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1. INTRODUCTION

For the computation of Gröbner bases [1] and their
particular case, involutive bases [2–4], the DegRevLex
ordering is most convenient. However, the basis with
such ordering is difficult to use for one of the most

important applications, namely, for computing roots of
systems of equations. For this purpose, a lexicographi-
cally ordered basis is most convenient. The algorithm
FGLM (the abbreviation stands for the first letters of its
authors’ names) [5] transforms Gröbner bases from one
ordering to another. Since a Gröbner basis can easily be
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Abstract

 

—In this paper, an implementation of the FGLM algorithm that transforms Gröbner bases from one
ordering to another is presented. Some additional optimizations that considerably expedite computations are
considered. It is shown that this algorithm can be used for finding roots of polynomial systems represented in
the involutive form.
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derived from an involutive basis (it is sufficient to carry
out reduction with respect to an ordinary division), this
algorithm can be efficiently used for the computation of
a lexicographical basis of the system represented in an
involutive form and subsequent finding of its roots.

2. FGLM ALGORITHM

The FGLM algorithm is presented in the figure. The
transformation of a basis from one ordering to another
consists in the following. First, a sequence of monomi-
als is constructed, starting from the least ones in the
new ordering and their normal forms in the old basis
(structure 

 

M

 

 

 

Basis

 

 in the algorithm) until there appears
a monomial whose normal form is a linear combination
of normal forms of the preceding monomials. In this
case, we add the element obtained to the new basis
(structure 

 

staircase

 

 for the leading monomials of the
new basis) and turn to the construction of a basis ele-
ment with the next variable in this ordering.

The computation of the normal form of a monomial
is simplified if we use the fact that the normal forms of
its divisors are already known. Let 
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3. SOME OPTIMIZATIONS

The major part of the algorithm operation time is
spent on checking whether the normal form of the cur-
rent monomial is a linear combination of those of the

preceding monomials. This checking reduces to solv-
ing systems of linear equations with very long (thou-
sands of decimal digits) coefficients. The number of
systems to be solved is pretty large (equal to the num-
ber of monomials under consideration), which results
in considerable time expenditures on the corresponding
arithmetic operations. On the other hand, arithmetic
calculations related to the checking of linear depen-
dence can be reduced if we first perform this operation
over a ring of coefficients modulo a certain prime num-
ber. Clearly, if there is no linear dependence in the mod-
ular case, it lacks in the case of long coefficients either.
Indeed, let us assume that there exists a linear depen-
dence in the latter case. Then, dividing all coefficients
of the corresponding linear combination by the integer
greatest common divisor and taking them modulo the
selected prime number, we obtain linear dependence
for the modular case. Conversely, it is evident that the
existence of modular linear dependence implies linear
dependence in the case of integer coefficients. Taking
this into account, we first check modular linear depen-
dence; then, only if it exists, we turn to the arithmetic
over the ring of integers for the explicit finding of the
coefficients of the linear combination.

Another expedient makes it possible to reduce over-
heads related to the work with memory (which can add
up to 80% of the algorithm operation time). We use the
fact that, after the involutive basis has been computed,
the number of roots of the system and, thus, the maxi-
mum dimension of the matrix to work with is known.
Therefore, it is sufficient to place this matrix into the
memory only once, upon the algorithm initialization,
and, then, to fill it by using the pointer exchange.
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Example var

 

T

 

DegRevLex

 

T

 

FGLM

 

Roots Basis

 

lex

 

 (Kb)

assur44 8 65.60 2540.06 56 2506

chemkin 10 67.62 7086.27 80 4093

chemequs 5 4.09 163.24 16 1105

cpdm5 5 4.79 452.84 213 492

cyclic6 6 0.36 2.15 156 12

cyclic7 7 193.60 38554.1 924 696

d1 12 40.98 1250.82 48 2770

dessin18

 

–

 

3 8 0.81 235.56 46 986

dessin22

 

–

 

24 10 3.14 94.87 42 512

eco8 8 1.12 119.50 64 91

extcyc5 6 4.36 184.10 350 118

fabrice24 9 649.14 4883.80 40 5616

filter9 9 38.73 1.22 192 18

jcf26 34 1317.05 30075.50 40 8373

reimer5 5 0.98 8.53 144 29

reimer6 6 50.24 2132.89 576 140

virasoro 8 25.10 120.92 256 992
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These two simple techniques made it possible to
considerably expedite computations. For example, the
run time for the “virasoro” test when using the old and
new versions of the program was more than one day
and about 121 s, respectively. Such a great reduction in
the computation time took place in other examples as
well; the corresponding results are presented in the
table. Moreover, without the optimizations discussed,
some examples (e.g., “cyclic7”) took too much com-
puter time (certainly, more than several days).

4. RESULTS

The computations were carried out on PIII-700 MHz,
1 Gb RAM, under RedHat Linux 6.2. The program was
compiled by Intel C/C++ v(5.0.1.). All timings are in
seconds. The test examples

 

1

 

 were borrowed from the
databases [6, 7].
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These, as well as some other, examples can be found on the Inter-
net: http://invo.jinr.ru
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