On the Stability of Gröbner Bases Under Specializations

MICHAEL KALKBRENER
Department of Mathematics, Swiss Federal Institute of Technology,CH-8092 Zurich, Switzerland

Abstract

Let R be a Noetherian commutative ring with identity, K a field and π a ring homomorphism from R to K. We investigate for which ideals in $R\left[x_{1}, \ldots, x_{n}\right]$ and admissible orders the formation of leading monomial ideals commutes with the homomorphism π. (C) 1997 Academic Press Limited

1. Introduction

Let R, R^{\prime} be Noetherian commutative rings with identity and $\pi: R \rightarrow R^{\prime}$ a ring homomorphism. When does a Gröbner basis of the ideal $I \subseteq R\left[x_{1}, \ldots, x_{n}\right]$ map to a Gröbner basis of the ideal $I R^{\prime}\left[x_{1}, \ldots, x_{n}\right]$ generated by the image of I under the natural extension $\pi: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow R^{\prime}\left[x_{1}, \ldots, x_{n}\right]$? Obviously it suffices to have

$$
\begin{equation*}
\operatorname{lm}(I) R^{\prime}\left[x_{1}, \ldots, x_{n}\right]=\operatorname{lm}\left(I R^{\prime}\left[x_{1}, \ldots, x_{n}\right]\right) \tag{1.1}
\end{equation*}
$$

where $\operatorname{lm}(I)$ denotes the ideal generated by the leading monomials of the elements of I. This condition has already been studied in Bayer et al. (1991) and it has been shown that (1.1) holds for any ideal and any term order if and only if π is flat.

In this paper we study condition (1.1) under the additional assumption that R^{\prime} is not a general Noetherian commutative ring with identity but a field. First we prove the following necessary and sufficient condition for (1.1). Let $\left\{g_{1}, \ldots, g_{s}\right\}$ be a Gröbner basis of an ideal $I \subseteq R\left[x_{1}, \ldots, x_{n}\right]$ with respect to an order \prec and assume that the g_{i} s are ordered in such a way that the leading coefficients of precisely the first r polynomials are not in the $\operatorname{kernel} \operatorname{ker}(\pi)$. Then (1.1) holds for I and \prec if and only if the polynomials $\pi\left(g_{r+1}\right), \ldots, \pi\left(g_{s}\right)$ can be reduced to 0 modulo $\left\{\pi\left(g_{1}\right), \ldots, \pi\left(g_{r}\right)\right\}$. Sufficient but not necessary conditions that (1.1) holds for an ideal and an order can be found in Bayer et al. (1991), Pauer (1992), Gräbe (1993) and Assi (1994).

If R^{\prime} is a field $\operatorname{ker}(\pi)$ is a prime ideal. Let J be a subideal of $\operatorname{ker}(\pi)$. We show that the following two conditions are equivalent.
(a) $\operatorname{ker}(\pi)$ is an isolated prime ideal of J.
(b) For any ideal I in the univariate polynomial ring $R[x]$ with $I \cap R=J$, (1.1) holds.

Furthermore we use the concept of independence complexes of ideals to give two other

[^0]conditions equivalent to (a) and (b). Note that the implication $(a) \Rightarrow(b)$ is a generalization of the main result in Gianni (1987) and Kalkbrener (1987).

For ideals in multivariate polynomial rings over R we prove the equivalence of the following two conditions.
(c) $\operatorname{ker}(\pi)$ is an isolated prime ideal of J which equals the corresponding primary component.
(d) For any number of variables n, any ideal I in $R\left[x_{1}, \ldots, x_{n}\right]$ with $I \cap R=J$ and any term order, (1.1) holds.

As a consequence of this result and the already mentioned theorem in Bayer et al. (1991) we obtain that π is flat if and only if no proper subideal of $\operatorname{ker}(\pi)$ is primary.

2. Definitions

Throughout this paper let R be a Noetherian commutative ring with identity and K a field. The ideal generated by a subset F of R is denoted by $\langle F\rangle$ and the set of power products in the variables x_{1}, \ldots, x_{n} by $P P\left(x_{1}, \ldots, x_{n}\right)$. Let \prec be an arbitrary admissible order on $P P\left(x_{1}, \ldots, x_{n}\right)$. For any non-zero polynomial $f \in R\left[x_{1}, \ldots, x_{n}\right]$ write $f=$ $c X+f^{\prime}$, where $c \in R \backslash\{0\}$ and $X \in P P\left(x_{1}, \ldots, x_{n}\right)$ with $X \succ X^{\prime}$ for every power product X^{\prime} in f^{\prime}. With this notation we set

$$
\begin{aligned}
\operatorname{lc}(f) & :=c, & & \text { the leading coefficient of } f, \\
\operatorname{lpp}(f) & :=X, & & \text { the leading power product of } f, \\
\operatorname{lm}(f) & :=c X, & & \text { the leading monomial of } f .
\end{aligned}
$$

The total degree of f in x_{1}, \ldots, x_{n} is denoted by $\operatorname{deg}(f)$. Furthermore, we define lc(0) := $\operatorname{lpp}(0):=\operatorname{lm}(0):=0$ and $\operatorname{deg}(0):=-1$. For an ideal I in $R\left[x_{1}, \ldots, x_{n}\right]$ we denote the ideal $\langle\{\operatorname{lm}(f) \mid f \in I\}\rangle$ by $\operatorname{lm}(I)$. A finite subset G of an ideal $I \subseteq R\left[x_{1}, \ldots, x_{n}\right]$ is a Gröbner basis of I w.r.t. \prec if

$$
\langle\{\operatorname{lm}(g) \mid g \in G\}\rangle=\operatorname{lm}(I)
$$

We will often use the characterization of Gröbner bases in Theorem 2.1 (see Möller, 1988). Let $F=\left\{f_{1}, \ldots, f_{r}\right\}$ be a subset of $R\left[x_{1}, \ldots, x_{n}\right]$ and $M:=\left(\operatorname{lm}\left(f_{1}\right), \ldots, \operatorname{lm}\left(f_{r}\right)\right)$. A syzygy w.r.t. M is an r-tuple of polynomials $S=\left(h_{1}, \ldots, h_{r}\right)$ in $R\left[x_{1}, \ldots, x_{n}\right]^{r}$ such that

$$
\sum_{i=1}^{r} h_{i} \cdot \operatorname{lm}\left(f_{i}\right)=0 .
$$

The set $S(M)$ of all syzygies w.r.t. M forms an $R\left[x_{1}, \ldots, x_{n}\right]$-module. An element $S \in$ $S(M)$ is homogeneous of degree X, where $X \in P P\left(x_{1}, \ldots, x_{n}\right)$, provided that

$$
S=\left(c_{1} Y_{1}, \ldots, c_{r} Y_{r}\right)
$$

where $c_{i} \in R, Y_{i} \in P\left(x_{1}, \ldots, x_{n}\right)$ and $Y_{i} \cdot \operatorname{lpp}\left(f_{i}\right)=X$ whenever $c_{i} \neq 0$. Obviously, $S(M)$ has a finite homogeneous basis.

Theorem 2.1. Let $F=\left\{f_{1}, \ldots, f_{r}\right\}$ be a subset of $R\left[x_{1}, \ldots, x_{n}\right]$ and $M:=\left(\operatorname{lm}\left(f_{1}\right), \ldots\right.$, $\left.\operatorname{lm}\left(f_{r}\right)\right)$. The following two conditions are equivalent.
(a) F is a Gröbner basis of $\langle F\rangle$.
(b) Let S_{1}, \ldots, S_{m} be a basis of $S(M), S_{i}=\left(h_{i 1}, \ldots, h_{i r}\right)$ homogeneous for every $i \in$ $\{1, \ldots, m\}$. Then any polynomial $p_{i}=\sum_{j=1}^{r} h_{i j} f_{j}$ can be written in the form $p_{i}=$ $\sum_{j=1}^{r} g_{i j} f_{j}$, where the $g_{i j}$ are in $R\left[x_{1}, \ldots, x_{n}\right]$ and $\operatorname{lpp}\left(p_{i}\right)=\max _{j=1}^{r} \operatorname{lpp}\left(g_{i j}\right) \operatorname{lpp}\left(f_{j}\right)$.

Let R^{\prime} be a Noetherian commutative ring with identity. Every ring homomorphism π : $R \rightarrow R^{\prime}$ extends naturally to a homomorphism $\pi: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow R^{\prime}\left[x_{1}, \ldots, x_{n}\right]$. The image under π of an ideal $I \subseteq R\left[x_{1}, \ldots, x_{n}\right]$ generates the extension ideal $I R^{\prime}\left[x_{1}, \ldots, x_{n}\right]$. We want to study under which conditions on π and \prec a Gröbner basis of I maps to a Gröbner basis of $I R^{\prime}\left[x_{1}, \ldots, x_{n}\right]$. Note that it suffices to have

$$
\begin{equation*}
\operatorname{lm}(I) R^{\prime}\left[x_{1}, \ldots, x_{n}\right]=\operatorname{lm}\left(I R^{\prime}\left[x_{1}, \ldots, x_{n}\right]\right) \tag{2.1}
\end{equation*}
$$

We call I stable under π and \prec if it satisfies (2.1) and we will focus on this condition.
The stability of ideals has been already studied by Bayer et al. (1991). They proved the following interesting relation between flat morphisms and the stability of ideals (Bayer et al., 1991, Theorem 3.6). Recall that an R-module N is called flat if the functor T_{N} : $M \rightarrow M \otimes_{R} N$ on the category of R-modules is exact and the ring homomorphism $\pi: R \rightarrow R^{\prime}$ is called flat if π makes R^{\prime} a flat R-module.

THEOREM 2.2. Let $\pi: R \rightarrow R^{\prime}$ be a ring homomorphism. Then the following two conditions are equivalent.
(a) For any natural number n, any ideal I in $R\left[x_{1}, \ldots, x_{n}\right]$ and any admissible order \prec on $P P\left(x_{1}, \ldots, x_{n}\right), I$ is stable under π and \prec.
(b) π is flat.

In this paper we will concentrate on a special case: we assume that π is a ring homomorphism from R to the field K. Hence the image of R is a subring of K and therefore an integral domain. Thus the kernel, $\operatorname{ker}(\pi)$, is a prime ideal and the quotient field \bar{K} of $R / \operatorname{ker}(\pi)$ is a subfield of K. Furthermore, it is easy to see that

$$
\begin{equation*}
\text { the ideal } \operatorname{lm}\left(I K\left[x_{1}, \ldots, x_{n}\right]\right) \text { is generated by the set }\{\operatorname{lm}(\pi(f)) \mid f \in I\} \text {. } \tag{2.2}
\end{equation*}
$$

A subset $\left\{x_{i_{1}}, \ldots, x_{i_{m}}\right\} \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$ is called independent modulo an ideal $J \subseteq$ $K\left[x_{1}, \ldots, x_{n}\right]$ if $J \cap K\left[x_{i_{1}}, \ldots, x_{i_{m}}\right]=\{0\}$. The independence complex of J is the set
$\Delta(J):=\left\{\left\{x_{i_{1}}, \ldots, x_{i_{m}}\right\} \subseteq\left\{x_{1}, \ldots, x_{n}\right\} \mid\left\{x_{i_{1}}, \ldots, x_{i_{m}}\right\}\right.$ is independent modulo $\left.J\right\}$.
Additionally to stability we will consider the following weaker property. We call an ideal $I \subseteq R\left[x_{1}, \ldots, x_{n}\right]$ semi-stable under π and \prec if

$$
\begin{equation*}
\Delta\left(\operatorname{lm}(I) K\left[x_{1}, \ldots, x_{n}\right]\right)=\Delta\left(\operatorname{lm}\left(I K\left[x_{1}, \ldots, x_{n}\right]\right)\right) \tag{2.3}
\end{equation*}
$$

3. Stability Criteria

First of all we show that the stability of an ideal I can be easily checked if a Gröbner basis of I is known.

THEOREM 3.1. Let π be a ring homomorphism from R to K, I an ideal in $R\left[x_{1}, \ldots, x_{n}\right]$ and $G=\left\{g_{1}, \ldots, g_{s}\right\}$ a Gröbner basis of I with respect to an admissible order \prec. We
assume that the $g_{i} s$ are ordered in such a way that there exists an $r \in\{0, \ldots, s\}$ with $\pi\left(\operatorname{lc}\left(g_{i}\right)\right) \neq 0$ for $i \in\{1, \ldots, r\}$ and $\pi\left(\operatorname{lc}\left(g_{i}\right)\right)=0$ for $i \in\{r+1, \ldots, s\}$. Then the following three conditions are equivalent.
(a) I is stable under π and \prec.
(b) $\left\{\pi\left(g_{1}\right), \ldots, \pi\left(g_{r}\right)\right\}$ is a Gröbner basis of $I K\left[x_{1}, \ldots, x_{n}\right]$ w.r.t. \prec.
(c) For every $i \in\{r+1, \ldots, s\}$ the polynomial $\pi\left(g_{i}\right)$ is reducible to 0 modulo $\left\{\pi\left(g_{1}\right), \ldots, \pi\left(g_{r}\right)\right\}$.

Proof. Obviously $\left\{\pi\left(g_{1}\right), \ldots, \pi\left(g_{r}\right)\right\}$ is a Gröbner basis of $I K\left[x_{1}, \ldots, x_{n}\right]$ if and only if

$$
\langle\{\pi(\operatorname{lm}(g)) \mid g \in G\}\rangle=\operatorname{lm}\left(I K\left[x_{1}, \ldots, x_{n}\right]\right) .
$$

Since

$$
\langle\{\pi(\operatorname{lm}(g)) \mid g \in G\}\rangle=\operatorname{lm}(I) K\left[x_{1}, \ldots, x_{n}\right]
$$

(a) and (b) are equivalent.

If $\left\{\pi\left(g_{1}\right), \ldots, \pi\left(g_{r}\right)\right\}$ is a Gröbner basis of $I K\left[x_{1}, \ldots, x_{n}\right]$ then (c) holds. It remains to show that (c) implies (a). Let $f \in I$ with $\pi(f) \neq 0$. By (2.2), it suffices to show that

$$
\begin{equation*}
\text { there exists a } g \in I \text { such that } \operatorname{lpp}(g) \text { divides } \operatorname{lpp}(\pi(f)) \text { and } \pi(\operatorname{lc}(g)) \neq 0 \tag{3.1}
\end{equation*}
$$

We do the proof by induction on \prec.
Induction basis: If $\operatorname{lpp}(f)=1$ then $\pi(\operatorname{lc}(f)) \neq 0$ and $\operatorname{lpp}(f)=\operatorname{lpp}(\pi(f))$. Hence, (3.1) holds.

Induction step: Since (3.1) holds if $\pi(\operatorname{lc}(f)) \neq 0$ we assume that $\pi(\operatorname{lc}(f))=0$. If there exists an $i \in\{1, \ldots, r\}$ such that $\operatorname{lpp}\left(g_{i}\right)$ divides $\operatorname{lpp}(f)$ we define

$$
f^{\prime}:=\operatorname{lc}\left(g_{i}\right) \cdot f-\operatorname{lc}(f) \cdot\left(\operatorname{lpp}(f) / \operatorname{lpp}\left(g_{i}\right)\right) \cdot g_{i} .
$$

Obviously, $\operatorname{lpp}\left(\pi\left(f^{\prime}\right)\right)=\operatorname{lpp}(\pi(f))$ and $\operatorname{lpp}\left(f^{\prime}\right) \prec \operatorname{lpp}(f)$. Thus, (3.1) follows from the induction hypothesis. Otherwise, there exist $j_{1}, \ldots, j_{k} \in\{r+1, \ldots, s\}$ and $c_{j_{1}}, \ldots, c_{j_{k}} \in$ R such that $\operatorname{lpp}\left(g_{j_{l}}\right)$ divides $\operatorname{lpp}(f)$ for $l \in\{1, \ldots, k\}$ and

$$
\operatorname{lm}(f)=\sum_{l=1}^{k} c_{j_{l}} \cdot\left(\operatorname{lpp}(f) / \operatorname{lpp}\left(g_{j_{l}}\right)\right) \cdot \operatorname{lm}\left(g_{j_{l}}\right)
$$

Let $i \in\{r+1, \ldots, s\}$. Since $\pi\left(g_{i}\right)$ is reducible to 0 modulo $\left\{\pi\left(g_{1}\right), \ldots, \pi\left(g_{r}\right)\right\}$ there exist an $h_{i} \in I$ and a $b_{i} \in R \backslash \operatorname{ker}(\pi)$ with $\pi\left(b_{i}\right) \cdot \pi\left(g_{i}\right)=\pi\left(h_{i}\right)$ and $\operatorname{lpp}\left(g_{i}\right) \succ \operatorname{lpp}\left(\pi\left(g_{i}\right)\right)=\operatorname{lpp}\left(h_{i}\right)$. Define

$$
f^{\prime}:=b \cdot f-\sum_{l=1}^{k}\left(b / b_{j_{l}}\right) \cdot c_{j_{l}} \cdot\left(\operatorname{lpp}(f) / \operatorname{lpp}\left(g_{j_{l}}\right)\right) \cdot\left(b_{j_{l}} \cdot g_{j_{l}}-h_{j_{l}}\right),
$$

where $b:=\prod_{l=1}^{k} b_{j_{l}}$. Obviously, $\operatorname{lpp}\left(\pi\left(f^{\prime}\right)\right)=\operatorname{lpp}(\pi(f))$ and $\operatorname{lpp}\left(f^{\prime}\right) \prec \operatorname{lpp}(f)$. Again, (3.1) follows from the induction hypothesis.

Sufficient but not necessary criteria for the stability of I under π and \prec can be found in Bayer et al. (1991), Pauer (1992), Gräbe (1993) and Assi (1994).

Let J be an ideal in R with $J \subseteq \operatorname{ker}(\pi)$. We will now show that every ideal I in the univariate polynomial ring $R\left[x_{1}\right]$ with $I \cap R=J$ is stable (resp. semi-stable) under π if and only if

$$
\begin{equation*}
\operatorname{ker}(\pi) \text { is an isolated prime ideal of } J . \tag{3.2}
\end{equation*}
$$

Another condition equivalent to (3.2) is semi-stability of every ideal I in a multivariate polynomial ring over R with $I \cap R=J$.

ThEOREM 3.2. Let π be a ring homomorphism from R to K and J an ideal in R with $J \subseteq \operatorname{ker}(\pi)$. Then the following four conditions are equivalent.
(a) $\operatorname{ker}(\pi)$ is an isolated prime ideal of J.
(b) For any ideal I in $R\left[x_{1}\right]$ with $I \cap R=J, I$ is stable under π and the uniquely determined admissible order \prec on $P P\left(x_{1}\right)$.
(c) For any natural number n, any ideal I in $R\left[x_{1}, \ldots, x_{n}\right]$ with $I \cap R=J$ and any admissible order \prec on $P P\left(x_{1}, \ldots, x_{n}\right)$, I is semi-stable under π and \prec.
(d) For any ideal I in $R\left[x_{1}\right]$ with $I \cap R=J$, I is semi-stable under π and the uniquely determined admissible order \prec on $\operatorname{PP}\left(x_{1}\right)$.

Proof. Denote the kernel of π by P.
$(a) \Rightarrow(c)$: Let I be an ideal in $R\left[x_{1}, \ldots, x_{n}\right]$ with $I \cap R=J$ and \prec an admissible order on $P P\left(x_{1}, \ldots, x_{n}\right)$. Assume that P is an isolated prime ideal of J and $f \in I$ with $\pi(f) \neq 0$. We first show that

$$
\begin{equation*}
\text { there exists a natural number } l \text { with } \operatorname{lm}(\pi(f))^{l} \in \operatorname{lm}(I) K\left[x_{1}, \ldots, x_{n}\right] \text {. } \tag{3.3}
\end{equation*}
$$

Write f in the form $f=a_{1} X_{1}+\cdots+a_{t} X_{t}$, where $a_{1}, \ldots, a_{t} \in R \backslash\{0\}$ and $X_{1}, \ldots, X_{t} \in$ $P P\left(x_{1}, \ldots, x_{n}\right)$ with $X_{1} \succ \cdots \succ X_{t}$. Choose $k \in\{1, \ldots, t\}$ with $a_{1}, \ldots, a_{k-1} \in P$ and $a_{k} \notin P$ and define $p:=a_{1} X_{1}+\cdots+a_{k-1} X_{k-1}$ and $h:=a_{k} X_{k}+\cdots+a_{t} X_{t}$. Let $I=Q_{1} \cap \ldots \cap Q_{m}$ be an irredundant primary decomposition of I and denote the radical of Q_{i} by P_{i}. We can assume that the Q_{i} s are ordered in such a way that there exists an $m^{\prime} \in\{1, \ldots, m\}$ with $P=P_{j} \cap R$ for $j \in\left\{1, \ldots, m^{\prime}\right\}$ and $P \neq P_{j} \cap R$ for $j \in\left\{m^{\prime}+1, \ldots, m\right\}$. Obviously, $p, h \in P_{j}$ for $j \in\left\{1, \ldots, m^{\prime}\right\}$. Hence, we can choose a natural number l such that for every $j \in\left\{1, \ldots, m^{\prime}\right\}$ we have $h^{l} \in Q_{j}$. Since P is an isolated prime ideal of $I \cap R$ we can choose for every $j \in\left\{m^{\prime}+1, \ldots, m\right\}$ a $q_{j} \in\left(Q_{j} \cap R\right) \backslash P$. For $q:=\prod_{j=m^{\prime}+1}^{m} q_{j}$ we have $q h^{l} \in I$ and $\pi\left(\operatorname{lm}\left(q h^{l}\right)\right)=\pi(q) \cdot \operatorname{lm}(\pi(f))^{l}$. Hence, (3.3) is proved.

For proving semi-stability it suffices to show that

$$
\Delta\left(\operatorname{lm}(I) K\left[x_{1}, \ldots, x_{n}\right]\right) \subseteq \Delta(\langle\{\operatorname{lm}(\pi(f)) \mid f \in I\}\rangle)
$$

Let $\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\} \notin \Delta(\langle\{\operatorname{lm}(\pi(f)) \mid f \in I\}\rangle)$. Then there exists an $f \in I$ such that $\operatorname{lm}(\pi(f)) \in K\left[x_{i_{1}}, \ldots, x_{i_{k}}\right] \backslash\{0\}$. By (3.3), there exists a natural number l with

$$
\operatorname{lm}(\pi(f))^{l} \in\left(\operatorname{lm}(I) K\left[x_{1}, \ldots, x_{n}\right]\right) \cap K\left[x_{i_{1}}, \ldots, x_{i_{k}}\right]
$$

and therefore $\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\} \notin \Delta\left(\operatorname{lm}(I) K\left[x_{1}, \ldots, x_{n}\right]\right)$. Thus, I is semi-stable under π and \prec.
$(c) \Rightarrow(b)$: Let I be an ideal in $R\left[x_{1}\right]$ with $I \cap R=J$ and \prec the uniquely determined admissible order on $P P\left(x_{1}\right)$. If $\operatorname{lm}\left(I K\left[x_{1}\right]\right)=\{0\}$ then I is obviously stable under π and \prec. Hence, we can assume that $\operatorname{lm}\left(I K\left[x_{1}\right]\right)$ is generated by x_{1}^{k} for some non-negative integer k. It follows from (c) that $\operatorname{lm}(I) K\left[x_{1}\right]$ is generated by x_{1}^{l} for some non-negative integer l with $k \leq l$. Assume that I is not stable and therefore $k<l$. By (2.2), there exist f_{1} and f_{2} in I with $\operatorname{deg}\left(\pi\left(f_{1}\right)\right)=k$ and $\operatorname{deg}\left(f_{2}\right)=\operatorname{deg}\left(\pi\left(f_{2}\right)\right)=l$. Let f_{3} be the pseudo-remainder of $x_{1}^{l-k-1} f_{1}$ and f_{2}. Obviously, $l-1=\operatorname{deg}\left(\pi\left(x_{1}^{l-k-1} f_{1}\right)\right)=\operatorname{deg}\left(\pi\left(f_{3}\right)\right)$
and $\operatorname{deg}\left(f_{3}\right)<\operatorname{deg}\left(f_{2}\right)$. Hence, we obtain $\operatorname{deg}\left(f_{3}\right)=\operatorname{deg}\left(\pi\left(f_{3}\right)\right)=l-1$, a contradiction to the definition of l.

Since (b) implies (d) it remains to show $(d) \Rightarrow(a)$:
Assume that P is not an isolated prime ideal of J. Let $J=Q_{1} \cap \ldots \cap Q_{m}$ be an irredundant primary decomposition of J and denote the radical of Q_{i} by P_{i}. We can assume that the Q_{i} s are ordered in such a way that there exists an $m^{\prime} \in\{0, \ldots, m-1\}$ with $P \subseteq P_{j}$ for $j \in\left\{1, \ldots, m^{\prime}\right\}$ and $P \nsubseteq P_{j}$ for $j \in\left\{m^{\prime}+1, \ldots, m\right\}$. Thus the prime ideal P is not contained in $\bigcup_{j=m^{\prime}+1}^{m} P_{j}$ (see Matsumura, 1970, p. 3). Hence, we can choose an element c of P such that

$$
c \in \bigcap_{j=1}^{m^{\prime}} Q_{j} \quad \text { and } \quad c \notin \bigcup_{j=m^{\prime}+1}^{m} P_{j} .
$$

Furthermore, let $\left\{a_{1}, \ldots, a_{r}\right\}$ be a generating set of $J,\left\{b_{1}, \ldots, b_{k}\right\}$ a generating set of $Q_{m^{\prime}+1} \cap \ldots \cap Q_{m}$ and

$$
G:=\left\{a_{1}, \ldots, a_{r}, b_{1} x_{1}, \ldots, b_{k} x_{1}, c x_{1}^{2}-x_{1}\right\} .
$$

Obviously, $\langle G\rangle \cap R=J$. We will show that G is a Gröbner basis of $I:=\langle G\rangle$. Let $S=\left(s_{1}, \ldots, s_{r}, s_{1}, \ldots, s_{k}, s\right)$ be a homogeneous syzygy w.r.t. the tuple $\left(a_{1}, \ldots, a_{r}, b_{1} x_{1}\right.$, $\left.\ldots, b_{k} x_{1}, c x_{1}^{2}\right)$. Since

$$
\left(Q_{m^{\prime}+1} \cap \ldots \cap Q_{m}\right): c=Q_{m^{\prime}+1} \cap \ldots \cap Q_{m}
$$

the coefficient of s is an element of $Q_{m^{\prime}+1} \cap \ldots \cap Q_{m}$. Hence, $s x_{1}$ is an element of the monomial ideal $\left\langle\left\{a_{1}, \ldots, a_{r}, b_{1} x_{1}, \ldots, b_{k} x_{1}\right\}\right\rangle$ and therefore, by Theorem 2.1, G is a Gröbner basis.

We will use this fact in order to show that I is not semi-stable. We have assumed that $J \subseteq P$ and P is not an isolated prime ideal of J. Hence, by definition of m^{\prime}, there exists a $j \in\left\{m^{\prime}+1, \ldots, m\right\}$ with $Q_{j} \subseteq P_{j} \subseteq P$. Thus, $\left\{a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{k}, c\right\} \subseteq P$ and therefore

$$
\Delta\left(\operatorname{lm}(I) K\left[x_{1}\right]\right)=\left\{\left\{x_{1}\right\}, \emptyset\right\} \neq\{\emptyset\}=\Delta\left(\operatorname{lm}\left(I K\left[x_{1}\right]\right)\right) .
$$

Note that the implication $(a) \Rightarrow(b)$ in Theorem 3.2 is a generalization of the main result in Gianni (1987) and Kalkbrener (1987).

In Theorem 3.2 we have proved that every ideal I in $R\left[x_{1}\right]$ with $I \cap R=J$ is stable if and only if $\operatorname{ker}(\pi)$ is an isolated prime ideal of J. In the following theorem we will give a similar characterization of the stability of multivariate ideals. Note that the implication $(a) \Rightarrow(b)$ in Theorem 3.3 is similar to Proposition 3.10 in Bayer et al. (1991) and a generalization of Theorem 2 in Becker (1994).

THEOREM 3.3. Let π be a ring homomorphism from R to K and J an ideal in R with $J \subseteq \operatorname{ker}(\pi)$. Then the following three conditions are equivalent.
(a) $\operatorname{ker}(\pi)$ is an isolated prime ideal of J which equals the corresponding primary component.
(b) For any natural number n, any ideal I in $R\left[x_{1}, \ldots, x_{n}\right]$ with $I \cap R=J$ and any admissible order \prec on $P P\left(x_{1}, \ldots, x_{n}\right), I$ is stable under π and \prec.
(c) For any ideal I in $R\left[x_{1}, x_{2}\right]$ with $I \cap R=J$ and any admissible order \prec on $P P\left(x_{1}, x_{2}\right), I$ is stable under π and \prec.

Proof. Denote the kernel of π by P.
$(a) \Rightarrow(b)$: If P equals the corresponding primary component then it follows from the proof of the previous theorem that we can choose l as 1 in (3.3).

Since (b) implies (c) it remains to show $(c) \Rightarrow(a)$:
If P is not an isolated prime ideal of J it follows from Theorem 3.2 that there exists an ideal I in $R\left[x_{1}, x_{2}\right]$ which satisfies $I \cap R=J$ and is not semi-stable. Hence, we assume that P is an isolated prime ideal of J which is unequal to the corresponding primary component Q. Let $c \in P$ and $l>1$ the smallest natural number with $c^{l} \in Q$. For every non-negative integer j let $B_{j}=\left\{b_{j 1}, \ldots, b_{j i_{j}}\right\}$ be a finite basis of the ideal quotient $J: c^{j}$. Since $J \subseteq J: c \subseteq J: c^{2} \ldots$ is an ascending chain of ideals there exists a natural number r with $J: c^{r}=J: c^{k}$ for every $k \geq r$. Define

$$
G:=\bigcup_{j=0}^{r}\left\{b x_{1}^{j} \mid b \in B_{j}\right\} \cup\left\{c x_{2}-x_{1}\right\}
$$

and $I:=\langle G\rangle$. Obviously, $I \cap R=J$. We will now show that G is a Gröbner basis with respect to every admissible order with $x_{1} \prec x_{2}$. Using Theorem 2.1 it suffices to show that for every homogeneous syzygy $S=\left(s_{11}, \ldots, s_{r i_{r}}, s\right)$ w.r.t. the tuple $\left(b_{11}, \ldots, b_{r i_{r}} x_{1}^{r}, c x_{2}\right)$ the monomial $s x_{1}$ is an element of the monomial ideal generated by $\bigcup_{j=0}^{r}\left\{b x_{1}^{j} \mid b \in B_{j}\right\}$. Let $x_{1}^{k_{1}} x_{2}^{k_{2}}$ be the degree of S. Obviously, the coefficient of s is an element of the ideal generated by $B_{k_{1}+1}$ in R. Hence, $s x_{1}$ is an element of $\left\langle\left\{b x_{1}^{k_{1}+1} \mid b \in B_{k_{1}+1}\right\}\right\rangle$ and therefore an element of the ideal generated by $\bigcup_{j=0}^{r}\left\{b x_{1}^{j} \mid b \in B_{j}\right\}$.

Since P is an isolated prime ideal of J we have $B_{j} \subseteq P$ for $j \in\{0, \ldots, l-1\}$ and $B_{l} \nsubseteq P$. Hence, $\operatorname{lm}(I) K\left[x_{1}, \ldots, x_{n}\right]=\left\{x_{1}^{l}\right\}$ and $\operatorname{lm}\left(I K\left[x_{1}, \ldots, x_{n}\right]\right)=\left\{x_{1}\right\}$.

Let I be an ideal in $R\left[x_{1}, \ldots, x_{n}\right]$ such that $\operatorname{ker}(\pi)$ is an isolated prime ideal of $I \cap R$ but unequal to the corresponding primary component. It has been proved in the above theorem that in this case I is not necessarily stable. The next example shows that even the Gröbner basis property may not be preserved for Gröbner bases of I.

Example 3.1. Let \mathbb{Q} denote the rational numbers and define $R:=\mathbb{Q}[y], K:=\mathbb{Q}$. Let π be the natural map from $\mathbb{Q}[y]$ to $\mathbb{Q}[y] /\langle y\rangle$ and I the ideal in $R\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ generated by

$$
\left\{y^{2}, y x_{1}, x_{1}^{2}, y x_{2}+x_{1}, x_{1} x_{4}+x_{3}\right\}
$$

The set

$$
G=\left\{y^{2}, y x_{1}, x_{1}^{2}, y x_{2}+x_{1}, y x_{3}, x_{1} x_{3}, x_{3}^{2}, x_{1} x_{4}+x_{3}\right\}
$$

is a Gröbner basis of I with respect to the lexicographical order \prec with $x_{4} \succ x_{3} \succ$ $x_{2} \succ x_{1}$. Thus, $I \cap R=\left\langle\left\{y^{2}\right\}\right\rangle$ and $\operatorname{ker}(\pi)=\langle\{y\}\rangle$ is an isolated prime ideal of $I \cap R$. Obviously, I is semi-stable but not stable under π and \prec and the image of G under π is not a Gröbner basis.

As a consequence of Theorems 2.2 and 3.3 we obtain the following characterization of flatness.

Corollary 3.1. Let π be a ring homomorphism from R to K.
(a) The ring homomorphism π is flat iff no proper subideal of the kernel of π is primary.
(b) If $\langle 0\rangle \subseteq R$ is primary but not prime then π is not flat.
(c) If $\langle 0\rangle \subseteq R$ is prime then π is flat iff the kernel of π is $\langle 0\rangle$.

Proof. Denote the kernel of π by P.
(a) Assume that there exists a proper subideal Q of P which is primary. By Theorem 3.3, there exists an ideal $I \subseteq R\left[x_{1}, \ldots, x_{n}\right]$ and an admissible order \prec such that I is not stable under π and \prec. Hence, by Theorem $2.2, \pi$ is not flat.

Assume that no proper subideal Q of P is primary and let I be an ideal in $R\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible order. If $I \cap R \nsubseteq P$ then

$$
\begin{equation*}
\operatorname{lm}\left(I K\left[x_{1}, \ldots, x_{n}\right]\right)=\langle 1\rangle=\operatorname{lm}(I) K\left[x_{1}, \ldots, x_{n}\right] . \tag{3.4}
\end{equation*}
$$

Otherwise, P is an isolated prime ideal of $I \cap R$ which equals the corresponding primary component. By Theorem 3.3, $\operatorname{lm}\left(I K\left[x_{1}, \ldots, x_{n}\right]\right)=\operatorname{lm}(I) K\left[x_{1}, \ldots, x_{n}\right]$. Together with (3.4) and Theorem 2.2, π is flat.
(b) and (c) follow from (a) immediately.

Example 3.2. Let $R:=\mathbb{Q}[x] /\left\langle x^{2}(x-1)\right\rangle$ and consider the following homomorphisms from R to \mathbb{Q} : π_{1} is the natural map from R to $\mathbb{Q}[x] /\langle x\rangle$ and π_{2} is the natural map from R to $\mathbb{Q}[x] /\langle x-1\rangle$. Then π_{2} is flat and π_{1} is not.

Acknowledgements

I am grateful to Hans-Gert Gräbe and Urs Stammbach for helpful discussions and suggestions.

References

Assi, A. (1994). On flatness of generic projections. J. Symbolic Comput. 18, 447-462.
Bayer, D., Galligo, A., Stillman, M. (1991). Gröbner bases and extension of scalars. In Proceedings Comput. Algebraic Geom. and Commut. Algebra, pp. 198-215, Cortona, Italy.
Becker, T. (1994). Gröbner bases versus D-Gröbner bases, and Gröbner bases under specialization. Applicable Algebra in Engineering, Communication and Computing 5, 1-8.
Gianni, P. (1987). Properties of Gröbner bases under specialization. In Proceedings of EUROCAL'87, pp. 293-297, Leipzig, Germany.
Gräbe, H.G. (1993). On lucky primes. J. Symbolic Comput. 15, 199-209.
Kalkbrener, M. (1987). Solving systems of algebraic equations by using Gröbner bases. In Proceedings of EUROCAL'87, pp. 282-292, Leipzig, Germany.
Matsumura, H. (1970). Commutative Algebra. Benjamin, New York.
Möller, H.M. (1988). On the construction of Gröbner bases using syzygies. J. Symbolic Comput. 6, 345-360.
Pauer, F. (1992). On lucky ideals for Gröbner basis computations. J. Symbolic Comput. 14, 471-482.

[^0]: $0747-7171 / 97 / 010051+08 \$ 25.00 / 0 \quad$ sy970113
 (C) 1997 Academic Press Limited

