tg); t ∈ Ti(g)〉

(i.e.U(i, E) = ∅ or
⋂

g∈E Ti(g)lti(g) = Ti.U(i, E) ).

By the following algorithm a Gr̈obner basis ofW can be computed:
G0 : = G,
Gj+1 : = Gj ∪ ({ rem(

∑
g∈E sg

v
lti (g)

g, Gj)|i ∈ I, E ⊆ Gj, s ∈ S(i, E),

v ∈ U(i, E)} \ {0} .
If Gj+1 = Gj , thenGj is a Gröbner basis ofJ .
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Proof. By Proposition 3.3 we only have to show that there is ak ∈ N such that
Gk = Gk+1. Suppose there is no suchk. Then there is an indexi ∈ I such that for
all j ∈ N there is am ∈ N such that theR[Ti ] -submodule〈lm(tg); g ∈ Gj, t ∈
Ti(g)〉 of

⊕
b∈B R[Ti ]b is strictly contained in〈lm(tg); g ∈ Gj+m, t ∈ Ti(g)〉.

SinceR[Ti ] is noetherian, this is not possible. �

4 Examples

Let F be a finite subset ofV \ {0}. In order to compute a Gröbner basis of the
submodule generated byF , we first have to determine the setsTi(f ), for all
i ∈ I , f ∈ F . For that purpose we use the facts that

T =
⋃
i∈I

Ti(f )

and
Ti.Ti(f ) = Ti(f ), for all i ∈ I,

as well as the following two lemmas.

Lemma 4.1 Let (Ti)i∈I be a conic decomposition ofT such that

gr〈Ti ∩ Tj 〉 ∩ Ti = Ti ∩ Tj

for all i, j ∈ I . (Here gr〈Ti ∩ Tj 〉 is the subgroup of{xi |i ∈ Zn} generated by
Ti ∩ Tj ). Letf ∈ V andi, j ∈ I such thatTi(f ) ∩ Tj (f ) 6= ∅. Then

lti(f ) = ltj (f ) and

t ∈ Ti(f ), s ∈ Ti ∩ Tj , st ∈ Ti(f ) ∩ Tj (f ) imply t ∈ Tj (f ).

Proof. FromTi(f ) ∩ Tj (f ) 6= ∅ and the uniqueness oflti(f ) andltj (f ) we
getlti(f ) = ltj (f ) =: l.
Now lt (tf ) = t l ∈ Ti and lt (stf ) = stl ∈ Ti ∩ Tj . We have to show that
t l ∈ Tj .
Let v := stl, thent l = s−1v ∈ gr〈Ti ∩ Tj 〉 ∩ Ti = Ti ∩ Tj . Thust l ∈ Tj . �

Lemma 4.2 Let f ∈ R[T ] and let(Ti)i∈I be a conic decomposition ofT . If
there exists a subset∅ 6= J ⊆ I such that⋂

j∈J

Tj = {1} and
⋂
j∈J

Tj (f ) 6= ∅

then
f ∈ T and

⋂
j∈J

Tj (f ) = {f −1}.
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Proof. Let t ∈ ⋂
j∈J Tj (f ). Then lt (tf ) ∈ ⋂

j∈J Tj = {1}. Since 1 is the
smallest element inT , we havetf = 1 andt = f −1. �

Remark 4.1 The conic decompositions defined in Examples 2.1 and 2.2 fulfill
the condition in Lemma 4.1.

Hence, if we take for instance the generalized term order defined in Example
2.3 (with n = 2), the following case cannot occur:T1(f ) = T1, T4(f ) =
T4.x

2
1.

. . r . .

. . r . .
r r r r r

r . . . .
r . . . .

T4(f )

T1(f )

Remark 4.2 Let T := {xi |i ∈ Z2} and let< be the generalized term order
with respect to(T0, T1, T2) defined in Example 2.4. Using Lemma 4.1 it is easy
to see that theTi(f )’s are always generated by one element and that only six
different cases for(T0(f ), T1(f ), T2(f )) can occur:

�
�

�

1

�
�

�

��

2

�
�

�

�
�

�

3

�
�

�

4

�
�

�

��

5

�
�

�

�
�

�

6

Moreover, the intersections
⋂

g∈E Ti(g).lti(g) (cf. Proposition 3.3) are gen-
erated by one element, i.e. the setsU(i, E) contain only one element. Conse-
quently Buchberger’s algorithm for this generalized term order is particularly
simple.

The following algorithm computesT0(f ), T1(f ) andT2(f ) for f ∈ R[T ].
For s = x

i1
1 x

i2
2 ∈ T let ek(s) := ik, k = 1, 2.

Algorithm
Input: f ∈ R[T ]

Output: T0(f ), T1(f ), T2(f )

If f is a monomial then
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T0(f ) = T0.f
−1, T1(f ) = T1.f

−1, T2(f ) = T2.f
−1 (Case 1). END

Fork = 1 to 2 do
mk := − min({ek(s)|s ∈ supp(f )} ∪ {0})

t := x
m1
1 x

m2
2

While (t ∈ T0(f )) do
t := t.x−1

1 x−1
2

t := t.x1x2

While (t ∈ T0(f )) do
t := t.x−1

1
t := t.x1

While (t ∈ T0(f )) do
t := t.x−1

2
t := t.x2

If t ∈ T1(f ) then
T0(f ) = T0.t, T1(f ) = T1.t, T2(f ) = T2.(t.x

−1
2 ) (Case 2). END

If t ∈ T2(f ) then
T0(f ) = T0.t, T1(f ) = T1.(t.x

−1
1 ), T2(f ) = T2.t (Case 3). END

If t.x−1
1 x−1

2 6∈ T1(f ) then
T0(f ) = T0.t, T1(f ) = T1.(t.x

−1
1 ), T2(f ) = T2.(t.x

−1
1 x−1

2 ) (Case 5). END

If t.x−1
1 x−1

2 6∈ T2(f ) then
T0(f ) = T0.t, T1(f ) = T1.(t.x

−1
1 x−1

2 ), T2(f ) = T2.(t.x
−1
2 ) (Case 6). END

T0(f ) = T0.t, T1(f ) = T1.(t.x
−1
1 x−2

2 ), T2(f ) = T2.(t.x
−1
1 x−1

2 ) (Case 4). END

End of Algorithm.

For the conic decomposition defined in Example 2.1 the analogous algo-
rithm is slightly more complicated (in this case theTi(f )’s may be generated
by more than one element) but still not costly.

Example 4.1 We compute a Gr̈obner basis with respect to the generalized term
order defined in Example 2.5 of the idealW generated byf := x−2

1 x−2
2 + x2

2
andg := x1x

−3
2 + x1x2 in Q[x1, x2, x

−1
1 , x−1

2 ].

Let F = {f, g}.
Now
lt (f ) = x−2

1 x−2
2 ∈ T1 ∩ T2;

lt0(f ) = x2
2, T0(f ) = T0 · x2

1x
2
2; lt1(f ) = x−2

1 x−1
2 , T1(f ) = T1 · x1x2;

lt2(f ) = x−2
1 x−1

2 , T2(f ) = T2 · x1x2;
lt (g) = x1x

−3
2 ∈ T2.

Sincelt (g) ∈ T2(f ) · lt2(f ) we may replaceg by
−rem(g, {f }) = x3

1x2 − x1x2 =: h1 andF by {f, h1}.
Since
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lt (h1) = x3
1x2 ∈ T0;

lt0(h1) = x3
1x2, T0(h1) = T0 ·x−1

1 x−1
2 ; lt1(h1) = x1x2, T1(h1) = T1 ·x−2

1 x−1
2 ;

lt2(h1) = x3
1x2, T2(h1) = T2 · x−1

1 x−1
2 .

Now

T0(f ) · lt0(f )∩T0(h1) · lt0(h1) = T0 ·x2
1x

4
2, S(0, f, h1, x

2
1x

4
2) = 1+x4

2 =: h2,
T1(f ) · lt1(f ) ∩ T1(h1) · lt1(h1) = T1.x

−1
1 x2,

S(1, f, h1, x
−1
1 x2) = x−3

1 x−3
2 + x1x2 =: h2, rem(h2, F ) = h2;

We have
lt (h2) = x4

2 ∈ T0 ∩ T1,
lt0(h2) = x4

2, T0(h2) = T0; lt1(h1) = x4
2, T1(h2) = T1;

lt2(h2) = 1, T2(h2) = T2 · x−1
2 andT0(h2)lt0(h2) ∩ T0(h1)lt0(h1) =

T0 · x2
1x

4
2, S(0, h1, h2, x

2
1x

4
2) = −x4

2 − x2
1 = −h2 + 1 − x2

1.

Let h3 := x2
1 − 1 andF := {f, h1, h2, h3}.

All further S-polynomials reduce to 0. Thus the set

G := {x−2
1 x−2

2 + x2
2, x

3
1x2 − x1x2, x

4
2 − 1, x2

1 − 1}
is a Gr̈obner basis ofW and

{xm|m ∈ Z2} \
⋃

0≤i≤2,g∈G

Ti(g)lti(g) = {xm|m ∈ 1},

where1 = {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2), (0, 3), (1, 3)}.
Hence for ally : 1 → Q there is a unique solutionz : Z2 → Q of the

system of difference equations

z(−2 + s1, −2 + s2) + z(s1, 2 + s2) = 0

z(1 + s1, −3 + s2) + z(1 + s1, 1 + s2) = 0 ,

for all (s1, s2) ∈ Z2, such thatz|1 = y (see chapter 1).

b b b b r r b b b

b

b

b

b

r

r

r

b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

r b b b

r b b b

r b b b

b b b b

b b b b

b b b b

b b b b

b b b b

By Proposition 2.1 the set{x2
1x

2
2f, x3

1 −x1x2, x
4
2 +1, x2

1 −1} is a Gr̈obner basis
of W ∩Q[x1, x2]. The reduced Gr̈obner basis ofW ∩Q[x1, x2] is {x4

2+1, x2
1−1}.
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Example 4.2 We compute a Gr̈obner basis with respect to the generalized
term order defined in Example 2.3 of the ideal generated byf := x−1

1 x2 + x2

andg := x−2
1 x−1

2 + x1 in Q[x1, x2, x
−1
1 , x−1

2 ].

Let F := {f, g}.
We get
lt (f ) = x−1

1 x2 ∈ T2;
lt1(f ) = x2, T1(f ) = T1 · x1x

−1
2 ; lt2(f ) = x−1

1 x2, T2(f ) = T2 · x−1
2 ;

lt3(f ) = x−1
1 x2, T3(f ) = T3 · x−1

2 ; lt4(f ) = x2, T4(f ) = T4 · x1x
−1
2 ;

lt (g) = x−2
1 x−1

2 ∈ T3;
lt1(g) = x1, T1(g) = T1 · x1 ∪ T1 · x2; lt2(g) = x−2

1 x−1
2 , T2(g) = T2 · x−1

1 x2;
lt3(g) = x−2

1 x−1
2 , T3(g) = T3 · 1; lt4(g) = x1, T4(g) = T4 · x1.

Sincelt (g) ∈ T3(f ).lt3(f ) we replaceg by rem(g, {f }) = x−1
2 − 1 =: g′ and

F by {f, g′}. Now
lt (g′) = x−1

2 ∈ T3 ∩ T4;
lt1(g

′) = −1, T1(g
′) = T1.x2; lt2(g

′) = −1, T2(g
′) = T2.x2;

lt3(g
′) = x−1

2 , T3(g
′) = T3.1; lt4(g

′) = x−1
2 , T4(g

′) = T4.1;
rem(f, {g′}) = x−1

1 + 1 and{x−1
1 + 1, x−1

2 − 1} is a Gr̈obner basis.

Example 4.3 (compare [10] , section 5) LetT := {xi |i ∈ Z2}, V := R[T ]2

and let{e1, e2} be the standard basis ofV . We extend the generalized term
order< onT defined in Example 2.3 to a generalized term order<U onU =
{tei | t ∈ T , i = 1, 2}:

pei <U qej :⇔ p < q or [ p = q andi < j ]

for all p, q ∈ R[x1, x2, x
−1
1 , x−1

2 ], i, j ∈ {1, 2}.

Let W be theR[T ]-submodule generated by

g1 =
(

2x1x
−1
2 + x2 + x−1

2
x−1

1 x2 − x1

)
andg2 =

(
x1x

2
2 − 1

x2
1x

−1
2 − x−1

2 + 2

)
.

We obtain
lt (g1) = 2x1x

−1
2 · e1 ∈ T4;

lt1(g1) = −x1 · e2, T1(g1) = T1 · x1x2;
lt2(g1) = x−1

1 x2 · e2, T2(g1) = T2 · x−1
1 ∪ T2 · x2;

lt3(g1) = x−1
2 · e1, T3(g1) = T3 · x−1

1 x−1
2 ;

lt4(g1) = 2x1x
−1
2 · e1, T4(g1) = T4 · 1;

lt (g2) = x2
1x

−1
2 · e2 ∈ T4;

lt1(g2) = x1x
2
2 · e1, T1(g2) = T1 · x−1

1 x2;
lt2(g2) = x1x

2
2 · e1, T2(g2) = T2 · x−2

1 ;
lt3(g2) = −x−1

2 · e2, T3(g2) = T3 · x−2
1 x−1

2 ;
lt4(g2) = x2

1x
−1
2 · e2, T4(g2) = T4 · x−1

1 ;
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Since

R[Ti ]〈lt (tf ); t ∈ Ti(f )〉 ∩ R[Ti ]〈lt (tg); t ∈ Ti(g)〉 = {0},
the setU(i, f, g) is empty, for 1≤ i ≤ 4, hence Proposition 3.4 immediately
implies that{g1, g2} is a Gr̈obner basis ofW .

The following figures illustrate the sets11 and12, defined by

{xmej |m ∈ Z2} \
⋃

1≤i≤4, 1≤k≤2

Ti(gk)lti(gk) = {xmej |m ∈ 1j }, j = 1, 2 .

r r r r r r r r r

r

r

r

r

r

r
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r r r r
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r r r r
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b b b r r b b b b
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b b b r r r b b b

b b b b r r b b b

b b b b r r b b b

b b b b r r b b b

Example 4.4 For a single partial difference equation overZn (given by a Lau-
rent polynomialf ∈ R[x1, . . . , xn, x

−1
1 , . . . , x−1

n ]) we only have to determine
the setsTi(f ).lti(f ), i ∈ I .

Let n = 2 and let< be the generalized term order defined in Example
2.3. Then a set of “initial data” for the difference equation associated tof :=
x1x

−1
2 + x1 + x−1

1 x−1
2 + x−1

1 ([11], Section 5) is

{m ∈ Z2|xm 6∈
⋃

1≤i≤4

Ti(f ).lti(f )}

= {(k, 0)|k ∈ Z} ∪ {(0, k)|k ∈ Z} ∪ {(−1, k)|k ∈ Z}.
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