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1. INTRODUCTION

A general algorithmic approach to construction of
involutive polynomial Gröbner bases can be developed
on the basis of properties of involutive division dis-
cussed in [1–3]. The involutive approach came to com-
mutative algebra [4] from theory of partial differential
equations. The verification of the compatibility condi-
tions in involutive algorithms is similar to calculation
of 

 

S

 

-polynomials in the Buchberger algorithm [5] for
construction of Gröbner bases. Based on the form of
leading monomials of involutive bases, explicit formu-
las for the Hilbert function and polynomial [6, 7] are
easily constructed.

In what follows, we use the following notation:
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) is the greatest common divisor of the mono-
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) is the least common mul-
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Definition 1.
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conditions:
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The elements 

 

L

 

(

 

u

 

, 

 

U) (u ∈  U) are called multiplica-
tive for all u. If w ∈  uL(u, U), then u is referred to as an
(L–) involutive divisor of w, which is denoted as u|Lw.
In this case, the monomial w is called an (L–) multiple
of u.

For every u ∈  U, Definition 1 results in the parti-
tion ([1])

x1 … xn, ,{ } ML u U,( ) NML u U,( ),∪=

ML u U,( ) NML u U,( )∩ ∅=

of the set of variables into two disjoint subsets of mul-
tiplicative, ML(u, U) ⊂  L(u, U), and nonmultiplicative,
NML(u, U) ∩ L(u, U) = ∅ , variables.

By now, a number of involutive divisions have been
constructed and examined [1, 2, 6, 8, 9].

2. METHOD OF SEPARATIVE MONOMIALS

It follows from condition (ii) of Definition 1 that, if
the set is involutively autoreduced [1], there may exist
only one involutive divisor for an arbitrary monomial.
This makes it possible to construct a search tree with
different balancing for the Janet division [10]. The fol-
lowing definition generalizes this approach for other
involutive divisions.

Definition 2. A monomial w is called separative for
a subset V ⊆  U and a given involutive division L if it sat-
isfies the following conditions:

(i) V = V1 ∪  V2, V1 ≠ ∅  and V2 ≠ ∅ ;
(ii) ∀ u ∈  V1, v  such that w  v  and v  ∈  uL(u, U);
(iii) ∀ u ∈  V2, v  such that w | v  and v  ∈  uL(u, U).
Since condition (iii) is negation of condition (ii) for

the sets V1 and V2, it follows from Definition 2 that
V1 ∩ V2 = ∅ . Consider examples of partitioning for
various divisions.

Definition 3. The Thomas division [11]. A vari-
able xi is multiplicative for u ∈  U if degi (u) =
max{degi (v ) | v  ∈  U} and nonmultiplicative other-
wise.

Definition 4. The Janet division [12]. For every
value of index i, 1 ≤ i ≤ n, of a variable, let us divide ele-
ments of U into the subgroups determined by a set of
nonnegative integers d1, …, di:

Then, the variable xi is multiplicative for u ∈  U if
either i = 1 and deg1(u) = max{deg1(v) | v  ∈  U} or i >
1, u ∈  [d1, …, di – 1, and degi(u) = max{degi(v) | v  ∈
[d1, …, di – 1]}.

Example 1. Consider the set U = {x2y, xz, y2, yz, z3}
with the order of variables (x s y s z) for the Thomas

∃ |
∃

d1 … di, ,[ ] u U  | d j deg j u( ), 1 j i≤ ≤=∈{ } .=
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and Janet divisions. The separative monomials for these
divisions and the set U are shown in the figure. The
monomials located in the leaves and enclosed into the
rectangles belong to the original set. In accordance with
Definition 2, the monomial located in the root is sepa-
rative. For all monomials located in the leaves, the right
subtree cannot contain an involutive divisor of the
monomial the divisor of which (in the common sense)
is the monomial located in the root.

Theorem. If assumptions of Definition 2 are ful-
filled, the two following assertions are equivalent:

(1) ∀ u ∈  V2 and v  such that w | v  and v  ∈  uL(u, U);

(2) ∀ u ∈  V2 and (∀ w1, w2)w = w1w2 imply that w1 ∉
L(u, U) and w2  u.

Proof. 1 ⇒  2. Suppose that ∀ u ∈  V2 and (∃ w1, w2)w =
w1w2 imply that w1 ∈  L(u, U) and w2 | u. Then, in accor-
dance with the first assertion, for the monomial u ∈  V2,
consider v  = (u/w2)w. By construction, w | v  and v  =
uw1 ∈  uL(u, U), and we arrive at the contradiction.

2 ⇒  1. Let ∀ u ∈  V2 and ∃ v  such that w | v  and v  ∈
uL(u, U). Hence, u | v  and (v /u) ∈  L(u, U). According
to the second assertion, since w | v, consider w1 and w2
such that w1 = gcd(v /u, w) and w2 = gcd(u, w). On the
other hand,

and we arrive at the contradiction since w1 ∈  L(u, U)
and w2 | u.

This theorem provides us with a constructive
method of finding separative monomials. Let us intro-
duce the following notation: gcd(uL(u, U), w) = v  if
(v  ∈  uL(u, U), v  | w) and (∀ s ∈  uL(u, U), s | w) implies
that s | v.

∃

|

w gcd v w,( ) gcd v w,( )
gcd u w,( )
------------------------gcd u w,( )= =

=  gcd v /u w,( )gcd u w,( ) w1w2.=

Corollary. Under the assumptions of Definition 2,
the following conditions are necessary and sufficient
for a monomial be separative:

(1) (∀ u ∈  V1)gcd(uL(u, U), w) = w;
(2) (∀ u ∈  V2)gcd(uL(u, U), w) ≠ w.
Proof. The necessity and sufficiency of the first con-

dition is evident since, if w /| v, it immediately follows
that v  ∉  uL(u, U). In view of the above notation, the
second condition was proved in the theorem.

The following example shows that a separative
monomial may not exist for an arbitrary partition and
involutive division.

Example 2. For the Thomas division, the set U =
{x2, y2, z2, t2, xy, zt} cannot be partitioned into {x2, y2,
z2, t2} and {xy, zt}. In accordance with the above corol-
lary, only 1M can be a separative monomial. Indeed, for
{x2, y2, z2, t2}, each monomial for the Thomas division
can divide only the degree of a variable that is greater
than two, of which it is composed. As a result, the only
candidate on the place of a separative monomial is the
unit one, and the second condition is violated.
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