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Abstract. The factorability of one-dimensional (1-D) FIR lossless transfer matrices [1] in terms of Givens

rotations produces the parameters that can be used for an optimal design of filter banks with prespecified filtering

characteristics. Two dimensional (2-D) FIR lossless systems behave quite differently, however. Venkataraman-

Levy [2] and Basu-Choi-Chiang [3] have constructed 2-D FIR paraunitary matrices of McMillan degrees (2 , 2)

that are not factorable. Because of the state-space realization used in the construction, they are floating-point

approximations, and they do not produce explicit parametrizations that can be used for optimal design process. In

this paper, we formulate the lossless condition and nonfactorability condition of a 2-D FIR paraunitary matrix

using multivariate polynomials in the coefficients. The resulting polynomial system can be explicitly solved with

Gröbner bases. By studying the polynomial system, we obtain a continuous one parameter family of 2-D 2�2

non-factorable paraunitary matrices. As an example, we get a closed-form expression for a 2-D 2�2 paraunitary

matrix that is not factorable into rotations and delays.
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1. Introduction

One-dimensional (1-D) FIR lossless transfer matrices have been well studied in the past,

and are known to demonstrate nice properties. Especially, their factorability in terms of

Givens rotations produces parameters that can be used for an optimal design of filter banks

with prespecified filtering characteristics [1]. Two dimensional (2-D) FIR lossless systems

behave quite differently, however. Venkataraman-Levy [2] and Basu-Choi-Chiang [3] have

constructed 2-D FIR paraunitary matrices of McMillan degrees (2, 2 ) that are not

factorable. Both examples were constructed using the state-space realization, and thus

are expressed as floating-point approximations. Also, they do not produce parametriza-

tions that can be used for optimal design process.

Definition 1.1. 1. For a square Laurent polynomial matrix H(z1,. . .,zm), its parahermitian

conjugate H~ (z1, . . . ,zm) is

H~ ðz1; . . . ; zmÞ :¼ Hðz�1
1 ; . . . ; z�1

m Þt:

2. H(z1,. . .,zm) is called paraunitary if it satisfies H~�H=H�H~ = I.

Recall that an m-dimensional FIR system is represented by a transfer matrix

H(z1,. . .,zm) whose entries are Laurent polynomials. This transfer matrix is paraunitary
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if the underlying system is a lossless system. Since the inverse of a paraunitary matrix

is also paraunitary and belongs to the ring of Laurent polynomials, the associated filter

bank has both synthesis and analysis filters that are FIR and satisfy the perfect

reconstruction property.

Remark 1.2. It is assumed in this paper that the field of coefficients is R. Most results of

this paper can be readily extended to the case of coefficient field C. Over C, the transpose
should be replaced by conjugate transpose.

When m=0, paraunitary matrices are just ordinary orthogonal matrices and, are simply

products of rotations (up to sign).

When m=1 (univariate case), a classification theorem on the paraunitary matrices was

obtained by P. P. Vaidyanathan [1], which asserts that the group of paraunitary matrices is

generated by rotations (constant unitary matrices) and delays (diagonal matrices with

monomial entries).

This result can not be extended to the multivariate case (i.e. m > 1) as demonstrated by

counter-examples mentioned above.

In this paper, we formulate the lossless condition and non-factorability condition of a

2-D FIR paraunitary matrix using multivariate polynomials in the coefficients. The

resulting polynomial system can be explicitly solved with Gröbner bases. By taking a

convex geometric approach with the polynomial system, we obtain an explicit para-

metrization of 2-D 2�2 non-factorable paraunitary matrices. By specializing at specific

values of the parameters, we get a closed-form expression for a 2-D 2�2 paraunitary

matrix that is not factorable into rotations and delays.

It is noted that this type of parametrization is quite relevant in the field of 2-D

nonseparable FIR filter bank design, lossless FIR filter bank realization and other related

areas. For example, J. Kovačević and M. Vetterli [4] used the parametrization of 2-D

factorable FIR paraunitary matrices (in terms of rotations and delays) to construct a

nonfactorable 2-D wavelet of high regularity.

Remark 1.3. The approach taken in this paper can be extended to the higher dimensions

(m>2) in a straightforward manner.

NOTATION: If H(z1,z2) is a transfer matrix representing a causal system, then all of its

entries are polynomials in z1
�1 and z2

�1, i.e. no monomials involved have positive powers.

For the notational and computational convenience, we will replace z1
�1 by x and z2

�1 by

y. In this convention, a polynomial matrix H(x ,y) represents a causal system.

2. The Structure of 2-D Paraunitary Matrices

LEMMA 2.1: The determinant of a paraunitary matrix H(x ,y) is a monomial of the form

±xn1yn2 for some n1,n22 Z.
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Proof: From H�H~ = I, we see that det(H)�det(H~ ) = 1, i.e. det(H) is an invertible element

of the Laurent polynomial ring R[x±1,y±], which must be a monomial. Therefore,

det(H) = ± xn1yn2. 5

Multiplying by a delay if necessary, we assume that all the paraunitary matrices being

considered are polynomial matrices.

Proposition 2.2 Let H(x,y) be a square paraunitary polynomial matrix with determinant

± xn1yn2. Then it can be written uniquely in the following form:

Hðx; yÞ ¼
Xn1
i¼0

Xn2
j¼0

hijx
iy j

where hij’s are square matrices with constant entries.

Proof: Since H(x,y) can be uniquely written as

Hðx; yÞ ¼
X

ði ; jÞ2I
hijx

iy j

for a finite index set I, it remains to show that hij= 0 if i> n1 or j> n2. Let

�1 := max{i|hij 6¼ 0 for some j} and �2:=max{ j|hij 6¼ 0 for some i}.

Claim: �1 = n1 and �2 =n2.

One can write

Hðx; yÞ ¼ h0ðyÞ þ h1ðyÞxþ : : : þ h�1ðyÞx�1

for some polynomial matrices hi( y) with h�1( y) being not identically zero. Now, let ei� be

any fixed point on the unit circle. Then H(x,ei�) is a univariate paraunitary matrix whose

determinant has degree n1. By using the Vaidyathan-type factorization into rotations and

delays, one sees that the highest degree term in the expansion of H(x,ei�) with respect to x

is precisely xn1. This means �1 is at least n1. Suppose that �1>n1. Then, h�1(e
i�)=0. Now that

this is true for any point ei� on the unit circle, by analytic continuation, the polynomial

matrix h�1( y) must be a zero matrix. This contradicts the definition of �1. Therefore, �1=n1.
And a similar method gives �2=n2. 5

Definition 2.3. For any polynomial matrix G2Mlm(R[x,y]) with the minimal represen-

tation G=�i=0
k1 �j=0

k2 hij x
i y j, we say G is of type (k1,k2) 2Z2 and we call k=k1+k2 the

total degree of G.

Using this new terminology, Proposition 2.2 can be rephrased as follows:

COROLLARY 2.4: The type of a paraunitary polynomial matrix is equal to the exponent

vector of its determinant.
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An immediate but very useful corollary of this lemma is,

COROLLARY 2.5: Let H(x,y) be a square paraunitary polynomial matrix. If the

determinant of H(x,y) does not involve the variable x ( y, resp.), then H is a polynomial

matrix that does not involve the variable x ( y, resp.).

Let H(x, y) be a 2�2 paraunitary polynomial matrix, and let v(x, y) be its first column

vector. Then the factorability of H(x, y) clearly implies the factorability of v(x, y), that is, if

Hðx; yÞ ¼ H1ðx; yÞH2ðx; yÞ

for two paraunitary polynomial matrices H1(x, y) and H2(x, y), then

v ¼ H1v2

where v2 is the first column vector of H2.

Now, the following lemma asserts that the converse is also true, thereby relating the

factorability of a paraunitary matrix with that of a unit norm vector. Since, from a

computational point of view, the unit norm vectors are easier to deal with than the

paraunitary matrices, we will actually consider the factorability of the polynomial vectors

of unit norm rather than that of the paraunitary matrices.

LEMMA 2.6: Let H(x, y) be a 2�2 paraunitary matrix with det(H) = xn1yn2, and v be its

first column vector. Suppose v is perfectly factorable, i.e.

v ¼ UdDdUd�1Dd�1
: : : U1D1v0 ð2:1Þ

where U1,. . .,Ud are 2�2 orthogonal matrices, v02R2 is a constant unit norm vector, and

each delay Di is either
1 0

0 x

0
@

1
A or

1 0

0 y

0
@

1
A. Then H(x ,y) is also perfectly factorable.

Proof: Note that Pi=1
d |Di|=x

k1y k2 for some positive integers k1 and k2. Write v0=

v0=
a

b

0
@

1
A for a,b2R with a2+b2=1. Then one checks easily that

H ¼ UdDdUd�1Dd�1
: : : U1D1

a �x n 1�k 1y n2� k2b

b x n1�k1y n2�k2a

0
@

1
A

¼ UdDdUd�1Dd�1
: : : U1D1

a �b

b a

0
@

1
A 1 0

0 x n 1� k 1y n2� k2

0
@

1
A:

5
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3. Gröbner Bases and Factorability

Consider a vector v=
f

g

0
@

1
A2(R[x,y])2 of unit norm. Then v satisfies

v
~
v ¼ ð f

~

g
~ Þ

f

g

0
@

1
A

¼ f
~

f þ g
~
g

¼ f ðx�1; y�1Þf ðx; yÞ þ gðx�1; y�1Þgðx; yÞ

¼ 1:

The component polynomials f, g2R[x] are constrained by the unit norm condition
v~v=1, and this constraint can be described by a system of quadratic polynomials in
the coefficients of f , g. Let us determine when these algebraic relations describing the
unit norm condition on v guarantee the decomposition of v as in Lemma 2.6.

Let v=
f

g

0
@

1
A2 (R[x ,y])2 be of unit norm of type (k1 , k2) with total degree d, and let

�= xk1yk22R[x,y]. Then �v~ becomes a polynomial vector. Define a paraunitary

matrix H2M2(R[x , y ]) by

H ¼
f ��g

~

g �f
~

0
@

1
A:

If the total degree d=2, then we get the following three cases to consider; det(H)=x2,
xy, y2.
In terms of v, we see that v is of type (2 , 0), (1 , 1) and (0 , 2), in respective cases.

The two cases when v is of type (2,0) and of type (0 ,2) are trivial by Corollary 2.5 since

these are just univariate cases.

Suppose, therefore, v is of type (1,1), i.e. det(H ) = xy. In this case, by Proposition 2.2,

we can write

H ¼ h00 þ h10 xþ h0;1 yþ h11 xy

for some constant matrices hij’s. The corresponding expression for v is,

v ¼ v00 þ v10xþ v0;1yþ v11xy
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for some v00,v10,v0,1,v112R2. Define the real numbers aij,bij, 0
i, j
1, by vij=
aij

bij

0
@

1
A

and consider

1 ¼ v
~
v

¼ ðvt00 þ vt10x
�1 þ vt0;1y

�1 þ vt11x
�1y�1Þðv00 þ v10xþ v0;1yþ v11xyÞ:

Equating the respective coefficients of x and y, we get the following set of relations:

0 ¼ vt11v00 ¼ a01 a10 þ b01 b10

0 ¼ vt10v01 ¼ a00 a11 þ b00 b11

0 ¼ vt10v00 þ vt11v01 ¼ a00 a10 þ a01 a11 þ b00 b10 þ b01 b11

0 ¼ vt01v00 þ vt11v10 ¼ a00 a01 þ a10 a11 þ b00 b01 þ b10 b11

1 ¼ vt00v0;0 þ vt01v0;1 þ vt10v1;0 þ vt11v11

¼ a200 þ a201 þ a210 þ a211 þ b200 þ b201 þ b210 þ b211: ð3:1Þ

Note here that the above set of relations gives defining equations for a unit norm vector

of type bounded by (1,1), that is, if we choose any real numbers aij’s and bij’s satisfying

above set of relations, and define a polynomial vector v by v=
P1

i = 0

P 1
j = 0

aij

bij

0
@

1
A x i y j,

then v will be a unit norm vector of type 
(1,1).

Define the five polynomials hi, 1
 i
5 by

h1 ¼ a01 a10 þ b01 b10

h2 ¼ a00 a11 þ b00 b11

h3 ¼ a00 a10 þ a01 a11 þ b00 b10 þ b01 b11

h4 ¼ a00 a01 þ a10 a11 þ b00 b01 þ b10 b11

h5 ¼ a200 þ a201 þ a210 þ a211 þ b200 þ b201 þ b210 þ b211 � 1:

Note that each hi is an element of the polynomial ring

R½a00; a10; a01; a11; b00; b10; b01; b11�:

Then, the fixed values of aij’s and bij’s satisfying the set of relations in (3.1) can be

described as the set V(h1, h2, h3, h4, h5)R8, i.e. the set of common zeros of the

polynomials hi’s. The set V(h1, h2, h3, h4, h5) will be called the Paraunitary Variety of

type (1,1).

The real valued points on this subvariety of affine 8-space are in one-to-one

correspondence with the unit norm polynomial vectors of type 
(1,1), and thus

paraunitary matrices of determinant xn1yn2 with (n1, n2)
(1,1). Therefore, this
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variety precisely parametrizes all the paraunitary matrices whose determinant is a

factor of xy.

To see what type of algebraic relations on ai’s and bi’s assure the factorability of v as in

Lemma 2.6, assume

v ¼ Rð�ÞDðxÞv0 ð3:2Þ

for a certain rotation matrix R(�), the delay D(x) =
1 0

0 x

0
@

1
A, and a polynomial vector

v02(R[x,y])2. Letting v0( y)=v00+v01y and v1( y)=v10+v11y, we get

Rð�Þtv ¼ Rð�Þtðv0ðyÞ þ v1ðyÞxÞ

¼ Rð�Þtv0ðyÞ þ Rð�Þtv1ðyÞx

¼ DðxÞv0 ¼
1 0

0 x

0
@

1
Av0:

Since the second component of the vector R (� )tv is divisible by x, its constant term, that

is, the second component of the vector R(�)tv0( y), should be zero. So, we get

(�sin(�),cos(�))v0( y) = 0, i.e.

ð�sinð�Þ; cosð�ÞÞv00 ¼ ð�sinð�Þ; cosð�ÞÞv01 ¼ 0:

Conversely, if there exists a nonzero constant vector (a , b) such that (a ,b)v0( y ) = 0, then

v splits as in (3.2), with Rð�Þ ¼ 1ffiffiffiffiffiffiffiffiffi
a2þb2

p
b a

�a b

0
@

1
A . We can do the same to see when v splits

with the factor R(�)D( y). The following summarizes this observation:

The vector v splits as in (2.1)

() ‘‘(a , b) v00 = (a , b) v01 = 0’’ or ‘‘(a , b) v00 = (a , b) v10 = 0’’ has a nontrivial solution

(a , b).

()
a00 b00

a01 b01

0
@

1
A a

b

0
@

1
A ¼ 0 or

a00 b00

a10 b10

0
@

1
A a

b

0
@

1
A ¼ 0 has a

nontrivial solution

a

b

0
@

1
A:

() v00 k v01 or v00 k v10: ð3:3Þ
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() a00b01 � b00a01 ¼ 0 or a00b10 � b00a10 ¼ 0:

() h :¼ ða00b01 � b00a01Þða00b10 � b00a10Þ ¼ 0: ð3:4Þ

Let I (1,1)R [a00 , a10 , a01 , a11 , b00 , b10 , b01 , b11] be the ideal generated by the 5 qua-

dratic polynomials hi, 1
i
5. Since any point in the variety V (I (1,1)) defines a unit norm

vector of type 
(1,1) and an arbitrary point in V (h) defines a vector decomposable as in

Lemma 2.6, showing V(I (1,1)) V(h) is equivalent to showing that any unit norm vector

of type 
(1,1) is factorable as in Lemma 2.6. Therefore, the problem of determining the

factorability of v boils down to:

V ðIð1; 1ÞÞ  V ðhÞ? ð3:5Þ

This is a well known problem in computational algebraic geometry which, over C, can

be rephrased in terms of the radical membership problem using the Hilbert Nullstellensatz.

Recall that, for an ideal I of an arbitrary commutative ring R, its radical ideal
ffiffi
I

p
is defined asffiffi

I
p

:¼ fh 2 R j hn 2 I for some n 2 Ng:

The following lemma gives a necessary and sufficient condition for the question in (3.5) to

have a positive answer over the complex field C.

LEMMA 3.1: ([5]) Let R be the polynomial ring C[x1,. . .,xn]. Let I be an ideal of R, and

g2R. Then,

V ðIÞ  V ðgÞ () g 2
ffiffi
I

p

Unfortunately, our ground field is not C but R. In this case, above lemma still
provides a sufficient condition for factorability.

LEMMA 3.2: ([5]) Let R be the polynomial ring R[x1,. . ., xn]. Let I be an ideal of R, and

g2R. Then,

g 2
ffiffi
I

p
) V ðIÞ  V ðgÞ:

Now the following radical ideal membership algorithm can be used for our computa-

tional test of f2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ið1; 1Þ

p
.

LEMMA 3.3: (Radical Ideal Membership, [5]) Let R be the polynomial ring R[x1,. . ., x n].
Let I be an ideal of R, and g2R. Then, g2

ffiffi
I

p
if the ideal (I,1–t �g) of the ring

R[t]=R[x1,. . ., xn , t] is the unit ideal, i.e. 1 belongs to the ideal (I,1–t �g).

Remark 3.4. Note here that we have introduced a new variable t.

The ideal (I(1,1),1– t �h) = (h1,h2 ,h3 , h4 ,h5 , 1– t �h) is a unit ideal if its Gröbner bases is
{1}. Hence we can use any existing computer algebra packages to compute the Gröbner

bases of the six polynomials h1,h2 ,h3 , h4 ,h5 , 1– t �h in 9 variables.
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For the Gröbner bases computation, the computer algebra package Singular [6] was used

on a PC running Linux with 800Mz CPU and 256MB of memory.

For the above case (d=2), the computation gave us the positive answer in less

than a second, that is, it showed that the Gröbner bases of h1 , h2 , h3 ,h4 ,h5 , 1–t �h
is just {1}. This means that all paraunitary matrices of total degree 2 are

factorable.

For higher d ’s, the corresponding radical ideal membership can be checked in the same

fashion even though the Gröbner bases computation is much more involved.

For d=3, there are 4 types of Paraunitary Variety; of type (3,0) , (2 ,1) , (1 ,2), and (0,3).

The (3,0) , (0 ,3) cases are trivially factorable by Corollary 2.5, and by symmetry, we have

only to consider the type (2,1) case. The Paraunitary Variety of type (2,1) is defined by 8

quadratic polynomials in the affine 12-space, and there are 3 polynomials of degree 4

whose radical ideal membership is to be checked. The Gröbner bases computation in this

case took 20 seconds, and produced {1}. Therefore, all paraunitary matrices of total degree

3 are factorable.

For the d=4 case, there are two nontrivial cases to consider; of type (3,1) and of type

(2 ,2). The Paraunitary Variety of type (3 ,1) is defined by 11 quadratic polynomials in the

affine 16-space, and there are 6 polynomials of degree 4 whose radical ideal membership

is to be checked. For the type (2,2) case, which is defined by 13 quadratic polynomials in

the affine 18-space, there are 9 polynomials of degree 4 whose radical ideal membership

is to be checked. The computation done in the next two sections shows that the

Paraunitary Varieties of type (3,1) and (1,3) are completely factorable while the Para-

unitary Variety of type (2 ,2) is not. So the simplest non-factorable case should occur at

type (2,2).

To describe the non-factorable case more explicitly, let hi’s, i=1, . . .,13 be the 13

quadratic polynomials in R[aij ,bi j |0
i , j
2] that describe the Paraunitary Variety of type

(2 ,2). Let h be one of the 9 polynomials describing the factorability condition such that the

ideal generated by hi’s and 1– t �h is not the unit ideal. Then, by Hilbert Nullstellensatz, the
14 polynomials, hi’s and 1– t �h, have a common zero over C. If one could explicitly
solve the polynomial system

hi ¼ 0; 1� t � h ¼ 0; 1 
 i 
 13;

then the corresponding values of aij’s and bij’s will produce a non-factorable unit
norm vector of type (2,2).
Unfortunately, this polynomial system turned out to be too complex even for a powerful

Gröbner basis package like Singular. A Gröbner basis package known to be extremely

powerful and may suit the problems of this size is FGb.1 The author was not able to access

FGb yet, but FGb appears to be a promising alternative.

We will develop another method in the next section which exploits the geometrical

structure of the polynomials involved. With this method, a parametrized family of non-

factorable 2�2 paraunitary matrices of type (2 ,2) is obtained. It has to be noted that, with

a very powerful Gröbner basis engine, the geometric reasoning done in the next section

could be automated.
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4. Convex Geometric Approach

With the convex geometric approach to be taken in this section, we will actually construct

the following non-factorable paraunitary matrix H=
h11 h12

h21 h22

0
@

1
A of type (2 ,2) where

h11 ¼
1

52
ffiffiffiffiffiffiffiffiffiffi
1365

p ð420þ 72
ffiffiffiffiffi
35

p
xþ 105x2 þ 560y� 122

ffiffiffiffiffi
35

p
xy� 140x2y� 105y2 � 60

ffiffiffiffiffi
35

p
xy2Þ

h21 ¼
1

52
ffiffiffiffiffiffiffiffiffiffi
1365

p ð30
ffiffiffiffiffi
35

p
xþ 105x2 þ 70yþ 132

ffiffiffiffiffi
35

p
xy� 770x2yþ 105y2 þ 102

ffiffiffiffiffi
35

p
xy2 þ 840x2y2Þ

h12 ¼
1

52
ffiffiffiffiffiffiffiffiffiffi
1365

p ð�840� 102
ffiffiffiffiffi
35

p
x� 105x2 þ 770y� 132

ffiffiffiffiffi
35

p
xy� 70x2y� 105y2 � 30

ffiffiffiffiffi
35

p
xy2Þ

h22 ¼
1

52
ffiffiffiffiffiffiffiffiffiffi
1365

p ð�60
ffiffiffiffiffi
35

p
x� 105x2 � 140y� 122

ffiffiffiffiffi
35

p
xyþ 560x2yþ 105y2 þ 72

ffiffiffiffiffi
35

p
xy2 þ 420x2y2Þ:

Definition 4.1.

1. For a monomial x iy j, the vector (i , j)2Z2 is called its exponent vector.

2. For a Laurent polynomial f=� aij x
iy j, the smallest convex polygon in the plane

containing the exponent vectors of all the nontrivial monomial terms of f is called the

convex hull of f.

To understand how the convex geometry affects the parahermitian structure, consider a

polynomial vector

v ¼
f

g

0
@

1
A

¼ v00 þ v10 xþ v01 y; vij 2 R2 � f0g:

Figure 1. The convex hull of the exponent vectors of v.
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Then the convex hull of its exponent vectors is spanned by {(0,0), (1 ,0), (0 ,1)} (and is

shown in Figure 1). Now we claim that v2 (R [x,y] )2 is not of unit norm regardless of the

values of vij’s. To see this, note that v~v=hv,vi=1 implies

hv; vi ¼ hv00 þ v10 xþ v01 y; v00 þ v10 xþ v01 yi

¼ ðv~00v00 þ v~10v10 þ v~01v01Þ þ ðv~00v10 xþ v~10v00
1

x
Þ

þðv~00v01 yþ v~01v00
1

y
Þ þ ðv~01v10

x

y
þ v~10v01

y

x
Þ ¼ 1:

From the fact that the last expression has to be a constant, we deduce that

v00 ? v10

v00 ? v01

v10 ? v01:

Quite clearly, no three nonzero vectors v00,v10,v012R2–{0} can satisfy this mutual
orthogonality.
Now we will construct a non-factorable paraunitary matrix of type (2 ,2). And in doing

this, we will actually construct a continuous one-parameter family of non-factorable

paraunitary matrices of type (2 ,2).

As we observed in (3.3), the factorability (or non-factorability) of a vector of type (2, 2)

is characterized by the following.

v ¼
X2
i¼0

X2
j¼0

vijx
iy j is factorable ð4:1Þ

() v00, v10, v20 are all parallel or v00, v01, v02 are all parallel.

Figure 2. The exponent vectors of v of type (2,2).
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Let

v ¼
f

g

0
@

1
A ¼

X2
i¼0

X2
j¼0

vijx
iy j ¼

X2
i¼0

X2
j¼0

aij

bij

0
@

1
Axiy j

be a vector of type (2,2) with unit norm such that

det½v00; v10� ¼ w; det½v10; v20� ¼ 1
w
; det½v00; v20� ¼ 1

det½v00; v01� ¼ z; det½v01; v02� ¼ 1
z
; det½v00; v02� ¼ 1;

ð4:2Þ

where w and z are nonzero real numbers. Note that, for two vectors a, b2R2, the condition
det[a ,b] 6¼ 0 implies that a and b are not parallel. Based on this observation and the

factorability characterization in (4.1), the conditions in (4.2) ensure that the vector v is
non-factorable. We will attempt to parametrize a subclass of such v’s, thereby
parametrizing a subclass of non-factorable vectors of type (2 , 2) with unit norm.

We can find a rotation matrix R (�) so that R (�)v00 =
r

0

0
@

1
A for some r2R. By replacing v

by R(�)v, if necessary, we may assume v00=
r

0

0
@

1
A, i.e. a00=r and b00=0.

Further assume that hv00,v20i=1 and r 6¼ 0. Then

hv00; v20i ¼ ra20 ¼ 1

det½v00; v20� ¼ rb20 ¼ 1:

Therefore,

v20 ¼
a20

b20

0
@

1
A ¼

1
r

1
r

0
@

1
A:

Consider the Aij’s defined by the expansion hv, vi=�2

i=�2�
2

j=�2Aijx
i y j. Then since

hv, vi=1, one must have Aij=0 for any i 6¼ 0 or j 6¼ 0, and A00=1.

The conditions A22 = hv00, v22i=0 and A�22 = hv20, v02i=0 imply that v00?v22 and

v20?v02. Hence, for some u, v2R

v02 ¼ u

�b20

a20

0
@

1
A ¼ u

�1
r

1
r

0
@

1
A;

v22 ¼ v

�b00

a00

0
@

1
A ¼ v

0

r

0
@

1
A:
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From the additional constraint det[v00, v02] = det
r � u

r

0 u
r

0
@

1
A =1 in (4.2), one gets u=1. We

make a further simplifying assumption v=2, i.e. v02=
�1
r

1
r

0
@

1
A and v22=

0

2r

0
@

1
A.

By combining the assumption det[v00, v10] =w, det[v10, v20] =
1
w
, det[v00, v01] j = z,

det[v01, v02] =
1
z
in (4.2) together with A12 =A21 =A�12 =A�21 = 0, it is not hard to derive

the following relations.

v10 ¼
a20 a00

b20 b00

0
@

1
A w

1
w

0
@

1
A ¼

w
r
þ r

w

w
r

0
@

1
A

v01 ¼
�b20 a00

a20 b00

0
@

1
A z

1
z

0
@

1
A ¼

�z
r
þ r

z

z
r

0
@

1
A

v12 ¼
b20 �b00

�a20 a00

0
@

1
A �2w

1
w

0
@

1
A ¼

�2w
r

2w
r
þ r

w

0
@

1
A

v21 ¼
�a20 b00

�b20 �a00

0
@

1
A 2z

1
z

0
@

1
A ¼

�2z
r

�2z
r
� r

z

0
@

1
A:

Consider the following two constraints:

A11 ¼ hv10; v21i þ hv00; v11i þ hv11; v22i þ hv01; v12i ¼ 0

A�11 ¼ hv10; v01i þ hv20; v11i þ hv11; v02i þ hv21; v12i ¼ 0:

By solving these two equations A11 =A�11 = 0, one gets the following expression

for v11:

v11 ¼
z2ð1�3r2Þ�w2ðr2�3Þ

wzr

wr
2z
þ 3zr

2w

0
@

1
A:

One must still consider the two constraints A01 =A10 = 0. By an explicit calculation, one

finds that

A01 ¼ hv00; v01i þ hv01; v02i þ hv10; v11i þ hv11; v12i þ hv20; v21i þ hv21; v22i

¼ ðw2 þ z2Þð2r2 � 3r4 � 6w2 þ 5w2r2Þ
2w2zr2
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A10 ¼ hv00; v10i þ hv10; v20i þ hv01; v11i þ hv11; v21i þ hv02; v12i þ hv12; v22i

¼ 3ðw2 þ z2Þð2r2 � r4 � 2z2 þ 5z2r2Þ
2wz2r2

:

Since r ,w , z can take only nonzero values,

A01 ¼ 0 ) 2r2 � 3r4 � 6w2 þ 5w2r2 ¼ 0 ) w2 ¼ 3r4 � 2r2

5r2 � 6

A10 ¼ 0 ) 2r2 � r4 � 2z2 þ 5z2r2 ¼ 0 ) z2 ¼ r4 � 2r2

5r2 � 2
: ð4:3Þ

Let r be an arbitrary real number with r >
ffiffiffi
2

p
. Let w and z be real numbers defined by

w ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2 � 2

5r2 � 6

r

z ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2

5r2 � 2

r
: ð4:4Þ

For this choice of w , z, the constraints A01=A10 = 0 are automatically satisfied. And all vij,

1
i , j
 2, can be described by a real parameter r2 (
ffiffiffi
2

p
,1). The following summarizes

the resulting parametrization for a vector v=
P

i = 0
2 P

j =0
2 vij x

i y j of type (2 , 2) that has

unit norm and is non-factorable:

v00 ¼
r

0

0
@

1
A; v20 ¼

1
r

1
r

0
@

1
A; v02 ¼

�1
r

1
r

0
@

1
A; v22 ¼

0

2r

0
@

1
A

v10 ¼
w
r
þ r

w

w
r

0
@

1
A; v01 ¼

�z
r
þ r

z

z
r

0
@

1
A; v12 ¼

�2w
r

2w
r
þ r

w

0
@

1
A

v21 ¼
�2z
r

�2z
r
� r

z

0
@

1
A; v11 ¼

z2ð1�3r2Þ�w2ðr2�3Þ
wzr

wr
2z
þ 3zr

2w

0
@

1
A; ð4:5Þ

where the domain for the parameter r is (
ffiffiffi
2

p
,1), and w and z are given by the expressions

in (4.4).

The normalization condition A00 = 1 has not been imposed yet. For an arbitrary fixed real

number r >
ffiffiffi
2

p
, � := v t(1

x
,1
y
) v (x ,y) should be a positive constant. An explicit computation

shows that
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� ¼ 12ð5r4 � 8r2 þ 4Þ
r2ðr2 � 2Þð3r2 � 2Þð5r2 � 6Þð5r2 � 2Þ :

Note that, for any r2 (
ffiffiffi
2

p
,1), � > 0. Then the vector 1ffiffi

�
p v is a desired unit norm vector

that is not factorable into rotations and delays.

The parametrization given by with the additional step of normalization results in a

family of non-factorable unit norm vectors v=
f

g

0
@

1
A. This produces the family of matrices

Hðx; yÞ ¼
f ðx; yÞ �x2y2 g 1

x
; 1
y


 �
gðx; yÞ x2y2 f 1

x
; 1
y


 �
0
B@

1
CA

w.r.t. the parameter r2 (
ffiffiffi
2

p
,1). This gives rise to a subclass of non-factorable paraunitary

matrices of McMillan degrees (2,2). The following is an explicit expression for f,g in

terms of r2 (
ffiffiffi
2

p
,1):

f ¼ 1ffiffiffi
�

p ½r þ ð� z

r
þ r

z
Þy� 1

r
y2 þ ðw

r
þ r

w
Þx

þ z2ð�3r2 þ 1Þ � w2ðr2 � 3Þ
wzr

xy� 2w

r
xy2 þ 1

r
x2 � 2z

r
x2y�

g ¼ 1ffiffiffi
�

p ½z
r
yþ 1

r
y2 þ w

r
xþ ðwr

2z
þ 3zr

2w
Þxyþ ð2w

r
þ r

w
Þxy2

þ 1

r
x2 � ð2z

r
þ r

z
Þx2yþ 2rx2y2�;

where w, z and � are given by

w ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2 � 2

5r2 � 6

r

z ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2

5r2 � 2

r

� ¼ 12ð5r4 � 8r2 þ 4Þ
r2ðr2 � 2Þð3r2 � 2Þð5r2 � 6Þð5r2 � 2Þ :
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By specializing at r=2, one gets H ¼
h11 h12

h21 h22

0
@

1
Awhere

h11 ¼
1

52
ffiffiffiffiffiffiffiffiffiffi
1365

p ð420þ 72
ffiffiffiffiffi
35

p
xþ 105x2 þ 560y� 122

ffiffiffiffiffi
35

p
xy� 140x2y� 105y2 � 60

ffiffiffiffiffi
35

p
xy2Þ

h21 ¼
1

52
ffiffiffiffiffiffiffiffiffiffi
1365

p ð30
ffiffiffiffiffi
35

p
xþ 105x2 þ 70yþ 132

ffiffiffiffiffi
35

p
xy� 770x2yþ 105y2 þ 102

ffiffiffiffiffi
35

p
xy2 þ 840x2y2Þ

h12 ¼
1

52
ffiffiffiffiffiffiffiffiffiffi
1365

p ð�840� 102
ffiffiffiffiffi
35

p
x� 105x2 þ 770y� 132

ffiffiffiffiffi
35

p
xy� 70x2y� 105y2 � 30

ffiffiffiffiffi
35

p
xy2Þ

h22 ¼
1

52
ffiffiffiffiffiffiffiffiffiffi
1365

p ð�60
ffiffiffiffiffi
35

p
x� 105x2 � 140y� 122

ffiffiffiffiffi
35

p
xyþ 560x2yþ 105y2 þ 72

ffiffiffiffiffi
35

p
xy2 þ 420x2y2Þ:

This is the example introduced at the beginning of this section.

5. An Application of the Convex Geometric Method

The following theorem was first observed and proved in [7]. A new proof is presented here

based on the convex geometric method similar to the one used in the preceding section.

THEOREM 5.1: The 2�2 paraunitary matrices of type (n,1) or (1,n) are completely

factorable.

Proof: Suppose that

v ¼
X1
i¼0

Xk
j¼0

vijx
iy j:

Write v= vi = 0( y) +vi = 1( y)x. It is easy to verify that the two face components, vi = 0( y),

vi = 1( y)2C [ y], of v are orthogonal to each other since v is of unit norm. This implies

hvi¼0ðyÞ;vi¼1ðyÞi ¼ gfi¼0ðyÞfi¼1ðyÞ þ ggi¼0ðyÞgi¼1ðyÞ

¼ fi¼0ð
1

y
Þfi¼1ðyÞ þ gi¼0ð

1

y
Þgi¼1ðyÞ

¼ 0:

One deduces that, if u2C is a zero of fi=0 but not a zero of gi=0, then 1/u is a zero of
gi=1. There are the following two cases to consider:

1. when fj=0 and gj=0 have no common root

2. when fj=0 and gj=0 have a common root.
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Case 1: When fj = 0 and gj = 0 have no common root.

In this case, we can write

fj¼0ðyÞ ¼ aj¼0ðy� �Þ

gj¼0ðyÞ ¼ bj¼0ðy� �Þ; � 6¼ �:

Using the orthogonality of vj = 0 and vj = k, we see that

fj¼kðyÞ ¼ aj¼kðy�
1

�
Þ

gj¼kðyÞ ¼ bj¼kðy�
1

�
Þ:

where aj = 0aj = k�+bj = 0bj = k� =0. Now the convex hull generated by the exponent vectors

of v has the structure shown in the Figure 3. Letting ci’s and di’s, 1
 i
 l, be the common

roots of { fi = 0 ( y), gi = 0 ( y)} and { fi = 1(y) ,gi = 1( y)}, respectively, one gets the following

representation.

fi¼0ðyÞ ¼ � aj¼k

�
ðy� c1Þ: : : ðy� clÞ � ðy� u1Þ: : : ðy� uk�lÞ

gi¼0ðyÞ ¼ � bj¼k

�
ðy� c1Þ: : : ðy� clÞ � ðy� v1Þ: : : ðy� vk�lÞ

fi¼1ðyÞ ¼ aj¼kðy� d1Þ: : : ðy� dlÞ � ðy�
1

v1
Þ: : : ðy� 1

vk�l

Þ

gi¼1ðyÞ ¼ bj¼kðy� d1Þ: : : ðy� dlÞ � ðy�
1

u1
Þ: : : ðy� 1

uk�l

Þ:
Now note in Figure 3 that

1. at (0 ,0), constant coefficient of vj = 0 = constant coefficient of vi=0,

2. at (1 ,0), leading coefficient of vj = 0 = constant coefficient of vi=1,

Figure 3. The convex hull of the exponent vectors of v.
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3. at (0 ,k), constant coefficient of vj = k = leading coefficient of vi=0,

4. at (1 ,k), leading coefficient of vj = k = leading coefficient of vi=1.

Comparing the coefficients of the polynomials involved, we get the following relations.

� aj¼k

�
ð�1Þkc1: : : cl � u1: : : uk�l ¼ �aj¼0�

� bj¼k

�
ð�1Þkc1: : : cl � v1: : : vk�l ¼ �bj¼0�

aj¼kð�1Þkd1: : :dl �
1

v1
: : : 1

vk�l

¼ aj¼0

bj¼kð�1Þkd1: : : dl �
1

u1
: : : 1

uk�l

¼ aj¼0:

Therefore, we have

aj¼k

bj¼k

u1: : : uk�l

v1: : : vk�l

¼ aj¼0

bj¼0

:

Let

A ¼ bj¼k

�

Yl
i¼1

ðy� ciÞ

B ¼ ð�1Þk�l aj¼kQk�l
i¼1vi

Yl
i¼1

ðy� diÞ

F ¼ bj¼0

aj¼0

Yk�l

i¼1

ðy� uiÞ

G ¼
Yk�l

i¼1

ðy� viÞ:

Then using the above relations, one obtains

v ¼
f

g

0
@

1
A ¼

AF þ x � BG~ y k�l

�AGþ x � BF
~

y k�l

0
@

1
A:

Now hv;vi ¼ 1 translates into

AA
~

FF
~

þ BB
~

GG
~

þ AA
~

GG
~

þ BB
~

FF
~

¼ ðAA
~

þ BB
~

Þ � ðFF
~

þ GG
~

Þ

¼ 1:
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From the last expression, we conclude that both of AA
~

+BB
~

} and FF
~

+GG
~

are nonzero

constants since they are involution invariant monomials. By dividing by their norms if

necessary, we may assume that AA
~

+BB
~

=FF
~

+GG
~

= 1. In this case, we have

v ¼
f

g

0
@

1
A ¼

AF þ x � BG~ y k�l

�AGþ x � BF~ y k�l

0
@

1
A

¼
F G

~

�G F
~

0
@

1
A 1 0

0 x

0
@

1
A A

B

0
@

1
A:

This shows the factorability.

Case 2: When fj = 0 and gj = 0 have a common root.

In this case, we can write

fj¼0ðyÞ ¼ aj¼0ðy� �Þ

gj¼0ðyÞ ¼ bj¼0ðy� �Þ
fj¼kðyÞ ¼ aj¼kðy� �Þ

gj¼kðyÞ ¼ bj¼kðy� �Þ

where aj = 0aj = k+bj = 0bj = k=0. Now the convex hull generated by the exponent vectors of v

has the structure shown in Figure 4, and we can proceed in the same fashion as in the

previous case. 5

Note

1. This Gröbner basis package was developed by J.C. Faugère, and is implemented to be run over WWW. It is to

be available at https://calfor.lip6.fr.

Figure 4. The convex hull of the exponent vectors of v.
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