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Abstract. In this paper we present a framework for the cooperation of symbolic
and propagation-based numerical solvers over the real numbers. This cooperation
is expressed in terms of �xed points of closure operators over a complete lattice of
constraint systems. In a second part we instantiate this framework to a particular
cooperation scheme, where propagation is associated to pruning operators imple-
menting interval algorithms enclosing the possible solutions of constraint systems,
whereas symbolic methods are mainly devoted to generate redundant constraints.
When carefully chosen, it is well known that the addition of redundant constraint
drastically improve the performances of systems based on local consistency (e.g.
Prolog IV or Newton). We propose here a method which computes sets of redun-
dant polynomials called partial Gr�obner bases and show on some benchmarks the
advantages of such computations.

1. Introduction

Several constraint programming languages and systems addressing nu-
merical constraints are based on combinations and/or cooperations of
di�erent methods. Among others, one can cite Prolog IV [8], CLP(BNR)
[5], Newton [4] based on interval methods and local consistency tech-
niques. Most of these systems combine symbolic computations to trans-
form the initial constraint system and interval-based techniques to com-
pute the solutions. The solving process is based on local applications
of operators reducing the domains of possible values for some variables
followed by a search phase recursively applying the operators to select-
ed sub-domains.

As it is well-known by the users of such languages and systems, one
of the consequences of the local application of these operators is that
the computational e�ciency can be drastically improved by adding
redundancies to the initial constraint set. These additions are general-
ly performed by hand and require from the programmer a high-level
knowledge of the constraint engine.
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The aim of this paper is to design a framework to describe the con-
straint solving process that takes into account these symbolic transfor-
mations, to instantiate this framework to solve polynomial constraints
over the reals and to show that the computation of some \useful" redun-
dancies can be automated in this context.

To be general enough, the proposed framework must describe com-
putations of cooperating solvers and provide a declarative semantics
for the resolution process. However, due to size limitations, we restrict
here our study to the case of continuous numerical constraint sets. The
main idea is to consider a complete lattice of constraint systems and to
represent the resolution process as a combination of particular closure
operators over this lattice. Under some conditions on the constraint
solvers, the corresponding algorithm, inspired from well-known work
in Arti�cial Intelligence on Constraint Satisfaction Problems [15, 14] is
shown to be correct, to terminate, to be strategy-independent and to
compute a certain �xed point of these closure operators.

In the second part of the paper, this framework is used to describe a
solver approximating the solutions of systems of nonlinear polynomial
equations over the real numbers. This solver implements a combina-
tion of symbolic transformations, automatic addition of redundant con-
straints, interval Newton methods [16, 1] and enumeration techniques.
The generation of redundant constraints is based on Gr�obner bases
techniques [7]. This technique being essentially developed to improve
the computational behaviour of the solver, the main idea here is to
reduce the combinatorial explosion by computing some particular sets
of S-polynomials. Experimental results are provided to illustrate the
approach.

2. Approximate resolution

In this section, we propose a framework to describe the cooperation of
solvers for approximating the solutions of constraint systems over the
real numbers using local consistency techniques. For a more detailed
presentation of the material discussed in this section see [2].

Solving constraint systems using local consistency techniques con-
sists essentially in iterating two main operations, domain reduction and
propagation, until reaching a stable state. Roughly speaking, if the
domain of a variable x is locally reduced with respect to a constraint
then this domain modi�cation is propagated to all the constraints in
which x occurs, leading to the reduction of other variables' domains
and so on. Being incomplete by nature, these methods have to be com-
bined with enumeration techniques, for example bisection, to separate
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the solutions when it is possible. Domain reduction relies on the notion
of constraint narrowing operators computing over approximate domains

over the real numbers.

De�nition 1. An approximate domain A over IR is a subset of the
powerset of IR, closed under intersection, containing IR and for which
the inclusion is a well founded ordering.

Given an approximate domain A over IR the possible values of a
variable are represented by an element of A, i.e. a subset of IR. Given a
�nite set of n variables, the possible values of the variables appearing
in a given constraint system are represented by an n-ary Cartesian
product of elements of A (the set of such elements is denoted An).

De�nition 2. Let A be an approximate domain over IR. Let � be
an n-ary relation over IR. The function N : An ! An is a constraint

narrowing operator for the relation � i� for every u; v 2 An, the three
following properties hold:

(1) u \ � � N(u); (Correctness)
(2) N(u) � u; (Contractance)
(3) u � v implies N(u) � N(v): (Monotonicity)

As we will develop in the following, combinations of constraint nar-
rowing operators can be viewed as abstract descriptions of solvers.

To take the operational aspects of constraint solving into account we
de�ne Extended Constraint Systems, by associating to each constraint
a constraint narrowing operator.

De�nition 3. Let A be an approximate domain over IR. An Extended

Constraint System (ECS) is a pair (S;X) where S = f(C1; N1); (C2; N2)
: : : ; (Cm; Nm)g is a set of pairs made of a real constraint Ci and of a
constraint narrowing operator Ni for Ci, and X is an n-ary Cartesian
product of elements of A.

The algorithm for processing such systems is essentially an adap-
tation of AC-3 [14] and of the �ltering algorithms used in interval
constraint-based systems like BNR-Prolog [19], CLP(BNR) [5] or New-
ton [4, 20]. Given an initial ECS (S;X) it works by iterating the appli-
cation of constraint narrowing operators until reaching a stable state
as shown below.

Propagation(in f(C1; N1); : : : ; (Cm; Nm)g;inout X = �n
i=1Xi)

begin
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S := fC1; : : : ; Cmg
while S 6= ; and X 6= ; do

Extract Ci from S
X 0 := Ni(X)
if X 0 6= X then

S := S [ fCj j 9vk 2 var(Cj) ^X 0
k 6= Xkg

X := X 0

endif

endwhile

end

The main properties of the algorithms are :

1. it terminates,

2. it is correct (no solutions of the initial system are lost)

3. it is con
uent (the output is strategy independent)

4. if the input is (S;X) and the output (S;X 0), then X 0 is the greatest
common �xed point of the narrowing operators N1; : : : ; Nm includ-
ed in X.

In most cases, the reduction of domains intrinsically depends on the
form of the constraints. For example, it is well known that di�erent
expressions of a real function gives di�erent ranges of variations when
lifted to interval functions. In all constraint systems, this leads to the
implementation of a pre-processing step, in which symbolic transfor-
mations of the initial set are achieved. This step preserves the set of
initial solutions and generates a \better" expression of the problem,
with respect to the involved combination of algorithms. Here follows
the complete algorithm. Given an initial constraint system as input,
the algorithm computes the list Final of canonical domains.

Resolution( in (C;X) ; out Final )

begin

(C 0;X) := Preprocess(C;X)

(S;X) := Generate an ECS from (C 0; X)

Add X in Current

while Current 6= ;
Extract X from Current

X 0 := Propagation(S;X)

if X 0 6= ; and X 0 is canonical

then

Add X 0 in Final
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else

X 0
1; : : : ; X

0
m := Bisection(X 0)

8i 2 f1; : : : ;mg Add X 0
i in Current

endif

endwhile

end

3. Automatic generation of redundant constraints

Another well-known fact by the users of systems based on local consis-
tency properties is that the clever addition of redundant constraints is
often crucial to prune the search space. In this section, we describe a
possible automation of this process by means of a partial computation
of Gr�obner bases.

In a previous paper [3], we have proposed to handle this problem by
computing Gr�obner bases either for the initial problem or for some well-
chosen sub-parts of it. The principal drawbacks were the exponential
complexity of the algorithm in the �rst case, leading to unrealistic
execution times, and the di�culty to compute a relevant partitioning
in the second case. We propose here an alternative method based on
two parameters, depth and �ltering. For self-containment purposes, we
recall brie
y some basics of Gr�obner bases computations.

3.1. Gr�obner bases

The de�nitions can be found in [7, 9]. A polynomial is a sum of monomi-
als which are ordered using a monomial ordering. A monomial ordering
is a total, well founded ordering on monomials which is compatible with
the multiplication on monomials. In what follows, we �x the monomial
ordering and consider that every polynomial is ordered wrt this order-
ing. For every polynomial p, the leading term of p, denoted LT (p) is
the monomial of p which is maximal wrt the monomial ordering.

An S-polynomial is a particular combination of two polynomials
producing the cancellation of their leading terms.

De�nition 4. Let p and q be nonzero polynomials. If x
 is the least
common multiple of the power products appearing in LT (p) and LT (q),
then the S-polynomial of p and q is the combination

S(p; q) =
x


LT (p)
p�

x


LT (q)
q

Given p a nonzero polynomial and S = fp1; : : : ; png a set of polyno-
mials, p can be written as p =

Pn
i=1 aipi + r such that either r is the
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zero polynomial or r is a linear combination of monomials such that
none of which is divisible by any of LT (p1); : : : ; LT (pn). r is obtained
as the remainder of the division of p wrt S and is called the reduction
of p wrt S, denoted pS .

The following de�nition for Gr�obner bases gives their algorithmic
characterization and is due to Buchberger [7]:

De�nition 5. Let S = fp1; : : : ; png be a set of polynomials. S is a
Gr�obner basis i� for all pairs (i; j) 2 f1; : : : ; ng the reduction wrt S of
the S-polynomial S(pi; pj) is equal to 0.

The basic algorithm computing Gr�obner bases consists in successive
computations of reduced S-polynomials over the initial set of polynomi-
als augmented by the computed S-polynomials di�erent from zero. The
algorithm stops, after a �nite number of steps, when no S-polynomial
di�erent from 0 can be computed. The resulting set of polynomials is
a Gr�obner basis and is denoted GB(S).

3.2. Partial Gr�obner bases

We �rst introduce the notion of depth of S-polynomials.

De�nition 6. Let S be an ordered set of polynomials. We de�ne the
ordered sets Si of S-polynomials(

S0 = S

Si = Si�1 [ fS(p; q)
Si�1

6= 0 jp; q 2 Si�1g; i � 1

where S(p; q) is the S-polynomial of p and q. The set Si is called the
S-set of depth i.

The polynomials of S are ordered according to their order of appear-
ance and the sets Si are computed wrt this ordering. Since the number
of nonzero S-polynomials that can be computed to reach a Gr�obner
basis is �nite, S-set computations are �nite, i.e. it exists n such that
Sn = Sn�1.

Proposition 1. If n is such that Sn = Sn�1 and does not contain any
constant S-polynomial then Sn is a Gr�obner basis.

Inconsistency can be detected during S-set computations. By appli-
cation of the Weak Nullstellensatz theorem, if a constant nonzero S-
polynomial is computed the initial set of polynomials has no common
root.
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From a practical (and heuristic) point of view, the idea is to compute
S-sets of a certain depth, verifying suitable properties. Such sets are
called partial Gr�obner bases. One of the problems is to experimentally
determine a \reasonable" depth and adequate properties of the selected
S-polynomials.

We give now a basic example of Gr�obner bases computations related
in terms of S-sets.

Example 1. Let S = fx3�2xy; x2y�2y2+xg be a set of polynomials.
The S-sets of S are computed using the reverse lexicographic ordering
with x > y:

S0 = fx3 � 2xy; x2y � 2y2 + xg
S1 = S0 [ fx

2g
S2 = S1 [ f2xy; 2y

2 � xg

S2 is a Gr�obner basis for S. Computing S1 from S is quite a good result
for solving the equations fx3�2xy = 0; x2y�2y2+x = 0g because the
resolution of x2 = 0 is easy using eitheralgebraic or interval methods.

4. Combining partial Gr�obner bases and box-consistency

We propose to instantiate the general scheme de�ned in section 2 for
solving real polynomial equations.

The constraint systems are pre-processed by computing S-sets over
the rational numbers. Then from the transformed system an ECS is
generated and de�ned over intervals. The approximate domain we con-
sider is the set made of all the closed 
oating point intervals.

The notion of box-consistency was introduced and formally de�ned
in [4]. Without entering the details it characterizes the common �xed-
point of narrowing operators acting over interval projections of multi-
variate polynomials. We use in our system the narrowing operators used
in the Newton system. For a detailed presentation of these operators
see [20].

Basically, the �rst one is based on an extension over intervals of the
well-known Newton root �nding method over the real numbers. This
method has been extended to interval functions [16, 11, 1, 13, 18]. Let
f be a real function. Let X be an interval and suppose that F 0 is the
natural interval extension of f 0, F the natural interval extension of f
and m(X) the approximation of the center of X. The Newton interval
function is the function

N(X) = m(X)� F (m(X))=F
0

(X)
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From this de�nition one can design an interval Newton method enclo-
sing roots of interval functions. Given an initial interval X0 and an
interval function F , a sequence of intervals X1;X2; : : : ;Xn is computed
using the iteration step Xi+1 = N(Xi)\Xi. Xn is either empty, which
means that X0 contains no zero of F , or is a �xed point of N .

The second narrowing operator is derived from the mean value form
[16] where the function is approximated using a Taylor expansion of
order 1 around the center of the domains of the variables. Given f a
real function, F its natural interval extension and J an interval,

F (m(J)) +
nX
i=1

@F

@xi
(J)(Xi �mi(J)) = 0

If this equality is projected on a variable xi then the interval for the
variable can be expressed as

Xi = mi(J)�
1
@F
@xi

[F (m(J)) +
nX

j=1;j 6=i

@F

@xj
(J)(Xj �mj(J))]

This expression gives a method to reduce the interval for xi using the
Taylor narrowing operator, denoted Ti and computing a new interval
for xi with this formula. The new interval for xi can be computed
directly as Xi \ Ti(X).

To compute the ECS, the main idea is to consider, for each con-
straint over n variables, 2n \copies" of the constraint. To each copy
is associated one of the two constraint narrowing operators previously
de�ned, over closed 
oating point intervals.

5. Experimental results

We have designed in the C language a prototype of constraint solver,
called Cosinus, implementing exactly the method presented in the sec-
tion 4. The Gnu-Multi-Precision library [10] implements computations
over the rationals.

The table I presents the computational results given by Cosinus on
various benchmarks: parabola (geometric intersection problem), cubic
(cubic-parabola), chemistry (combustion chemistry problem), Brown
(Brown's almost linear system) from [12], Eiger (extended Eiger-Sikor-
ski-Stenger function), hexane, cyclic3 (variant of Cyclic n-roots [3]),
cyclic4 (variant of Cyclic n-roots [4]) from [6], geometric (geometric
intersection problem) from [17], Czapor, Winkler from [21] and neuro
(neurophysiologic problem) from [20].
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Table I. Experimental results.

S-set Interval Total

S d t � t n N t1 t2 R

parabola 1 1 0.01 0 0.01 2 2 0.02 0.10 5

cubic 1 1 0.01 2 0.05 2 3 0.06 0.73 12

chemistry 2 2 0.34 0 0.25 4 1 0.59 1.19 2

Brown 4 1 0.04 1 0.19 5 2 0.23 1 %

Eiger 2 3 0.02 1 0.15 4 2 0.17 0.34 2

geometric 1 3 0.06 1 0.23 2 2 0.29 7.00 24

hexane 3 4 0.55 15 3.75 3 16 4.30 279.45 65

cyclic3 2 3 0.01 1 0.10 3 2 0.11 1 %

cyclic4 3 5 0.16 7 0.97 4 4 1.13 1 %

Czapor 2 4 0.13 3 0.40 3 2 0.53 26.60 50

Winkler 2 5 0.09 1 0.44 3 2 0.53 9.17 17

neuro 4 4 0.47 13 1.36 6 8 1.83 1 %

In their order of appearance in the table, the labels of columns are :
\S" is the number of S-polynomials added in the initial system, \d"
the depth of the last computed S-set and \t" the computation time of
S-sets ; \�" is the number of bisections on domains and \t" the com-
putation time of interval methods ; \n" is the number of polynomials
in the initial system, \N" the number of solutions of the initial system,
\t1" the total computation time in seconds given by Cosinus, \t2" the
total computation time of interval methods if S-set computations are
disconnected and \R" the ratio between \t2" and \t1" to point out the
improvement following S-set computations.

The results were computed on a Sun Sparc 4 (110 Mhz) and the
precision is 10�12 (the width of the resulting intervals of the numerical
resolution process). A \1" indicates that the computation time takes
more than an hour. A \%" means that the ratio between t1 and t2 is
large.

The collection of benchmarks illustrates the advantages of using
Gr�obner bases to speed-up interval computations. However, in some
cases, interval methods have no need of Gr�obner bases : a fast conver-
gence of interval methods on the initial system ensures a good compu-
tation time which may not be improved adding redundant constraints ;
the computation time of S-sets may become too large with respect to
the computation time of interval methods on the initial system.

6. Conclusion

In this paper, we have proposed a uniform framework for the combina-
tion of symbolic, interval-based and local consistency techniques. We
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have applied this framework to the computation of box-consistent sys-
tems using interval Newton and centered form methods combined with
the computation of redundant constraints based on partial Gr�obner
bases. Further work concerns the design of other techniques for redun-
dancy generation and extensive benchmarking to determine precisely
the average depth and the most relevant criterions for partial Gr�obner
bases computations.
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