
Algebra i analiz St. Petersburg Math. J.
Tom 20 (2008), � 5 Vol. 20 (2009), No. 5, Pages 709–736

S 1061-0022(09)01069-3
Article electronically published on July 21, 2009

COMPLEXITY OF A STANDARD BASIS OF A D-MODULE

D. YU. GRIGORIEV AND A. L. CHISTOV

Abstract. A double-exponential upper bound is obtained for the degree and for
the complexity of constructing a standard basis of a D-module. This generalizes
a well-known bound for the complexity of a Gröbner basis of a module over the
algebra of polynomials. It should be emphasized that the bound obtained cannot be
deduced immediately from the commutative case. To get the bound in question, a
new technique is developed for constructing all the solutions of a linear system over
a homogeneous version of a Weyl algebra.

Introduction

Let A be the Weyl algebra F [X1, . . . , Xn,
∂

∂X1
, . . . , ∂

∂Xn
] (or the algebra of differential

operators F (X1, . . . , Xn)[
∂

∂X1
, . . . , ∂

∂Xn
]). For brevity, we denote Di =

∂
∂Xi

, 1 ≤ i ≤ n.
Any A-module is called a D-module. It is well known that an A-module that is a
submodule of a free finitely generated A-module has a Janet basis (if A is a Weyl algebra,
it is often called a standard basis, but in this paper it is natural and convenient to call
it a Janet basis also in that case). Historically, it was first introduced in [9]. In the
more recent time of developing computer algebra, Janet bases were studied in [5, 14, 10].
The Janet bases generalize the Gröbner bases, which were widely used in the algebra
of polynomials (see, e.g., [3]). For the Gröbner bases, a double-exponential complexity
bound was obtained in [12, 6] with the help of [1]. Later, sharper results on the same
subject (with independent and self-contained proofs) were obtained in [4].

Surprisingly, no complexity bound for Janet bases has been established so far. The
reason is clear: the problem is not easy. In the present paper we fill this very essential
gap and prove a double-exponential upper bound for complexity. On the other hand, a
double-exponential complexity lower bound for Gröbner bases [12, 15] provides by the
same token a bound for Janet bases.

Notice also that there has been a folklore opinion that the problem of construct-
ing a Janet basis reduces easily to the commutative case by considering the associated
graded module, and, on the other hand, in the commutative case [6, 12, 4], the double-
exponential upper bound is well known. But this turns out to be a fallacy! From a
known system of generators of a D-module, no system of generators (even not necessar-
ily a Gröbner basis) of the associated graded module can be obtained immediately. The
main problem here is to construct such a system of generators of the graded module. It

may have elements of degrees (dl)2
O(n)

; see the notation below. Then, indeed, to the last
system of generators of large degrees, one can apply the result known in the commutative

case and get the bound ((dl)2
O(n)

)2
O(n)

= (dl)2
O(n)

. Thus, some new ideas specific to the
noncommutative case are needed.

2000 Mathematics Subject Classification. Primary 16Z05.
Key words and phrases. Weyl algebra, Janet basis, Gröbner basis.

c©2009 American Mathematical Society

709

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



710 D. YU. GRIGORIEV AND A. L. CHISTOV

We are interested in estimates for Janet bases of A-submodules of Al. A Janet basis
depends on the choice of a linear order on the monomials (we define them also for l > 1).
In this paper we consider the most general linear orders on the monomials in Al. They
satisfy conditions (a) and (b) in §1 and are said to be admissible. If additionally a
linear order satisfies condition (c) in §1, then it is said to be degree-compatible. For any
admissible linear order, the reduced Janet basis is chosen canonically and it is defined
uniquely; see §1. We prove the following result.

Theorem 1. For any real number d ≥ 2 and any admissible linear order on the mono-
mials in Al, any left A-submodule I of Al generated by elements of degree less than d
(with respect to the filtration in the corresponding algebra; see §§1 and 9) has a Janet
basis with the degrees and the number of its elements less than

(1) (dl)2
O(n)

.

The same upper estimate (1) is valid for the number of elements of the reduced Janet
basis of the module I with respect to the linear order in question on the monomials.

If, moreover, this linear order is degree-compatible or it is an arbitrary admissible
order, but l = 1, then also the degrees of all the elements of the reduced Janet basis of
the module I are bounded from above by (1).

We prove this theorem in detail for the case of the Weyl algebra A. The proof for the
case of the algebra of differential operators is similar. It is sketched in §9. Theorem 1
implies that the Hilbert function H(I,m), see §1, of the A-submodule from this theorem

is stable for m ≥ (dl)2
O(n)

and that the absolute values of all coefficients of the Hilbert

polynomial of I are bounded from above by (dl)2
O(n)

; cf., e.g., [12]. This fact follows
directly from (11), Lemma 12 in Appendix 1, Lemma 2, and Theorem 2. We mention
that, in [7], a similar bound was established for the leading coefficient of the Hilbert
polynomial.

Now we outline the plan of our proof of Theorem 1. Below, the first occurrences
of some terms introduced in the paper are italicized. The main tool in the proof is
a homogenized Weyl algebra hA (or respectively, a homogenized algebra of differential
operators hB). It is introduced in §3 (respectively, in §9). The algebra hA (respectively,
hB) is generated over the ground field F by X0, . . . , Xn, D1, . . . , Dn (respectively, over
the field F (X1, . . . , Xn) by X0, D1, . . . , Dn). Here X0 is a new homogenizing variable. In
the algebra hA (respectively, hB), relations (13) in §3 (respectively, (54) in §9) hold true
for these generators.

We define the homogenization hI of the module I. It is an hA-submodule of hAl.
The main problem is to estimate the degrees of a system of generators of hI. These
estimates are central to the paper. They are deduced from Theorem 2 in §7. That
theorem is devoted to the problem of solving systems of linear equations over the ring
hA; we discuss this below in more detail.

The system of generators of hI gives a system of generators of the graded gr(A)-module
gr(I) corresponding to I. But gr(A) is a polynomial ring. Hence, using Lemma 12 in

Appendix 1, we get a double-exponential bound (dl)2
O(n)

for the stabilization of the
Hilbert function of gr(I) and for the absolute values of the coefficients of the Hilbert
polynomial of gr(I). Therefore, there is a similar bound for the stabilization of the
Hilbert functions of I and the coefficients of the Hilbert polynomial of I; see §2.

But the Hilbert functions of the modules I and hI coincide; see §3. Hence, the last
bound serves also for the stabilization of the Hilbert functions of hI and the coefficients
of the Hilbert polynomial of hI. In §5 we introduce the linear order on the monomials
in hAl induced by the initial linear order on the monomials in Al (the homogenizing
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COMPLEXITY OF A STANDARD BASIS OF A D-MODULE 711

variable X0 is the least possible in this ordering). Next, we define the Janet basis of hI
with respect to the induced linear order on the monomials. Such a basis can be obtained
by homogenization of the elements of a Janet basis of I with respect to the initial linear
order; see Lemma 3 (iii).

For every element f ∈ hA, denote by Hdt(f) ∈ hA the greatest monomial of the
element f ; i.e., each monomial of f − Hdt(f) is less than Hdt(f) with respect to the
induced linear order on the monomials in hA. Let Hdt(hI) = {Hdt(f) : f ∈ hI} be the

set of all the greatest monomials of the elements of the module hI; see §4. Let cI ⊂ cAl, see
§4, be the module over the polynomial ring cA = F [X0, . . . , Xn, D1, . . . , Dn] generated

by all monomials in Hdt(hI) (they are viewed now as elements of cAl). Then the Hilbert
functions of the modules hI and cI coincide. Thus, we have the same double-exponential
estimate as above for the stabilization of the Hilbert function of cI and the coefficients of
the Hilbert polynomial of cI. Now, using Lemma 13, we get the estimate (dl)2

O(n)

for the
monomial system of generators of cI. This gives a bound for the degrees of the elements of
the reduced Janet basis of hI, and hence, by Lemma 11, also the bound from Theorem 1
for the required Janet basis (respectively, in the case where the initial order is degree-
compatible, for the reduced Janet basis) of I. Estimation of the degrees of the elements
of the reduced Janet basis in the case where l = 1 requires special considerations; see §8.
Remark 1. The question as to whether there is a double-exponential upper bound for
the degrees of the elements of the reduced Janet basis with respect to an arbitrary
admissible linear order on monomials in the case where l > 1 remains open. Note the
following description of all admissible linear orders on the monomials in Al: each linear
order corresponds to a rooted tree. But we do not need this description in the present
paper.

The problem of solving systems of linear equations over the homogenized Weyl algebra
is central to this paper; see Theorem 2. It is studied in §§5–7. A similar problem over
the Weyl algebra (without homogenization) was considered in [7]. The principal idea
is to try to extend the well-known method of [8], which was developed for the algebra
of polynomials, to the homogenized Weyl algebra. There are two principal difficulties
with this approach. The first is that in the method from [8] the use of determinants is
essential, which should be avoided when we deal with noncommutative algebras. The
second is that a kind of Noether normalization theorem is needed in the current situation.
Therefore, the analog of the method of [8] requires choosing the leading elements with
the smallest possible order ordX0

, where X0 is a homogenizing variable; see §3.
The bound obtained for the degree of a Janet basis implies a similar bound for the

complexity of its construction. Indeed, by Corollary 1 (it is formulated for the case of a
Weyl algebra, but a similar statement is true for the case of the algebra of differential
operators), one can compute the linear space of all the elements z ∈ I of degrees bounded

from above by (dl)2
O(n)

. Hence, by Theorem 1, a Janet basis of I can be computed by

solving linear systems over F of size bounded from above by (dl)2
O(n)

(merely with

the help of enumeration of all monomials of degrees at most (dl)2
O(n)

that are possible

elements of Hdt(I)). After that, within time polynomial in (dl)2
O(n)

and in the size of
the input, by solving linear systems over F one can obtain the reduced Janet basis of

I, provided that the upper bound (dl)2
O(n)

for the degrees of its elements is known; see
Theorem 1.

To make our text self-contained, in Appendix 1 (see Lemma 12) we give a short proof
of the double-exponential estimate for stabilization of the Hilbert function of a graded
module over a graded polynomial ring. The converse of Lemma 12 is also true; see
Lemma 13 in Appendix 1. This fact is essential for us. The proof of Lemma 13 involves
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712 D. YU. GRIGORIEV AND A. L. CHISTOV

the classical description of the Hilbert function of a homogeneous ideal in F [X0, . . . , Xn]
in terms of the Macaulay constants bn+2, . . . , b1 and the constant b0 introduced in [4].
In Appendix 2, we give an independent and instructive proof of Proposition 1, which is
similar to Lemma 13. In a sense, Proposition 1 is even stronger than Lemma 13, because
to apply it one does not need a bound for the stabilization of the Hilbert function. Of
course, a reference to Proposition 1 can be used in place of Lemma 13 in our paper.

§1. Definition of a Janet basis

Let A = F [X1, . . . , Xn, D1, . . . , Dn], n ≥ 1, be a Weyl algebra over a field F . So, A is
determined by the following relations:

(2) XvXw = XwXv, DvDw = DwDv, DvXv −XvDv = 1, XvDw = DwXv, v �= w.

By (2), any element f ∈ A admits a unique representation in the form

(3) f =
∑

i1,...,in,j1,...,jn≥0

fi1,...,in,j1,...,jnX
i1
1 · · ·Xin

n Dj1
1 · · ·Djn

n ,

where all fi1,...,in,j1,...,jn belong to F and only a finite number of the fi1,...,in,j1,...,jn are
nonzero. For brevity, we denote Z+ = {z ∈ Z : z ≥ 0} and

(4)

i = (i1, . . . , in), j = (j1, . . . , jn), fi,j = fi1,...,in,j1,...,jn ,

Xi = Xi1
1 · · ·Xin

n , Dj = Dj1
1 · · ·Djn

n , f =
∑
i,j

fi,jX
iDj ,

|i| = i1 + · · ·+ in, i+ j = (i1 + j1, . . . , in + jn).

Thus, i, j ∈ Zn
+ are multi-indices. By definition, the degree of f is

deg f = degX1,...,Xn,D1,...,Dn
f = max{|i|+ |j| : fi,j �= 0}.

Let M be a left A-module given by its generators m1, . . . ,ml, l ≥ 0, and relations

(5)
∑

1≤w≤l

av,wmw, 1 ≤ v ≤ k,

where k ≥ 0 and all av,w are in A. We assume that deg av,w < d for all v, w, where
d ≥ 2. By (5), we have the exact sequence

(6) Ak ι→ Al π→ M → 0

of left A-modules. Denote I = ι(Ak) ⊂ Al. If l = 1, then I is a left ideal of A and
M = A/I. In the general case, I is generated by the elements

(av,1, . . . , av,l) ∈ Al, 1 ≤ v ≤ k.

For an integer m ≥ 0, put

(7) Am = {a : deg a ≤ m}, Mm = π(Al
m), Im = I ∩Al

m.

So, now A, M , I are filtered modules with filtrations Am, Mm, Im, m ≥ 0, respectively,
and the sequence of homomorphisms of vector spaces

0 → Im → Al
m → Mm → 0

induced by (6) is exact for every m ≥ 0. The Hilbert function H(M,m) of the module
M is defined by the formula

H(M,m) = dimF Mm, m ≥ 0.

Each element of Al can be uniquely represented as an F -linear combination of elements
ev,i,j = (0, . . . , 0, XiDj , 0, . . . , 0), where i, j ∈ Zn

+ are multi-indices, see (4), and the
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COMPLEXITY OF A STANDARD BASIS OF A D-MODULE 713

nonzero monomial XiDj is at the position v, 1 ≤ v ≤ l. Thus, every element f ∈ Al can
be represented in the form

(8) f =
∑
v,i,j

fv,i,jev,i,j , fv,i,j ∈ F.

The elements ev,i,j will be called monomials.
Consider a linear order < on the set of all the monomials ev,i,j or, what is the same,

on the set of triples (v, i, j), 1 ≤ v ≤ l, i, j ∈ Zn
+. If f �= 0, we put

(9) o(f) = max{(v, i, j) : fv,i,j �= 0};
see (8). Set

o(0) = −∞ < o(f)

for every 0 �= f ∈ A. The leading monomial of an element 0 �= f ∈ Al is defined by the
formula

Hdt(f) = fv,i,jev,i,j ,

where o(f) = (v, i, j). Put Hdt(0) = 0. Hence, o(f − Hdt(f)) < o(f) if f �= 0. For
f1, f2 ∈ Al, if o(f1) < o(f2), we shall write f1 < f2. We shall require additionally that

(a) for all multi-indices i, j, i′, j′ and all 1 ≤ v ≤ l, if i1 ≤ i′1, . . . , in ≤ i′n and
j1 ≤ j′1, . . . , jn ≤ j′n, then (v, i, j) ≤ (v, i′, j′);

(b) for all multi-indices i, j, i′, j′, i′′, j′′ and all 1 ≤ v, v′ ≤ l, if (v, i, j) < (v′, i′, j′),
then (v, i+ i′′, j + j′′) < (v′, i′ + i′′, j′ + j′′).

Conditions (a) and (b) imply that, for all f1, f2 ∈ Al and every nonzero a ∈ A, if f1 < f2,
then af1 < af2; i.e., the linear order under consideration is compatible with the product.
Any linear order on the monomials ev,i,j satisfying (a) and (b) will be called admissible.
Consider additionally the condition

(c) for all multi-indices i, j, i′, j′ and all 1 ≤ v, v′ ≤ l, if |i| + |j| < |i′| + |j′|, then
(v, i, j) < (v′, i′, j′).

Any linear order on the monomials ev,i,j satisfying (c) will be called a degree-compatible
order (in what follows all the degree-compatible linear orders that we consider will also
be admissible, i.e., satisfying (a) and (b)).

For every subset E ⊂ Al we put Hdt(E) = {Hdt(f) : f ∈ E}. In particular,

Hdt(I) = {Hdt(f) : f ∈ I}.
Thus, Hdt(I) is a subset of Al. By definition, a family f1, . . . , fm of elements of I is a
Janet basis of the module I if and only if

1) Hdt(I) = Hdt(Af1) ∪ · · · ∪ Hdt(Afm).

Next, the Janet basis f1, . . . , fm of I is reduced if and only if the following conditions are
fulfilled.

2) f1, . . . , fm does not contain a smaller Janet basis of I.
3) Hdt(f1) > · · · > Hdt(fm).
4) The coefficient from F of every monomial Hdt(fv), 1 ≤ α ≤ m, is 1.
5) Let fα =

∑
v,i,j fα,v,i,jev,i,j be the representation (3) for fα, 1 ≤ α ≤ m. Then

for all 1 ≤ α < β ≤ m, all 1 ≤ v ≤ l, and all multi-indices i, j, the monomial
fα,v,i,jev,i,j does not belong to Hdt(Afβ \ {0}).

Let C denote the ring of polynomials in X1, . . . , Xn, D1, . . . , Dn with coefficients in F
(we can take C = gr(A); see the next section). For every f ∈ Al, the monomial Hdt(f)
can be viewed as an element of Cl. To avoid ambiguity, we denote it by Hdtc(f) ∈ Cl.
Now, f1, . . . , fm is a Janet basis of the module I if and only if the C-submodule of Cl

generated by Hdtc(fα), 1 ≤ α ≤ m, contains all the elements Hdtc(f), f ∈ A. Since the
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714 D. YU. GRIGORIEV AND A. L. CHISTOV

ring C is Noetherian, the module I under consideration admits a Janet basis. Moreover,
the reduced Janet basis of I is uniquely determined.

§2. The graded module corresponding to a D-module

Put Av = Iv = Mv = 0 for v < 0 and

gr(A) =
⊕
m≥0

Am/Am−1, gr(I) =
⊕
m≥0

Im/Im−1, gr(M) =
⊕
m≥0

Mm/Mm−1.

The structure algebra on A induces the structure of a graded algebra on gr(A). Thus,
gr(A) = F [X1, . . . , Xn, D1, . . . , Dn] is an algebra of polynomials with respect to the
variables X1, . . . , Xn, D1, . . . , Dn. Next, gr(I) and gr(M) are graded gr(A)-modules.
Using (7), we get the exact sequences

(10) 0 → Im/Im−1 → (Am/Am−1)
l → Mm/Mm−1 → 0, m ≥ 0.

The Hilbert function of the module gr(M) is defined as follows:

H(gr(M),m) = dimF Mm/Mm−1, m ≥ 0.

Obviously,

(11) H(M,m) =
∑

0≤v≤m

H(gr(M), v), H(gr(M),m) = H(M,m)−H(M,m− 1)

for every m ≥ 0.
For arbitrary a ∈ M , we denote by gr(a) ∈ gr(M) the image of a in gr(M).

Lemma 1. Assume that b1, . . . , bs is a system of generators of I. Let νi = deg bi,
1 ≤ i ≤ s. Suppose that

(12) Im =
{ ∑
1≤v≤µ

cvbv : cv ∈ A, deg cv ≤ m− νv, 1 ≤ i ≤ s
}

for every m ≥ 0. Then gr(b1), . . . , gr(bs) is a system of generators of the gr(A)-module
gr(I).

Proof. This is straightforward. �

§3. Homogenization of the Weyl algebra

Let X0 be a new variable. Consider the algebra hA = F [X0, X1, . . . , Xn, D1, . . . , Dn]
given by the relations

(13)
XvXw = XwXv, DvDw = DwDv for all v, w,

DvXv −XvDv = X2
0 , 1 ≤ v ≤ n, XvDw = DwXv for all v �= w.

The algebra hA is Noetherian, like the Weyl algebra A. By (13), any element f ∈ hA can
be uniquely represented in the form

(14) f =
∑

i0,i1,...,in,j1,...,jn≥0

fi0,...,in,j1,...,jnX
i0
0 · · ·Xin

n Dj1
1 · · ·Djn

n ,

where all fi0,...,in,j1,...,jn are in F and only finitely many of fi0,...,in,j1,...,jn are nonzero.
Let i, j be multi-indices; see (4). Denote for brevity

(15)

i = (i1, . . . , in), j = (j1, . . . , jn), fi0,i,j = fi0,...,in,j1,...,jn ,

f =
∑
i0,i,j

fi0,i,jX
i0
0 XiDj .

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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By definition,

deg f = degX0,...,Xn,D1,...,Dn
f = max{i0 + |i|+ |j| : fi0,i,j �= 0},

degD1,...,Dn
f = max{|j| : fi0,i,j �= 0},

degDα
f = max{jα : fi0,i,j �= 0}, 1 ≤ α ≤ n,

degXα
f = max{iα : fi0,i,j �= 0}, 1 ≤ α ≤ n.

Set ord 0 = ordX0
0 = +∞. If 0 �= f ∈ hA, then we put

(16) ord f = ordX0
f = µ ⇐⇒ f ∈ Xµ

0 (
hA) \Xµ+1

0 (hA), µ ≥ 0.

For every z = (z1, . . . , zl) ∈ hAl, put

ord z = min
1≤i≤l

{ord zi}, deg z = max
1≤i≤l

{deg zi}.

The quantities ord b and deg b are defined similarly for an arbitrary (k× l)-matrix b with
coefficients in hA. More precisely, here b is viewed as a vector with kl entries.

An element f ∈ hA is homogeneous if and only if fi0,i,j �= 0 implies i0+|i|+|j| = deg f ,
i.e., f is a sum of monomials of the same degree deg f . The homogeneous degree of a
nonzero homogeneous element f is its degree. The homogeneous degree of 0 is not defined
(0 belongs to all the homogeneous components of hA; see below).

Next, for every integer m, the mth homogeneous component of hA is the F -linear
space

(hA)m =
{
z ∈ hA : z is homogeneous and deg z = m or z = 0

}
.

Now hA is a graded ring with respect to the homogeneous degree. By definition, the ring
hA is a homogenization of the Weyl algebra A.

We shall consider the category of finitely generated graded modules G over the ring
hA. Such a module G =

⊕
m≥m0

Gm is a direct sum of its homogeneous components
Gm, where m,m0 are integers. Every Gm is a finite-dimensional F -linear space, and
(hA)pGm ⊂ Gp+m for all integers p,m. Let G and G′ be two finitely generated graded
hA-modules; then ϕ : G → G′ is a morphism (of degree 0) of graded modules if and only
if ϕ is a morphism of hA-modules and ϕ(Gm) ⊂ G′

m for every integer m.
An element z ∈ hA (respectively, z ∈ A) is called a term if and only if z = λz1 · · · zν for

some 0 �= λ ∈ F , some integer ν ≥ 0, and zw ∈ {X0, . . . , Xn, D1, . . . , Dn} (respectively,
zw ∈ {X1, . . . , Xn, D1, . . . , Dn}), 1 ≤ w ≤ ν.

Let z =
∑

j zj ∈ A be an arbitrary element of the Weyl algebra A represented as
a sum of terms zj , and let deg z = maxj deg zj . For example, here we can take the
representation (3) for z. Then we define the homogenization hz ∈ hA by the formula

hz =
∑
j

zjX
deg z−deg zj
0 .

By (2) and (13), the right-hand side of this relation does not depend on the choice of a
representation of z as a sum of terms. Hence, hz is well defined. If z ∈ hA, then az ∈ A
is obtained by substituting X0 = 1 in z. Hence, for every z ∈ A we have ahz = z, and for
every z ∈ hA we have z = hazXµ

0 , where µ = ord z.
For an element z = (z1, . . . , zl) ∈ Al, we put deg z = max1≤i≤l{deg zi} and

hz =
(

hz1X
deg z−deg z1
0 , . . . , hzlX

deg z−deg zl
0

)
∈ hAl.

The degree deg a and the homogenization ha can be defined similarly for an arbitrary
(k × l)-matrix a = (av,w)1≤v≤k, 1≤w≤l with coefficients in A. More precisely, here a
is viewed as a vector with kl entries. Hence, if b = (bv,w)1≤v≤k, 1≤w≤l = ha, then

bv,w = hav,wX
deg a−deg av,w

0 for all v, w.
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716 D. YU. GRIGORIEV AND A. L. CHISTOV

Next, the mth homogeneous component of hAl is

(hAl)m =
{

hz : z ∈ Al and deg z = m or z = 0
}
.

For an F -linear subspace X ⊂ Al, we let hX be the smallest linear subspace of hAl

containing the set {hz : z ∈ X}. If X is an A-submodule of Al, then hX is a graded
submodule of hAl. The graduation on hX is induced by that of hAl.

For an element z = (z1, . . . , zl) ∈ hAl, put az = (az1, . . . ,
azl) ∈ Al. For a subset

X ⊂ hAl, put aX = {az : z ∈ X} ⊂ Al. If X is an F -linear space, then aX is also an
F -linear space. If X is a graded submodule of hAl, then aX is a submodule of Al.

Now, hI is a graded submodule of hAl, and ahI = I. Let (hI)m be themth homogeneous
component of hI. Then

h(Im) =
⊕

0≤j≤m

(hI)j , m ≥ 0,(17)

a((hI)m) = Im, m ≥ 0,(18)

and (18) induces an isomorphism ι : (hI)m → Im of linear spaces over F . Set hM =
hAl/hI. Then hM is a graded hA-module, and we have the exact sequence

(19) 0 → hI → hAl → hM → 0.

Now, for the mth homogeneous component (hM)m of hM we have

(20) (hM)m = (hAl)m/(hI)m � Al
m/Im,

by the isomorphism ι. We have the exact sequences

(21) 0 → (hI)m → (hAl)m → (hM)m → 0, m ≥ 0.

By definition, the Hilbert function of the module hM is

H(hM,m) = dimF (
hM)m, m ≥ 0.

By (20), we have H(M,m) = H(hM,m) for every m ≥ 0; i.e., the Hilbert functions of
M and hM coincide.

Lemma 2. Let b1, . . . , bs be a system of homogeneous generators of the hA-module hI.
Then

gr(ab1), . . . , gr(
abs) ∈ gr(A)l

is a system of generators of the gr(A)-module gr(I).

Proof. By (18), we have a((hI)m) = Im. Now the claim follows from Lemma 1. The
lemma is proved. �

§4. The Janet bases of a module and of its homogenization

Each element of hAl can be uniquely represented as an F -linear combination of ele-
ments ev,i0,i,j = (0, . . . , 0, Xi0

0 XiDj , 0, . . . , 0), where 0 ≤ i0 ∈ Z, i, j ∈ Zn
+ are multi-

indices, see (4), and the nonzero monomial Xi0
0 XiDj is at the position v, 1 ≤ v ≤ l.

Therefore, every element f ∈ hAl can be written in the form

(22) f =
∑

v,i0,i,j

fv,i0,i,jev,i0,i,j , fv,i0,i,j ∈ F,

and only a finite number of fv,i0,i,j are nonzero. The elements ev,i0,i,j will be called
monomials.

In §1, everywhere after the definition of the Hilbert function, we can replace the ring
A, the monomials ev,i,j , the multi-indices i, i′, i′′, the triples (v, i, j) and (v, i′, j′), the
module I, and so on by the ring hA, the monomials ev,i0,i,j , the pairs (i0, i), (i′0, i

′),
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(i′′0 , i
′′) (they are used without parentheses), the quadruples (v, i0, i, j), (v, i

′
0, i

′, j′), the
homogenization hI, and so on, respectively. This gives us the definitions of o(f), Hdt(f)
for f ∈ hAl, new conditions (a) and (b) that define admissible linear orders on the
monomials of hAl, a new condition (c) and the definition of the degree-compatible linear
order, new conditions 1)–5), and the definitions of the set Hdt(hI), the Janet basis, and
the reduced Janet basis of hI. For example, o(0) = +∞, Hdt(0) = 0, and if 0 �= f ∈ hAl,
then

o(f) = max{(v, i0, i, j) : fv,i0,i,j �= 0},
Hdt(f) = fv,i0,i,jev,i0,i,j , where o(f) = (v, i0, i, j),

Hdt(hI) = {Hdt(f) : f ∈ hI},

while the new conditions (a) and (b) look like this:

(a) for all indices i0, i
′
0, all multi-indices i, j, i′, j′, and all 1 ≤ v ≤ l, if i0 ≤ i′0,

i1 ≤ i′1, . . . , in ≤ i′n, and j1 ≤ j′1, . . . , jn ≤ j′n, then (v, i0, i, j) ≤ (v, i′0, i
′, j′);

(b) for all indices i0, i
′
0, i

′′
0 , all multi-indices i, j, i′, j′, i′′, j′′, and all 1 ≤ v, v′ ≤ l, if

(v, i0, i, j) < (v′, i′0, i
′, j′), then (v, i0+i′′0 , i+i′′, j+j′′) < (v′, i′0+i′′0 , i

′+i′′, j′+j′′).

The existence of a Janet basis of hI and the uniqueness of the reduced Janet basis with
respect to an admissible linear order are proved much as the existence of a Janet basis
of I and the uniqueness of the reduced Janet basis of I; see §1. The Janet basis of hI is
homogeneous if and only if it consists of homogeneous elements of hAl. Since the module
hI is homogeneous, the family of homogeneous components of any Janet basis of hI is
a homogeneous Janet basis of hI. Hence, the reduced Janet basis of hI is homogeneous
(here we leave the details to the reader).

Let < be an admissible linear order on the monomials in Al, or, what is the same, on
the triples (v, i, j); see §1. Thus, this order satisfies conditions (a) and (b). We define a
linear order on the monomials ev,i0,i,j , or, what is the same, on the quadruples (v, i0, i, j).
This linear order is induced by < on the triples (v, i, j) and will be denoted again by <.
Namely, for two quadruples (v, i0, i, j) and (v′, i′0, i

′, j′) we put (v, i0, i, j) < (v′, i′0, i
′, j′)

if and only if (v, i, j) < (v′, i′, j′), or (v, i, j) = (v′, i′, j′) but i0 < i′0. Observe that this
induced linear order satisfies conditions (a) and (b) (in the new sense).

Remark 2. If f1, . . . , fm is a Janet basis of I (respectively, a homogeneous Janet basis
of hI) satisfying 1)–4), then there are unique cα,β ∈ A (respectively, homogeneous cα,β ∈
hA), 1 ≤ α < β ≤ m, such that the elements

fα +
∑

α<β≤m

cα,βfβ , 1 ≤ α ≤ m,

form a reduced Janet basis of I (respectively, a reduced homogeneous Janet basis of hI);
cf. [3].

Obviously, an admissible linear order < on the monomials in Al (respectively, in
hAl) is degree-compatible if and only if for any two monomials z1, z2 the inequality
deg z1 < deg z2 implies z1 < z2.

Lemma 3. The following assertions are true.

(i) Let f1, . . . , fm be a (reduced) Janet basis of I with respect to the linear order
< and suppose that the order < is degree-compatible. Then hf1, . . . ,

hfm is a
(reduced) homogeneous Janet basis of the module hI with respect to the induced
linear order <.
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(ii) Conversely, suppose that the initial order < is degree-compatible, and g1, . . . , gm
is a (reduced) homogeneous Janet basis of the module hI with respect to the in-
duced linear order <. Then ag1, . . . ,

agm is a (reduced) Janet basis of I with
respect to the linear order <.

(iii) Suppose that the initial order < is arbitrary admissible. Let g1, . . . , gm be a
homogeneous Janet basis of the module hI with respect to the induced linear or-
der <. Then ag1, . . . ,

agm is a Janet basis of I with respect to the linear order <.
Moreover, hagw = gw for all 1 ≤ w ≤ m.

Proof. This follows immediately from the definitions. �

Let f ∈ hAl, and let the module hI be as above. We show that there is a unique
element g ∈ hAl such that

(23) g =
∑

v,i0,i,j

gv,i0,i,jev,i0,i,j , gv,i0,i,j ∈ F,

f − g ∈ hI, and if gv,i0,i,j �= 0, then ev,i0,i,j �∈ Hdt(hI). Indeed, if there are two such
elements g �= g′, then 0 �= g − g′ ∈ hI, but Hdt(g − g′) �∈ Hdt(hI), and we get a
contradiction. To prove the existence of g, we may assume without loss of generality
that f is homogeneous and show additionally that the sum on the left in (23) is taken
over (v, i0, i, j) such that i0 + |i|+ |j| = deg f . We can write

f =
∑

v,i0,i,j

fv,i0,i,jev,i0,i,j , fv,i0,i,j ∈ F, i0 + |i|+ |j| = deg f.

We use induction on the number ν(f) of quadruples (v, i0, i, j) in the last sum such that
ev,i0,i,j ∈ Hdt(hI) and ev,i0,i,j ≤ Hdt(f). If ν(f) > 0, then there is a homogeneous z ∈ hI
such that Hdt(z) = Hdt(f), deg z = deg f . Then ν(f−z) < ν(f). The required assertion
is proved.

The element g as in (23) is called the normal form of f with respect to the module hI.
We denote g = nf(hI, f). Obviously, nf(hI, (hAl)m) ⊂ (hAl)m is a linear subspace, and

dimF nf(hI, (hAl)m) = l

(
m+ 2n

2n

)
−H(hI,m) = H(hAl/hI,m).

Let cA = F [X0, . . . , Xn, D1, . . . , Dn] denote the polynomial ring in the variables
X0, . . . , Xn, D1, . . . , Dn. Each monomial ev,i0,i,j can also be viewed as an element of
cAl. Hence, Hdt(f) can be viewed as an element of cAl for every f ∈ hAl. To avoid
ambiguity, we shall denote it by Hdtc(f) ∈ cAl. Put Hdtc(hI) = {Hdtc(f) : f ∈ hI}. So,
the sets Hdt(hI) and Hdtc(hI) are in one-to-one correspondence.

We denote by cI ⊂ cAl the graded submodule of cAl generated by Hdtc(hI). It is easily
seen that the set of monomials from the module cI coincides with Hdtc(hI) \ {0}. Next,
for every m ≥ 0, the F -linear space cIm of homogeneous elements is generated by the
monomials ev,i0,i,j such that there is 0 �= f ∈ hIm with o(f) = (v, i0, i, j). For the Hilbert
function, we have

H(cI,m) = dimF {(z1, . . . , zl) ∈ cI : ∀ i (deg zi = m or zi = 0 )},

H(cAl/cI,m) = l

(
m+ 2n

2n

)
−H(cI,m).

Let f ∈ cAl, and let the module cI be as above. Then there is a unique element g ∈ cAl

such that

g =
∑

v,i0,i,j

gv,i0,i,jev,i0,i,j , gv,i0,i,j ∈ F,
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f − g ∈ hI, and if gv,i0,i,j �= 0, then ev,i0,i,j �∈ Hdtc(hI) (the proof is similar to that of the
existence and uniqueness of g in (23)). The element g is called the normal form of f with
respect to the module cI; see [4]. We denote g = nf(cI, f). Obviously, nf(cI, (cAl)m) ⊂
(cAl)m is a linear subspace, and

dimF nf(cI, (cAl)m) = l

(
m+ 2n

2n

)
−H(cI,m) = H(cAl/cI,m).

Since, by the definitions given above, the F -linear spaces nf(cI, (cAl)m) and nf(hI, (hAl)m)
are generated by the same monomials, for every m ≥ 0 we have

dimF nf(cI, (cAl)m) = dimF nf(hI, (hAl)m),

H(hAl/hI,m) = H(cAl/cI,m), H(hI,m) = H(cI,m).

Therefore, see §3,
(24) H(I,m) = H(cI,m), m ≥ 0.

§5. Bound for the kernel of a matrix over the homogenized Weyl algebra

Lemma 4. Let k ≥ 1 and l ≥ 1 be integers. Let b = (bi,j)1≤i≤k, 1≤j≤l be a matrix, where
bi,j ∈ hA are homogeneous elements for all i, j. Suppose deg bi,j < d, d ≥ 2, for all i, j.
Assume that there are integers dj ≥ 0, 1 ≤ i ≤ k, and d′i ≥ 0, 1 ≤ j ≤ l, such that

(25) deg bi,j = di − d′j

for all nonzero bi,j, and that, moreover, the d′j are chosen to be minimal possible (this

means that there are no integers d̃i, d̃
′
j similar to di, d

′
j such that d̃′j ≤ d′j for all 1 ≤

j ≤ l and at least one of the inequalities is strict). Then di < min{k + 1, l}d and
d′j < min{k, l − 1}d for all i, j.

Next, assume that k = l − 1. Then there are homogeneous elements z1, . . . , zl ∈ hA
such that (z1, . . . , zl) �= (0, . . . , 0) and

(26)
∑

1≤j≤l

bi,jzj = 0, 1 ≤ i ≤ l − 1.

There is an integer µ ≥ 0 such that, for all 1 ≤ j ≤ l − 1, if zj �= 0, then deg zj =
µ+ d′j, and hence, all nonzero bi,jzj have one and the same degree depending only on i.
Furthermore,

(27) deg zj ≤ (2n+ 1)l max
1≤i≤k

{di} < (2n+ 1)l2d, 1 ≤ j ≤ l.

Moreover, if all bi,j do not depend on Xn (i.e., they can be represented as sums of
monomials that do not contain Xn), then the elements z1, . . . , zl can be chosen so as to
satisfy additionally the same property. Finally, dividing by an appropriate power of X0,
we can assume without loss of generality that min{ord zi : 1 ≤ i ≤ l} = 0.

Proof. First, we prove that di < min{k + 1, l}d and d′j < min{k, l − 1}d for all i, j and
arbitrary k, l ≥ 1. We define an equivalence relation on the set of pairs P = {(v, w) :
1 ≤ v ≤ k, 1 ≤ w ≤ l, and bv,w �= 0} as follows. Put (v, w) ∼ (v′, w′) if and only if in P
there is a sequence of pairs (v1, w1), . . . , (vν , wν), ν ≥ 1, such that

1) (v, w) = (v1, w1), (v
′, w′) = (vν , wν),

2) vα = vα+1 or wα = wα+1 for every 1 ≤ α ≤ ν − 1.

Let π ⊂ P be an equivalence class with respect to ∼. Then there is a pair (p, q) ∈ π such
that d′q = 0, because the numbers d′j are chosen to be minimal possible. Moreover, for
all (v, w), (v′, w′) ∈ π, a sequence (v1, w1), . . . , (vν , wν) as above can always be chosen so
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as to possess the following five properties:

3) (vα, wα) �= (vα+1, wα+1) for every 1 ≤ α ≤ ν − 1;
4) if vα = vα+1, then wα+1 = wα+2 for every 1 ≤ α ≤ ν − 2;
5) if wα = wα+1, then vα+1 = vα+2 for every 1 ≤ α ≤ ν − 2;
6) for all 1 ≤ α, β ≤ ν, if β �∈ {α− 1, α, α+ 1}, then vβ �= vα;
7) for all 1 ≤ α, β ≤ ν, if β �∈ {α− 1, α, α+ 1}, then wβ �= wα

(we leave the details to the reader). Now conditions 1)–7) imply that the number of pairs
satisfies

#{(wα, wα+1) : wα �= wα+1 &1 ≤ α ≤ ν − 1} ≤ min{k, l − 1}.
Next, if wα �= wα+1, then vα+1 = vα and |d′wα+1

−d′wα
| = | deg bvα+1,wα+1

−deg bvα,wα
| <

d. Hence, d′wν
< min{k, l − 1}d + d′w1

. For (v1, w1) = (p, q) and an arbitrary (v, w) =
(vν , wν) ∈ π we get d′w < min{k, l − 1}d. Finally, deg bv,w = dv − d′w < d implies
dv < min{k + 1, l}d. The required inequalities are proved. �

Now, suppose that deg bi,j = deg b for all nonzero bi,j and k = l − 1. We prove the
existence of z1, . . . , zl and obtain an estimate for deg zj in this case. Consider the linear
mapping

(28)

(hA)lm−deg b −→ (hA)l−1
m ,

( z1, . . . , zl ) �→
( ∑

1≤j≤l

bi,jzj

)
1≤i≤l−1

.

If

(29) l

(
m− deg b+ 2n

2n

)
> (l − 1)

(
m+ 2n

2n

)
,

then the kernel of (28) is nonzero. But (29) is true provided

(30)
∏

1≤w≤2n

(
1 +

deg b

m+ w − deg b

)
<

l

l − 1
.

Next, (30) is true if (1 + deg b/(m − deg b))2n < l/(l − 1). The last inequality follows
from m ≥ (2n+ 1) deg b/ log(l/(l − 1)), and hence, also from m ≥ (2n+ 1)l deg b. Thus,
the existence of z1, . . . , zl is proved, and moreover, all the nonzero zj have one and the
same degree ((2n+1)l− 1) deg b, which does not depend on j. Observe that, in the case
under consideration we have proved a stronger inequality: deg zj < ((2n+ 1)l − 1)d for
all 1 ≤ j ≤ l.

Finally, let k = l − 1 and suppose that the degrees deg bi,j are arbitrary but satisfy

(25). Multiplying the ith equation in (26) by X
maxw{dw}−di

0 , we may assume without

loss of generality that all di are equal. We substitute zjX
d′
j

0 for zj in (26). Now the
degrees of all the nonzero coefficients of the resulting system are equal to max1≤i≤k{di}
and are less than ld. If, in the case of deg bi,j = deg b considered above, we replace
the bound d by max1≤i≤k{di} < ld, we get the required z1, . . . , zl such that deg zj =
((2n+ 1)l− 1)max1≤i≤k{di}+ d′j or zj = 0 for all 1 ≤ j ≤ l, together with the estimate

deg zj ≤ ((2n+ 1)l − 1) max
1≤i≤k

{di}+ d′j ≤ (2n+ 1)l max
1≤i≤k

{di} < (2n+ 1)l2d

for all j.
Suppose that a1, . . . , al do not depend on Xn. We represent zi =

∑
j zi,jX

j
n, 1 ≤ i ≤ l,

where all zi,j do not depend on Xn. Let α = maxi{degXn
zi}. Obviously, in this case we

can replace (z1, . . . , zl) by (z1,α, . . . , zl,α). The lemma is proved. �
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Remark 3. Lemma 4 remains true if condition (26) in its statement is replaced by

(31)
∑

1≤j≤l

zjbi,j = 0, 1 ≤ i ≤ l − 1.

The proof is similar.

Remark 4. Let the elements bi,j be as in Lemma 4. Notice that there are integers δ′i ≥ 0,
1 ≤ i ≤ k, and δj ≥ 0, 1 ≤ j ≤ l, such that

deg bi,j = δj − δ′i

for all nonzero bi,j , and min1≤i≤k{δ′i} = 0. Namely, δ′i = −di + max1≤i≤k{di}, δj =
−d′j +max1≤i≤k{di}.

Remark 5. Let bi,j ∈ hA, 1 ≤ i ≤ k, 1 ≤ j ≤ l, be homogeneous elements. Suppose there

are integers d̃i, 1 ≤ i ≤ k, and d̃′j , 1 ≤ j ≤ l, such that deg bi,j = d̃i − d̃′j for all nonzero
bi,j . Then there are integers di ≥ 0, 1 ≤ i ≤ k, and d′j ≥ 0, 1 ≤ j ≤ l, such that (25) is
fulfilled for all nonzero bi,j .

§6. Reducing a matrix with coefficients in
hA to a trapezoidal form

Let b be a matrix as in Lemma 4, and let integers k, l ≥ 1 be arbitrary. Thus, (25)
is true. Let b = (b1, . . . , bl), where b1, . . . , bl ∈ hAk, be the columns of the matrix b
(note that in Lemmas 1 and 2 all bi are rows of size l, so that now we change the
notation). By definition, b1, . . . , bl are linearly independent over hA from the right (or
linearly independent if this will not lead to ambiguity; in what follows in this paper, if
it is not stated otherwise, “linearly independent” will mean “linearly independent from
the right”) if and only if for all z1, . . . , zl ∈ hA the relation b1z1 + · · · + blzl = 0 implies
z1 = · · · = zl = 0. By (25), in this definition we may consider only homogeneous
z1, . . . , zl. From an arbitrary family b1, . . . , bl as in Lemma 4 (with arbitrary k, l) we
can choose a maximal subfamily bi1 , . . . , bir , linearly independent from the right. By
Lemma 4, we have r ≤ k. It turns out that r does not depend on the choice of a
subfamily. More precisely, the following statement is true.

Lemma 5. Let cj =
∑

1≤i≤l bizi,j, 1 ≤ j ≤ r1, where zi,j ∈ hA are homogeneous

elements. Suppose that there are integers d′′j , 1 ≤ j ≤ r1, such that, for all i, j, deg zi,j =

d′i − d′′j if zi,j �= 0. Assume that cj, 1 ≤ j ≤ r1, are linearly independent over hA from
the right. Then r1 ≤ r, and if r1 < r, then there are cr1+1, . . . , cr ∈ {bi1 , . . . , bir} such
that the cj, 1 ≤ j ≤ r, are linearly independent over hA from the right.

Proof. The proof is similar to the case of vector spaces over a field, and we leave it to
the reader. �

We denote r = rankr{b1, . . . , bl} and call this number the rank from the right of
b1, . . . , bl. In a similar way we can define the rank from the left of b1, . . . , bl, denoting
it by rankl{b1, . . . , bl}. It is not difficult to construct examples when rankr{b1, . . . , bl}
�= rankl{b1, . . . , bl}. Our aim in this section is to prove the following result.

Lemma 6. Let b be a matrix with homogeneous entries in hA and satisfying (25); see
above. Suppose that d ≥ 2 and deg bi,j < d for all i, j. Let l1 = rankr{b1, . . . , bl}, and let
b1, . . . , bl1 be linearly independent. Hence, 0 ≤ l1 ≤ l and k ≥ l1. Then there is a matrix
(zj,r)1≤j,r≤l1 (if l1 = 0, then this matrix is empty) with homogeneous entries zj,r ∈ hA,
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and a square permutation matrix σ of size k, with the following properties:

(i) There are integers d′′r , 1 ≤ r ≤ l1, such that for all 1 ≤ j, r ≤ l1 we have
deg zj,r = d′j − d′′r or zj,r = 0, and hence, all the nonzero elements bi,jzj,r,
1 ≤ j ≤ l1, have one and the same degree di − d′′r depending only on i, r. Next,

(32) deg zj,r ≤ (2n+ 1)l1 max
1≤i≤k

{di} < (2n+ 1)l21d.

(ii) Introduce the matrix e = (ei,j)1≤i≤k, 1≤j≤l1 = σ(b1, . . . , bl1)z, where (b1, . . . , bl1)
is the matrix formed by the first l1 columns of the matrix b. Then

e =

(
e′

e′′

)
,

where e′ = diag(e′1,1, . . . , e
′
l1,l1

) is a diagonal matrix with l1 columns, and each

e′j,j , 1 ≤ j ≤ l1, is nonzero.

(iii) ord ei,j ≥ ord e′j,j for all 1 ≤ i ≤ k, 1 ≤ j ≤ l1.

Moreover, if all ai,j (and hence, all bi,j) do not depend on Xn (i.e., they can be represented
as sums of monomials that do not contain Xn), then the zj,r can be chosen so as to possess
the same property. Finally, dividing by an appropriate power of X0, we may assume
without loss of generality that min{ord zj,r : 1 ≤ j ≤ l1} = 0 for every 1 ≤ r ≤ l1.

Proof. First, we show how to construct z, e, and σ satisfying (ii) and (iii). We shall use
a kind of Gauss elimination and Lemma 4. Namely, we transform the matrix e. To start
with, we put

e = (e1, . . . , el1) = (b1, . . . , bl1).

We shall perform some hA-linear transformations of columns and permutations of rows
of the matrix e and replace e each time by the resulting matrix. These transformations
will not change the rank from the right of the family of columns of e. At the end, we get
a matrix e satisfying the required properties (ii), (iii).

We have rankr(e) = l1. If l1 = 0, i.e., if e is an empty matrix, then this is the end
of the construction: z is an empty matrix. Suppose that l1 > 0. We choose indices
1 ≤ i0 ≤ k and 1 ≤ j0 ≤ l1 such that ord ei0,j0 = min1≤j≤l1{ord ej}. Permuting rows
and columns of e, we may assume without loss of generality that (i0, j0) = (1, 1).

By Lemma 4, we get elements wi,1, wi,i ∈ hA of degree at most (2n + 1)4d such
that e1,1w1,i = e1,iwi,i, 1 ≤ i ≤ l1, and ordwi,i = 0 for every 1 ≤ i ≤ l1. Set w′ =
(−w1,2, . . . ,−w1,l1), and let w′′ = diag(w2,2, . . . , wl1,l1) be the diagonal matrix. Let

w =

(
1 w′

0 w′′

)
be the square matrix with l1 rows. We replace e by ew. Now

e =

(
e1,1 0
E2,1 E2,2

)
,

where E2,2 has l1 − 1 columns, and

(33) min
1≤j≤l1

{ord bj} = ord e1,1 = min
1≤j≤l1

{ord ej}

(for the new matrix e).
We apply recursively the described construction to the matrix E2,2 in place of e. So,

using only linear transformations of columns with indices 2, . . . , l1 and permutation of
rows with indices 2, . . . , k, we transform e to

σeτ =

⎛
⎝e1,1 0
E′

2,1 E′
2,2

E′′
2,1 E′′

2,2

⎞
⎠ , τ =

(
1 0
0 τ ′

)
,
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where σ is a permutation matrix and τ ′ is a square matrix with l1−1 rows (it transforms
E2,2), the matrix E′

2,2 = diag(e2,2, . . . , el1,l1) is a diagonal matrix with l1−1 ≥ 0 columns,

and all the elements e2,2, . . . , el1,l1 ∈ hA are nonzero. We shall assume without loss of
generality that σ = 1 is the identity matrix. We replace e by eτ . Condition (iii) is fulfilled
for the resulting matrix e, and moreover, by (iii) applied recursively to (E2,2, E

′
2,2, E

′′
2,2)

in place of (e, e′, e′′), and by (33), the same equalities in (33) are satisfied for the new
matrix e.

Let E′
2,1 = (e2,1, . . . , el1,1)

t, where t denotes transposition. By Lemma 4, there are

nonzero elements v1,1, . . . , vl1,1 ∈ hA of degrees at most

(34) (2n+ 1)(max{deg ei,j : 1 ≤ i ≤ l1, j = 1, i}+ 1)l21

such that ei,1v1,1 = ei,ivi,1 and min{ord v1,i : 1 ≤ i ≤ l1} = 0 for all 1 ≤ i ≤ l1 − 1. Let
v′ = (−v2,1, . . . ,−vl1,1)

t, and let v′′ be the identity matrix of size l1 − 1. Put

v =

(
v1,1 0
v′ v′′

)
.

We replace e by ev and put z = wτv. Recall that, without loss of generality, σ = 1 is the
identity permutation. We have e = (b1, . . . , bl1)z. These Gauss elimination transforma-
tions of e do not change the rank from the right of the family of columns of e. This can
be proved easily by using recursion on l; cf. Lemma 8 below. Now the matrix e satisfies
the required conditions (ii) and (iii), and σ = 1.

Now we change the notation. We denote the matrix z obtained so far by z′. Let z′ =
(z′1, . . . , z

′
l1
), where z′j is the jth column of z′. Our aim now is to prove the existence of

a matrix z satisfying (i)–(iii). By Lemma 4, for every 1 ≤ r ≤ l1, there are homogeneous
elements zj,r ∈ hA, 1 ≤ j ≤ l1, such that (z1,r, . . . , zl1,r) �= (0, . . . , 0), deg zj,r = d′r + µr

or zj,r = 0 for all 1 ≤ j ≤ l1,

(35)
∑

1≤j≤l1

bi,jzj,r = 0 for every 1 ≤ i ≤ l1, i �= r,

and estimates (32) for the degrees are true. Put z = (zj,r)1≤j,r≤l1 and d′′r = −µr. Let
z = (z1, . . . , zl1), where zj is the jth column of z. Hence, zj = (z1,j , . . . , zl1,j)

t.

Lemma 7. For every 1 ≤ r ≤ l1 we have

(36)
∑

1≤j≤l1

br,jzj,r �= 0,

and for every 1 ≤ r ≤ l1 there are nonzero homogeneous elements g′r, gr ∈ hA such that
z′rg

′
r = zrgr.

Proof. Consider the matrix (z′, zr) with l1 rows and l1+1 columns. Using Lemma 4, we
see that there are homogeneous elements h1, . . . , hl1+1 ∈ hA (depending on r) such that
(h1, . . . , hl1+1) �= (0, . . . , 0) and the following is fulfilled. Denote h = (h1, . . . , hl1+1)

t and
h′ = (h1, . . . , hl1)

t. Then

(37) z′h′ + zrhl1+1 = 0

(at present, we do not need any estimate on degrees from Lemma 4; we only need the
existence of h). Denote by b′′ the submatrix formed by the first l1 rows of the matrix
(b1, . . . , bl1). Multiplying (37) by b′′ from the left, we get

(38) b′′z′h′ + b′′zrhl1+1 = 0.

But b′′z′ is a diagonal matrix with nonzero elements on the diagonal; see (ii) (with z′ in
place of z). Hence, by (35) and (38), hj = 0 for every j �= r.
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Now suppose that hr = 0. Then h′ = 0. Since zr �= 0, we have hl1+1 = 0 by (3.7).
Hence, h = (0, . . . , 0)t, a contradiction.

Suppose that hl1+1 = 0. Then by (38) we have hr = 0. Hence h = (0, . . . , 0)t and
again we get a contradiction.

Thus, hr �= 0 and hl1+1 �= 0. Now (38) implies (36). Put g′r = hr and gr = −hl1+1.
We have z′rg

′
r = zrgr by (37). The lemma is proved. �

We return to the proof of Lemma 6. Now (i)–(iii) are satisfied by Lemma 7. The last
assertions of Lemma 6 are proved much as those in Lemma 4. Lemma 6 is proved. �

§7. An algorithm for solving linear systems with coefficients in
hA

Let u = (u1, . . . , ul) ∈ hAl. Suppose that all nonzero uj are homogeneous elements
of degree −d′j + ρ for an integer ρ, and that −d′j + ρ < d′ for an integer d′ > 1. Let
b = (bi,j)1≤i≤k, 1≤j≤l be a matrix as in Lemma 6, having k rows and l columns (but now k
and l are arbitrary). So, deg bi,j = di−d′j < d for all i, j and d ≥ 2. Let Z = (Z1, . . . , Zk)
be unknowns. Consider the linear system

(39)
∑

1≤i≤k

Zibi,j = uj , 1 ≤ j ≤ l,

or, what is the same,
Zb = u.

Denote

(40) ordu = min
1≤i≤l

{ordui}.

Similar notation will be used for other vectors and matrices. In this section we describe
an algorithm for solving linear systems over hA and prove the following theorem for an
infinite field F (for a finite field F this theorem reduces easily to the case where F is
infinite, but we shall not use this theorem for a finite field F in this paper).

Theorem 2. Suppose that system (39) has a solution over hA. Then the set of all
solutions of (39) over hA can be represented in the form

J + z∗,

where J ⊂ hAl is an hA-submodule of all the solutions of the homogeneous system cor-
responding to (39) (i.e., system (39) with all uj = 0) and z∗ is a particular solution of
(39). Moreover, the following assertions hold true.

(A) The solution z∗ can be chosen so that ord z∗ ≥ ordu − ν, where ν ≥ 0 is an

integer bounded from above by (dl)2
O(n)

. The degree deg z∗ is bounded from above

by d′ + (dl)2
O(n)

.

(B) J admits a system of generators of degrees bounded from above by (dl)2
O(n)

.
The number of elements of this system of generators is bounded from above by

k(dl)2
O(n)

.

The constants in O(n) in (A) and (B) are absolute. Moreover, if all bi,j and uj do not
depend on Xn (i.e., they can be represented as sums of monomials that do not contain
Xn), then z∗ and all the generators of the module J also possess this property.

Proof. Let l1 = rankr(b1, . . . , bl). If l1 = 0, then u = (0, . . . , 0), J = hAk, and we can
take z∗ = (0, . . . , 0). So, in what follows we shall assume that l1 > 0. Then 1 ≤ l1 ≤ k
by Lemma 4. Permuting equations of (39), we may assume without loss of generality
that (b1, . . . , bl1) are linearly independent from the right over hA. Let σ, z, e, e′, e′′

be the matrices occurring in Lemma 6. As in the proof of Lemma 6, we shall assume
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without loss of generality that σ = 1. Denote by b′ the submatrix of b formed by the
first l1 columns of b, i.e., b′ = (b1, . . . , bl1). By Lemma 4, there are nonzero homogeneous
elements q1,1, . . . , ql1,l1 of degrees at most

(2n+ 1)(max{deg ei,i : 1 ≤ i ≤ l1}+ 1)l21

such that e1,1q1,1 = ei,iqi,i and min{ord qi,i : 1 ≤ i ≤ l1} = 0. We introduce the diagonal
matrix q = diag(q1,1, . . . , ql1,l1). Let ν0 = ord e1,1q1,1. Then ord(b′zq) ≥ ν0 by Lemma 6
(iii). Let Xν0

0 δ = b′zq. Then δ is a matrix with coefficients in hA, and

δ = (δi,j)1≤i≤k, 1≤j≤l1 =

(
δ′

δ′′

)
,

where δ′ = diag(δ1,1, . . . , δl1,l1) is a diagonal matrix with homogeneous coefficients from
hA and such that all the elements on the diagonal are nonzero and equal, i.e., δj,j = δ1,1
for every 1 ≤ j ≤ l1. Also, ord δ1,1 = 0. Next, δ′′ = (δi,j)l1+1≤i≤k, 1≤j≤l1 . We have
ord(uzq) ≥ ν0 because, otherwise, system (39) has no solutions. Obviously, ordu ≤
ord(uzq). Denote u′ = (u′

1, . . . , u
′
l1
) = X−ν0

0 uzq ∈ hAl. Then ordu′ ≥ ord(u)− ν0.
By Lemma 6 (i), and since q is a diagonal matrix with nonzero homogeneous entries

on the diagonal, there are integers d′′j , 1 ≤ j ≤ l1, such that for all i, j we have

(41) deg δi,j = di − d′′j

or δi,j = 0. Besides that, for the same reason there is an integer ρ′ such that deg u′
j =

−d′′j + ρ′ or u′
j = 0 for all 1 ≤ j ≤ l1 (here we leave the details to the reader).

Consider the linear system

(42) Zδ = u′.

Lemma 8. Suppose that system (39) has a solution over hA. Then the linear system
(42) is equivalent to (39), i.e., the sets of solutions of systems (42) and (39) over hA
coincide.

Proof. The system Zb′z = uz is equivalent to (39) by Lemma 5. System (42) is equivalent
to Zb′z = uz because the ring hA has no zero divisors. The lemma is proved. �
Remark 6. We have rankr(b1, . . . , bl) = l1. Hence, by Lemma 6, for every l1 + 1 ≤
j ≤ l there are homogeneous zj,j , z1,j , . . . , zl1,j ∈ hA such that zj,j �= 0, bjzj,j +∑

1≤r≤l1
brzr,j = 0, and all deg zj,j , deg zr,j are bounded from above by (2n+1)(l1+1)2d.

Put u′
j = ujzj,j +

∑
1≤r≤l1

urzr,j , l1 + 1 ≤ j ≤ l. Then system (39) has a solution if and

only if system (42) has a solution and u′
j = 0 for all l1 + 1 ≤ j ≤ l. This follows from

Lemmas 8 and 5. But in what follows for our aims it suffices to use only Lemma 8.

Remark 7. Assume that degXn
bi,j ≤ 0 for all i, j, i.e., the elements of the matrix b do

not depend on Xn. Then by Lemmas 4 and 6 and by our construction, all the elements
of the matrices b, z, q, δ, δ′, δ′′ also do not depend on Xn.

By Lemma 4 and Remark 3, for every l1+1 ≤ i ≤ k, there are homogeneous elements
gi,i, gi,j ∈ hA, 1 ≤ j ≤ l1, such that

gi,iδi,j = gi,jδ1,1, 1 ≤ j ≤ l1,

all the degrees deg gi,i, deg gi,j , 1 ≤ j ≤ l1, are bounded from above by

(2n+ 1)(l1 + 1)2(max{deg δi,j : 1 ≤ j ≤ k}+ 1),

and min1≤j≤l1{ord gi,i, ord gi,j} = 0. Therefore, ord gi,i = 0 for every l1 + 1 ≤ i ≤ k,
because ord δ1,1 = 0.

We need an analog of the Noether normalization theorem from commutative algebra;
cf. also Lemma 3.1 in [7].
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Lemma 9. Let h ∈ hA be an arbitrary nonzero element, and let deg h = ε. There is a
linear automorphism α of the algebra hA,

α : hA → hA, α(Xi) =
∑

1≤j≤n

(α1,i,jXj + α2,i,jDj),

α(Di) =
∑

1≤j≤n

(α3,i,jXj + α4,i,jDj), α(X0) = X0, 1 ≤ i ≤ n,

such that all αs,i,j are in F and degDn
α(h) = ε. Moreover, one can choose α so that,

additionally, for every H ∈ hA, if degXn
H = 0, then degXn

α(H) = 0.

Proof. To start with, it is not difficult to construct a linear automorphism β such that
β(X0) = X0, β(Xn) = Xn, β(Dn) = Dn,

β(Xi) = β1,iXi + β2,iDi, β(Di) = β3,iXi + β4,iDi, 1 ≤ i ≤ n,

and β(h) contains a monomial ai1,...,inD
i1
1 , . . . , Din

n with ai1,...,in �= 0 and i1+· · ·+in = ε,
i.e., ε = degD1,...,Dn

β(h). After that, we can find an automorphism γ such that γ(X0) =
X0,

γ(Xi) = Xi, γ(Di) = Di + γiDn, 1 ≤ i ≤ n− 1,

γ(Xn) = Xn −
∑

1≤i≤n−1

γiXi, γ(Dn) = Dn,

where γi ∈ F for all 1 ≤ i ≤ n−1, and (γ◦β)(h) contains a monomial aDε
n with 0 �= a ∈ F .

Put α = γ ◦ β. Obviously, if H ∈ hA and degXn
H = 0, then degXn

α(H) = 0. The
lemma is proved. �

Put h = δ1,1gl1+1,l1+1gl1+2,l1+2 · · · gk,k. Then h ∈ hA is a nonzero homogeneous
element and ordh = 0. By Lemma 9, we obtain an automorphism α. Applying α to
the coefficients of system (42), we get a new linear system. Again by Lemma 9, if all
the coefficients of system (42) do not depend on Xn, then all the coefficients of the new
system also do not depend on Xn. In what follows, to simplify the notation, we shall
assume without loss of generality that α = 1. Thus, h contains a monomial aDε

n with
0 �= a ∈ F , where ε = deg h. Then

(43) degDn
δ1,1 = deg δ1,1, degDn

gi,i = deg gi,i, l1 + 1 ≤ i ≤ k.

Let z = (z1, . . . , zk) ∈ hAk be a solution of (42). Then (43) implies that we can uniquely
represent zi in the form

(44) zi = z′igi,i +
∑

0≤r<deg gi,i

zi,rD
r
n, l1 + 1 ≤ i ≤ k,

where z′i, zi,r ∈ hA, and degDn
zi,r ≤ 0 for all l1 + 1 ≤ i ≤ k, 0 ≤ r < degD1

gi,i. Again
by (43), we can uniquely represent u′

j in the form

u′
j = u′′

j δ1,1 +
∑

0≤s<deg δ1,1

u′
j,sD

s
n, 1 ≤ j ≤ l1,

where u′′
j , u

′
j,s ∈ hA, and degDn

u′
j,s ≤ 0 for all 1 ≤ j ≤ l1, 0 ≤ s < degD1

gi,i. Finally,
by (43), for all l1 + 1 ≤ i ≤ k, 1 ≤ j ≤ l1, and 0 ≤ r < degD1

gi,i, there is a unique
representation

Dr
nδi,j = δi,r,jδ1,1 +

∑
0≤s<deg δ1,1

δi,r,j,sD
s
n,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



COMPLEXITY OF A STANDARD BASIS OF A D-MODULE 727

where δi,r,j , δi,r,j,s ∈ hA, and degDn
δi,r,j,s ≤ 0 for all the i, r, j, s involved. Put

I = { (i, r) : l1 + 1 ≤ i ≤ k&0 ≤ r < deg gi,i } ,
J = { (j, s) : 1 ≤ j ≤ l1 &1 ≤ s < deg δ1,1 } .

Therefore,

zj = −
∑

l1+1≤i≤k

z′igi,j −
∑

(i,r)∈I
zi,rδi,r,j + u′′

j , 1 ≤ j ≤ l1,(45)

∑
(i,r)∈I

zi,rδi,r,j,s = u′
j,s, (j, s) ∈ J .(46)

We introduce new unknowns Zi,r, (i, r) ∈ I. By (44)–(46), system (39) reduces to the
linear system

(47)
∑

(i,r)∈I
Zi,rδi,r,j,s = u′

j,s, (j, s) ∈ J .

More precisely, any solution of system (39) is given by (44), (45), where the z′i ∈ hA are
arbitrary and zi,r is a solution of system (46) over hA (we emphasize that this solution zi,r
may depend onDn, although we can restrict ourselves to solutions zi,r that do not depend
on Dn). Note that all δi,r,j,s and u′

j,s are homogeneous elements of hA. Put di,r = di+ r,
(i, r) ∈ I and d′j,s = d′′j + s, (j, s) ∈ J , ρ̃ = ρ′, where dj , d

′′
i , ρ

′ are as introduced above;
see (41). Then deg δi,r,j,s = di,r − d′j,s or δi,r,j,s = 0, and deg u′

j,s = −d′j,s + ρ̃ or u′
j,s = 0,

for all (i, r) ∈ I, (j, s) ∈ J . This follows immediately from our construction (we leave
the details to the reader).

Now all the coefficients of system (47) do not depend on Dn. As we have proved, if
the coefficients of (39) do not depend on Xn, then the coefficients of (47) also do not
depend on Xn, and hence, in this case they do not depend on Xn, Dn.

If the coefficients of (47) depend on Xn, we perform an automorphism Xn �→ Dn

Dn �→ −Xn, Xi �→ Xi, Di �→ Di, 1 ≤ i ≤ n− 1. Now the coefficients of system (47) do
not depend on Xn (but depend on Dn).

After that, we apply our construction recursively to system (47). Here, we need to
lean upon Remark 5, because the integers d′j,s are not necessarily positive.

More precisely, denote hA = A(n) for brevity. As the input of the step in question we
have system (39) over the ring A(n). Now, as the input of the next recursive step we

have system (47) over A(n′), where n′ = n if at least one of the coefficients of system
(39) depends on Xn, and n′ = n− 1 if all the coefficients of system (39) do not depend
on Xn (thus, n is replaced by n′, and it reduces after each two steps of recursion; n′ is
a new value of n for the input of the recursive step). Let J ′ be the module of solutions

of the homogeneous system corresponding to (47) over the ring A(n′). Then, obviously,
hAJ ′ is the module of solutions of the same homogeneous system over hA. Each system
of generators of J ′ over A(n′) is a system of generators of hAJ ′ over hA. Similarly, a
particular solution of system (47) over A(n′) is a particular solution of system (47) over
hA.

At the final step of the recursion, at least one of the following conditions is fulfilled:

• l1 = 0 for the newly obtained system (in place of (39));
• n = 0 (although in the statement of the theorem we have n ≥ 1, see §1, we are
interested only in Weyl algebras).

If l1 = 0, we get the required z∗ and J at this recursive step immediately; see above. If
n = 0, then I = J = ∅. Hence, using (45) for n = 0, we get the required z∗ and J for
n = 0.
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Thus, using the recursive assumption, we get a particular solution Zi,r = z∗i,r, (i, r) ∈
I, of system (47), an integer ν1 (in place of ν from assertion (A)) satisfying the inequality

(48) min
(i,r)∈I

{ord z∗i,r} ≥ min
(j,s)∈J

{ordu′
j,s} − ν1,

and a system of generators

(49) ( zα,i,r )(i,r)∈I , 1 ≤ α ≤ β,

of the module J ′ of solutions of the homogeneous system corresponding to (47). Put

z∗j = −
∑

(i,r)∈I
z∗i,rδi,r,j + u′′

j , 1 ≤ j ≤ l1,

z∗i =
∑

0≤r<deg gi,i

z∗i,rD
r
n, l1 + 1 ≤ i ≤ k,

z∗ = (z∗1 , . . . , z
∗
k).

Then z∗ is a particular solution of (39). Put

zα,j = −
∑

(i,r)∈I
zα,i,rδi,r,j , 1 ≤ j ≤ l1, 1 ≤ α ≤ β,

zα,i =
∑

0≤s<deg gi,i

zα,i,sD
s
n, l1 + 1 ≤ i ≤ k, 1 ≤ α ≤ β,

zβ−l1+i,j = 0, l1 + 1 ≤ i, j ≤ k, j �= i,

zβ−l1+i,i = gi,i, l1 + 1 ≤ i ≤ k,

zβ−l1+i,j = −gi,j , 1 ≤ j ≤ l1, l1 + 1 ≤ i ≤ k.

Then J =
∑

1≤α≤β+k−l1
hA(zα,1, . . . , zα,k). Hence, (zα,1, . . . , zα,k), 1 ≤ α ≤ β+ k− l1, is

a system of generators of the module J . By (48) and the definitions of u′, u′′
j , and u′

j,s,
we have ord z∗ ≥ ord(u)− ν0 − ν1. Put ν = ν0 + ν1.

Lemma 10. All the degrees deg δi,j, deg gi,i, deg gi,j, deg δi,r,j, deg δi,r,j,s and the num-

ber ν0, see above, are bounded from above by (nld)O(1); the degrees deg u′
j, deg u

′′
j , deg u

′
j,s

are bounded from above by d′ + (nld)O(1). Next, ordu′
j, ordu

′′
j , and ordu′

j,s are bounded
from below by ordu−ν0. Finally, in system (47) the number #J of equations is bounded
from above by (nld)O(1), and the number #I of unknowns is bounded from above by
k(nld)O(1).

Proof. This follows immediately from the construction. �

We return to the proof of Theorem 2. Applying Lemma 10 and, recursively, assertions
(A) and (B) for the formulas giving z∗ and J , we get (A) and (B) from the statement of
the theorem. The last claim (related to the case where all bi,j and uj do not depend on
Dn) has already been proved. The theorem is proved. �

§8. Proof of Theorem 1 for Weyl algebras

We start with showing that it suffices to prove the theorem for an infinite field F .
Indeed, let F1 be an infinite field such that F1 ⊃ F . Let f1, . . . , fm be a Janet basis of
the module I ⊗F F1 with all the degrees deg fw, 1 ≤ w ≤ m, bounded from above by

d2
O(n)

. There is a finite extension F2 ⊃ F such that for all v, i, j and all 1 ≤ w ≤ m the
coefficient in fw of the monomial ev,i,j belongs to the field F2. Let aα, 1 ≤ α ≤ µ, be
the basis of the field F2 over F . Then we can write fw =

∑
1≤α≤µ aαfα,w, where all fα,w

belong to I. Now deg fα,w ≤ deg fw and fα,w, 1 ≤ w ≤ m, 1 ≤ α ≤ µ, is a Janet basis of
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the module I. Moreover, the reduced Janet basis of the module I remains the same after
an arbitrary extension of scalars. The required assertion is proved. Thus, extending the
ground field F , we may assume without loss of generality that F is infinite.

Let a be a matrix as in §1. There is no loss of generality in assuming that the vectors
(ai,1, . . . , ai,l), 1 ≤ i ≤ k, are linearly independent over F . We have deg ai,j < d. This

implies k ≤ l
(
d+2n
2n

)
.

Put b = ha. We define graded submodules of hI:

J0 = hA(b1,1, . . . , b1,l) + · · ·+ hA(bk,1, . . . , bk,l),

Jγ = J0 : (Xγ
0 ) = {z ∈ hAl : zXγ

0 ∈ J0}, γ ≥ 1.

We have the following exact sequence of graded hA-modules:

hAk → J0 → 0.

Next, we have Jγ ⊂ Jγ+1 ⊂ hI for every γ ≥ 0, and hI =
⋃

γ≥0 Jγ . Since
hA is Noetherian,

there exists N ≥ 0 such that hI = JN . Therefore, to construct a system of generators
of hI, it suffices to compute the smallest N such that hI = JN and to find a system of
generators of JN .

Lemma 11. hI = JN for some N bounded from above by (dl)2
O(n)

. There is a system of
generators b1, . . . , bs of the module JN such that s and all the degrees deg bv, 1 ≤ v ≤ s,

are bounded from above by (dl)2
O(n)

.

Proof. We show that JN+1 ⊂ JN for N ≥ ν. Let u ∈ JN+1. Consider system (39). By
assertion (A) of Theorem 2, there is a particular solution z∗ of (39) such that ord z∗ ≥ 1.
Hence, u ∈ X0JN ⊂ JN . The claim is proved. Thus, hI = Jν .

We replace (u1, . . . , ul) in (39) by (U1X
ν
0 , . . . , UlX

ν
0 ), where U1, . . . , Ul are new un-

knowns. Then, applying statement (B) of Theorem 2 to this new homogeneous linear
system with respect to the unknowns U1, . . . , Ul, Z1, . . . , Zk, we get the required esti-
mates for the number of generators of Jν and for the degrees of these generators. The
lemma is proved. �

Corollary 1. Let (ai,1, . . . , ai,l), 1 ≤ i ≤ l, be as at the beginning of the section, and let
the integer N be as in Lemma 11. Then, for every integer m ≥ 0, the F -linear space

(50) Am+N (a1,1, . . . , a1,l) + · · ·+Am+N (ak,1, . . . , ak,l) includes Im.

Proof. By Lemma 11, we have (J0)m+N ⊃ XN
0 (JN )m = XN

0 (hI)m. Taking the affine
parts yields (50). The corollary is proved. �

Now everything is ready for the proof of Theorem 1. By Lemmas 11 and 1, there is a

system of generators of the module gr(I) with degrees bounded from above by (dl)2
O(n)

.
By Lemma 12 (see Appendix 1), the Hilbert function H(gr(I),m) is stable for m ≥
(dl)2

O(n)

. By (11) (see §2), the Hilbert function H(I,m) is stable for all m ≥ (dl)2
O(n)

.
Consider the linear order < on the monomials in hAl that is induced by the linear order

< on the monomials in Al; see §4. Then the monomial (i.e., generated by monomials)
submodule cI ⊂ cAl is well defined, see §4, where cA = F [X0, . . . , Xn, D1, . . . , Dn] is the

polynomial ring. By (24), the Hilbert function H(cI,m) is stable for all m ≥ (dl)2
O(n)

.
Hence, all the coefficients of the Hilbert polynomial of cI are bounded from above by

(dl)2
O(n)

. Therefore, by Lemma 13, the module cI has a system of generators with degrees

(dl)2
O(n)

. We can assume without loss of generality that this system of generators of cI
consists of monomials. The sets of monomials in cI and in Hdt(hI) are in a natural
degree-preserving one-to-one correspondence; see §4. Therefore, see §4, the degrees of
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all the elements of a Janet basis of hI with respect to the induced linear order < are

bounded from above by (dl)2
O(n)

. Since the ideal hI is homogeneous, the same bound
is valid for the degrees of all the elements (they are homogeneous) of the reduced Janet
basis of hI. Hence, by Lemma 3 (iii) (see §4), the same is true for some Janet basis
f1, . . . , fm (respectively, by Lemma 3 (ii), for the reduced Janet basis in the case where
the initial order < is degree-compatible) of the module I with respect to the linear order
< on the monomials in Al.

It remains to consider the case where l = 1 and an admissible linear order < is
arbitrary. We need to obtain estimates for the reduced Janet basis of I in this case.
In the case in question, the linear order < is given on the set of pairs of multi-indices
(i, j), i, j ∈ Zn

+. Now (see, e.g., [13, p. 58]), there is a real ordered field R and a linear
form L ∈ R[Y1, . . . , Yn, Z1, . . . , Zn] with positive coefficients such that, for all pairs (i, j),
(i′, j′) of multi-indices, (i′, j′) < (i, j) if and only if

L(i− i′, j − j′) = L(i1 − i′1, . . . , in − i′n, j1 − j′1, . . . , jn − j′n) > 0

in the real ordered field R.
Let ψ1 < · · · < ψa be all the monomials in X1, . . . , Xn, D1, . . . , Dn with nonzero

coefficients in the elements f1, . . . , fm, and let (i(1), j(1)) < · · · < (i(a), j(a)) be the
corresponding pairs of multi-indices. Let ε > 0 be an infinitesimal with respect to the
field R. Now

(51) L(i(s+1) − i(s), j(s+1) − j(s)) ≥ ε, 1 ≤ s ≤ a− 1,

in the field R(ε). Let U =
∑

1≤w≤n(uwYw + vwZw) be a generic linear form in the

variables Y1, . . . , Yn, Z1, . . . , Zn; i.e., the family {uw, vw}1≤w≤n of coefficients of U has the
transcendency degree 2n over R(ε). Consider the following system of linear inequalities
with coefficients in Q[ε] with respect to uw, vw, 1 ≤ w ≤ n,

(52)

⎧⎪⎨
⎪⎩
U(i(s+1) − i(s), j(s+1) − j(s)) ≥ ε, 1 ≤ s ≤ a− 1,

uw ≥ ε, 1 ≤ w ≤ n,

vw ≥ ε, 1 ≤ w ≤ n.

Let Kε be the set of solutions of system (52) in R(ε)2n. By (51), and since all the
coefficients of the linear form L are positive, system (52) has a solution in R(ε)2n. The
left-hand sides of the inequalities in (52) are linear forms in uw, vw, 1 ≤ w ≤ n, with
integral coefficients. We denote them by Q1, . . . , Qµ, µ = a − 1 + 2n. Observe that the
absolute values of the coefficients of the linear forms Q1, . . . , Qµ are bounded from above

by d2
O(n)

.
We show that there are indices 1 ≤ w1 < · · · < ws ≤ µ and s ≤ 2n such that

Z(Qw1
− ε, . . . , Qws

− ε) ⊂ Kε (here Z(Qw1
− ε, . . . , Qws

− ε) is the set of all common
zeros of the polynomialsQw1

−ε, . . . , Qws
−ε in R(ε)2n) and the linear formsQw1

, . . . , Qws

are linearly independent over Q. Indeed, we can construct Qw1
, . . . , Qws

recursively, by
choosing subsequently Qwα

, α ≥ 1, such that Z(Qwα
− ε) has a nonempty intersection

with the boundary of Z(Qw1
−ε, . . . , Qwα−1

−ε)∩Kε (we leave the details to the reader).
Solving the linear system Qw1

− ε = · · · = Qws
− ε = 0, we see that there is a

point (u′
w, v

′
w)1≤w≤n ∈ Kε such that u′

w = awε/c and v′w = bwε/c, where all aw, bw, c

are positive integers with absolute values bounded from above by d2
O(n)

. Put ε∗ = 1,
u∗
w = aw/c and v∗w = bw/c, 1 ≤ w ≤ n. We view (52) as a linear system with respect

to all uw, vw and ε. Then u∗
w, v

∗
w and ε∗ > 0 is a solution of (52) in Q2n+1. Set

L∗ = c
∑

1≤w≤n(u
∗
wYw + v∗wZw).
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Now L∗ ∈ Z[Y1, . . . , Yn, Z1, . . . , Zn] is a linear form with positive integral coefficients

bounded from above by d2
O(n)

and such that

(53) L∗(i(s+1) − i(s), j(s+1) − j(s)) > 0, 1 ≤ s ≤ a− 1.

We assume without loss of generality that Hdt(f1), . . . ,Hdt(fm) is the family of leading
monomials of the reduced Janet basis f ′

1, . . . , f
′
m of the module I with respect to the

linear order <, and Hdt(f1) > · · · > Hdt(fm). For any g ∈ A, put λ(g) = L∗(i, j), where
Hdt(g) = gi,jX

iDj , 0 �= gi,j ∈ F . Then inequality (53) and the definitions show that

λ(fw) = λ(f ′
w) for all 1 ≤ w ≤ m. Hence, all λ(f ′

w) are bounded from above by d2
O(n)

.
But, obviously, deg f ′

w ≤ λ(f ′
w), 1 ≤ w ≤ m. Theorem 1 is proved for Weyl algebras.

§9. The case of an algebra of differential operators

Extending the ground field F , we may suppose without loss of generality that the field
F is infinite. We denote by B = F (X1, . . . , Xn)[D1, . . . , Dn] the algebra of differential
operators. Recall that A ⊂ B, so that relations (2) are satisfied. Next, each element
f ∈ B can be uniquely represented in the form

f =
∑

j1,...,jn≥0

fj1,...,jnD
j1
1 · · ·Djn

n =
∑
j∈Z

n
+

fjD
j ,

where all fj1,...,jn = fj belong to F (X1, . . . , Xn) and F (X1, . . . , Xn) is the field of
rational functions over F . Everywhere in §§1 and 2, we replace A, XiDj , deg f =
degX1,...,Xn,D1,...,Dn

f , dimF M , ev,i,j , fv,i,j ∈ F , and (v, i, j), (i, j), (i′, j′), (i′′, j′′) by B,

Dj , deg f = degD1,...,Dn
f , dimF (X1,...,Xn) M , ev,j , fv,j ∈ F (X1, . . . , Xn), and (v, j), j,

j′, j′′, respectively. This leads to the definition of the Janet basis and all other objects
occurring in §1 for the case of the algebra of differential operators.

The definition of the homogenization hB of B is similar to that of hA; see §3. Namely,
hB = F (X1, . . . , Xn)[X0, D1, . . . , Dn] is given by the relations

(54)
XiXj = XjXi, DiDj = DjDi, for all i, j,

DiXi −XiDi = X0, 1 ≤ i ≤ n, XiDj = DjXi for all i �= j.

The further considerations are similar to the case of the Weyl algebra A with minor
changes. We leave them to the reader. For example, Theorem 2 for the case of the
algebra of differential operators is the same. One need only to replace A, hA, and Xn

by B, hB and Dn everywhere, respectively. Thus, Theorem 1 can be proved in the case
where A is an algebra of differential operators (but now it is B). Theorem 1 is proved
completely.

One can consider a more general algebra of differential operators. Let F be a field
with n derivatives D1, . . . , Dn. Then Kn = F [D1, . . . , Dn] is an algebra of differential
operators, and its homogenization hKn can be defind as before, by means of adding a
variable X0 satisfying the relations

DiDj = DjDi, X0Di = DiX0, Dif − fDi = fDi
X0

for all i, j and all elements f ∈ F , where fDi
∈ F denotes the result of an application of

Di to f . Following the proof of Theorem 1, we can deduce the statement below.

Remark 8. Bounds similar to those in Theorem 1 hold true forKn (in place of the algebra
of differential operators A).
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Appendix 1: Degrees of generators of a graded module

over a polynomial ring, and its Hilbert function

We give a short proof of the following result; cf. [1, 12, 6, 4]. LetA = F [X0, . . . , Xn] be
a graded polynomial ring. The homogeneous elements of A are homogeneous polynomials
in X0, . . . , Xn.

Lemma 12. Let I ⊂ Al be a graded A-module with a system of generators f1, . . . , fm of
degrees less than d, where d ≥ 2. Then the Hilbert function H(Al/I,m) = dimF (Al/I)m
is stable for m ≥ (dl)2

O(n+1)

. Furthermore, all the coefficients of the Hilbert polynomial

of Al/I are bounded from above by (dl)2
O(n+1)

.

Proof. Extending the ground field F , we may suppose without loss of generality that the
field F is infinite. Denote M = Al/I. Let L ∈ F [X0, . . . , Xn] be a linear form in general
position. Let K stand for the kernel of the morphism M → M of multiplication by L.
We have K = {z ∈ Al : Lz =

∑
1≤i≤m fizi, zi ∈ A}. Hence, solving a linear system over

A, we see that K has a system of generators g1, . . . , gµ with degrees bounded from above

by (dl)2
O(n+1)

. Let P be an arbitrary associated prime ideal of the module M such that
P �= (X0, . . . , Xn). Since L is in general position, we have L �∈ P. Therefore, P is not
an associated prime ideal of K. Consequently, KN = 0 for all sufficiently large N . So,
XN

i gj ∈ I for sufficiently large N and all i, j. Hence, gj =
∑

1≤i≤m yj,ifi, where yj,i ∈
F (Xi)[X0, . . . , Xn]. Solving a linear system over the ring F (Xi)[X0, . . . , Xn], we get a
bound on the denominators from F [Xi] of all yj,i. Since all gj and fi are homogeneous,
we may assume without loss of generality that all the denominators are XN

i . Thus, we

get an upper bound for N . Namely, N is bounded from above by (dl)2
O(n+1)

.
Therefore, the sequence

(55) 0 → Mm → Mm+1 → (M/LM)m+1 → 0

is exact for m ≥ (dl)2
O(n+1)

. But M/LM = Al/(I +LAl) is a module over a polynomial
ring F [X0, . . . , Xn]/(L) � F [X0, . . . , Xn−1]. Hence, by the inductive assumption, the

Hilbert function H(Al/(I + LAl),m) is stable for m ≥ (dl)2
O(n)

. Now (55) implies that

the Hilbert function H(Al/I,m) is stable for m ≥ (dl)2
O(n+1)

.

Obviously, for m < (dl)2
O(n+1)

the values H(Al/I,m) are bounded from above by

(dl)2
O(n+1)

. Using the Newton interpolation, we conclude that all the coefficients of

the Hilbert polynomial of Al/I are bounded from above by (dl)2
O(n+1)

. The lemma is
proved. �

We also need a converse to Lemma 12.

Lemma 13. Let I ⊂ Al be a graded A-module. Assume that the Hilbert function
H(Al/I,m) = dimF (Al/I)m is stable for m ≥ D and that all absolute values of the co-
efficients of the Hilbert polynomial of the module Al/I are bounded from above by D, for

some integer D > 1. Then I has a system of generators f1, . . . , fm with degrees D2O(n+1)

.

Proof. Let f1, . . . , fm be the reduced Gröbner basis of I with respect to an admissible
linear order < on the monomials in Al; cf. the definitions in §§1 and 4. The degree of a
monomial from Al is defined as in §§1 and 4. We assume additionally that the linear order
under consideration is degree-compatible; i.e., for any two monomials z1, z2, if deg z1 <
deg z2, then z1 < z2. For every z ∈ Al, the greatest monomial Hdt(z) is defined. The
monomial module Hdt(I) is generated by all Hdt(z), z ∈ I. Now, Hdt(f1), . . . ,Hdt(fm) is
a minimal system of generators of Hdt(I), and deg fi = degHdt(fi) for every 1 ≤ i ≤ m.
The values of the Hilbert functions H(Al/Hdt(I),m) = H(Al/I,m) coincide for all
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m ≥ 0; cf. §4. Thus, replacing I by Hdt(I), we shall assume in what follows in this proof
that I is a monomial module.

For every 1 ≤ i ≤ l, denote by Ai ⊂ Al the ith direct summand of Al. Put Ii = I∩Ai,
1 ≤ i ≤ l. Then I �

⊕
1≤i≤l Ii because I is a monomial module. Next, for every

1 ≤ α ≤ m there is 1 ≤ i ≤ l such that fα ∈ Ii. We identify Ai = A. Then Ii ⊂ A is
a homogeneous monomial ideal. The case where Ii = A for some i is not excluded. For
Hilbert functions, we have

(56) H(Al/I,m) =
∑

1≤i≤l
H(A/Ii,m), m ≥ 0.

If (A/Ii)D = 0 for some i, then (A/Ii)m = 0 for every m ≥ D. In this case the ideal Ii
is generated by

∑
0≤m≤D(Ii)m. Hence for m ≥ D we can omit this index i in the sum

on the right in (56). Therefore, in this case the proof reduces to a smaller l. So, we may
assume without loss of generality that (A/Ii)D �= 0, 1 ≤ i ≤ l. Next, we use an exact
description of the Hilbert function of a homogeneous ideal; see [4, §7]. Namely, there are
unique integers bi,0 ≥ bi,1 ≥ · · · ≥ bi,n+2 = 0 such that

(57) H(A/Ii,m) =

(
m+ n+ 1

n+ 1

)
− 1−

∑
1≤j≤n+1

(
m− bi,j + j − 1

j

)

for all sufficiently large m and

(58) bi,0 = min{d : d ≥ bi,1 and for all m ≥ d, (57) is true }.
This description (without the constants bi,0) dates back to the classical paper [11]. The
integers bi,0, . . . , bi,n+2 are called the Macaulay constants of the ideal Ii. We have

(59) h(i,m) = H(A/Ii,m)−
(
m+ n+ 1

n+ 1

)
+ 1 +

∑
1≤j≤n+1

(
m− bi,j + j − 1

j

)
≥ 0

for every m ≥ bi,1; see [4, §7]. By Lemma 7.2 in [4], for all 1 ≤ α ≤ m, if fα ∈ Ii, then
deg fα ≤ bi,0. Hence, it suffices to prove that all bi,0, 1 ≤ i ≤ l, are bounded from above

by D2O(n+1)

.
By (56) and (57), the coefficient of mn−j , 0 ≤ j ≤ n, in the Hilbert polynomial of

Al/I is

(60)
µj

(n+ 1− j)!

∑
1≤i≤l

bi,n+1−j +
∑

0≤v≤j−1

∑
1≤i≤l

1

(n+ 1− v)!
µj,v(bi,n+1−v),

where 0 �= µj is an integer, and µj,v ∈ Z[Z], 0 ≤ v ≤ j − 1, is a polynomial with inte-
gral coefficients and degµj,v = j − v + 1. Moreover, |µj | and the absolute values of the

coefficients of all the polynomials µj,v are bounded from above by, say, 2O(n2). Denote
bj =

∑
1≤i≤l bi,j , 0 ≤ j ≤ n + 2. By the condition of the lemma, the coefficients of

the Hilbert polynomial of Al/I are bounded from above by D. Hence, via (60), we can

recursively estimate bn+1, bn, . . . , b1. Namely, bn+1−j = (2n
2

lD)2
O(j+1)

, 0 ≤ j ≤ n. Con-

sequently, b1 = (lD)2
O(n+1)

. Observe that bi,1 ≤ max1≤i≤l bi,1 ≤ b1 for every 1 ≤ i ≤ m.
Now, let m ≥ max1≤i≤l bi,1. By (59), if h(i,m) �= 0 for some 1 ≤ i ≤ l, then m < D;

i.e., m is less than the bound D for the stabilization of the Hilbert function of Al/I.

Thus, bi,0 ≤ max{bi,1, D} by (58). Hence, bi,0 is bounded from above by (lD)2
O(n+1)

.
We have (A/Ii)D �= 0 for every 1 ≤ i ≤ l. This implies H(Al/I,D) ≥ l. Let cj denote

the jth coefficient of the Hilbert polynomial of the module Al/I. Now |cj |Dj ≥ l/(n+1)
for at least one j. Hence, Dn+1(n+ 1) ≥ l by the condition of the lemma. This implies

that l2
O(n+1)

is bounded from above by D2O(n+1)

. Therefore, bi,0 is bounded from above

by D2O(n+1)

. The lemma is proved. �
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Appendix 2: Bound for the Gröbner basis of a monomial module

in terms of the coefficients of its Hilbert polynomial

We denote by Cl = Zn
+ ∪ · · · ∪ Zn

+ the disjoint union of l copies of the semigroup
Zn
+ = {(i1, . . . , in) ∈ Zn : ij ≥ 0, 1 ≤ j ≤ n}. A subset of Cl that intersects each disjoint

copy of Zn
+ by a semigroup closed with respect to addition in Zn

+ is called an ideal of Cl.

Clearly, I corresponds to a monomial submodule MI in the free module (F [X1, . . . , Xn])
l.

Any ideal I in Cl has a unique finite Gröbner basis V = VI corresponding to the Gröbner
basis of MI . Denote T = Cl \ I. The degree of an element u = (k; i1, . . . , in) ∈ Cl, 1 ≤
k ≤ l, is defined as |u| = i1 + · · · + in. The degree of a subset in Cl is defined as the
supremum of the degrees of its elements. The Hilbert function HT (z) is equal to the
number of vectors u ∈ T such that |u| ≤ z. Hence, HT (z) =

∑
0≤s≤m csz

s, z ≥ z0, for a

suitable z0 and integers c0, . . . , cm, where m ≤ n. Let c = max0≤s≤m |cs|s! + 1.

Proposition 1 (cf. [6, 12, 4]). The degree of V does not exceed (cn)2
O(m)

.

Proof. By an s-cone, 0 ≤ s ≤ n, we shall mean a subset of the kth copy of Zn
+ in Cl for

some 1 ≤ k ≤ l of the form

(61) P = {Xj1 = i1, . . . , Xjn−s
= in−s}

for suitable 1 ≤ j1, . . . , jn−s ≤ n. We define the degree of the s-cone (61) as |P | =
i1 + · · ·+ in−s (note that this definition is different from that in [4]). By a predecessor of
(61) we mean each s-cone in the same kth copy of Zn

+ of the type

(62) {Xj1 = i1, . . . , Xjp−1
= ip−1, Xjp = ip − 1, Xjp+1

= ip+1, . . . , Xjn−s
= in−s}

for some 1 ≤ p ≤ n− s, provided that ip ≥ 1. We fix an arbitrary linear order on s-cones
compatible with the predecessor relation.

Using inverse recursion on s, we gradually fill T (as a union) by s-cones with 0 ≤ s ≤ m.
We start with s = m. Assume that a current union T0 ⊂ T of m-cones is already
constructed (at the very beginning we put T0 = ∅) and that an m-cone of the form (61)
with s = m is the smallest one (with respect to the fixed linear order on m-cones) that
is contained in T and not contained in T0. Observe that each predecessor of this m-cone
was added to T0 at earlier steps of its construction. Since the total number of m-cones
added to T0 does not exceed cmm! < c, we see that the degree of every such m-cone is
less than cmm! (we use the fact that the first m-cone added to T0 has degree 0).

For the recursive step, assume that the current T0 is a union of all possible m-cones,
(m − 1)-cones, . . . , (s + 1)-cones and perhaps, some s-cones. This can be expressed as
deg(HT −HT0

) ≤ s. Again, as in the base, we take the smallest s-cone of the form (61)
that is contained in T and not contained in T0. Observe that each predecessor of the
type (62) of this s-cone is contained in an appropriate r-cone Q, r ≥ s, such that Q was
added to T0 at earlier steps of its construction and Q ⊂ {Xjp = ip − 1}. Hence,

(63) |Q| ≥ ip − 1.

This construction terminates when T0 = T . We denote by ts the number of s-cones added
to T0 and by ks the maximum of their degrees. We have already seen that tm, km < c.

Now, we use inverse induction on s to prove that ts, ks ≤ (cn)2
O(m−s)

. For this, we
introduce a special semilattice on the set of cones. Let C = {Cα,β}α,β , 0 ≤ β ≤ γα,
be a family of cones of the form (61), where dimCα,β = α. By an α-piece we call an
α-cone that is the intersection of some cones in C. All the pieces constitute a semilattice
L with respect to intersection with the maximal elements in C. We treat L also as a
partially ordered set with respect to inclusion. Clearly, the depth of L is at most n+ 1.
Our nearest purpose is to estimate the size of L from above. To simplify the bound,
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we assume (and this will suffice for our goal in the sequel) that γα ≤ (cn)2
O(m−α)

for
s ≤ α ≤ m and γα = 0 when α < s, although in the general case the required bound
can be obtained in the same way. Moreover, we assume that the constant in O(. . . ) is
sufficiently large. In what follows all the constants in O(. . . ) coincide.

Lemma 14. Suppose that γα ≤ (cn)2
O(m−α)

for all s ≤ α ≤ m; see above. Then the num-

ber of α-pieces in L does not exceed (cn)2
O(m−α)+1 for s ≤ α ≤ m, or (cn)2

O(m−s)(s−α+1)+1

for α < s.

Proof. For each α-piece, we choose its arbitrary irredundant representation as the in-
tersection of cones in C. Let δ be the minimal dimension of those cones. Then this
intersection contains at most δ−α+1 cones. Therefore, the number of possible α-pieces
does not exceed ∑

max{α,s}≤δ≤m

(cn)2
O(m−δ)(δ−α+1),

which proves the lemma. �
Now we return to estimating ts, ks by inverse induction on s. In the construction

described above, let the current T0 be the union of all added m-cones, (m−1)-cones, . . . ,
s-cones. We denote this family of cones by C and consider the corresponding semilattice
L (see above). Our next purpose is to represent T0 as a Z-linear combination of pieces
in L via a kind of the inclusion-exclusion formula. We assign the coefficients of this
combination by recursion in L. As a base, we assign 1 to each maximal piece, i.e., the
elements of C. At a recursive step, if for some piece P ∈ L the coefficients are already
assigned to all the pieces greater than P , then we assign to P the coefficient εP in such
a way that the sum of the coefficients assigned to P and to all greater pieces equals 1.
Therefore,

T0 =
∑
P∈L

εPP,

where the sum is understood in the sense of multisets. Consequently,

(64) HT0
(z) =

∑
P∈L

εP

(
z − |P |+ dimP

dimP

)

for sufficiently large z. We recall that deg(HT −HT0
) ≤ s− 1.

Now we estimate the coefficients |εP | with the help of induction in the semilattice L.
The inductive hypothesis on tα ≤ (cn)2

O(m−α)

, s ≤ α ≤ m, and Lemma 14 imply that∑
dimP=λ

|εP | ≤ (cn)2
O(m−λ)

, s− 1 ≤ λ ≤ m,

in accordance with inverse induction on λ and the definition of εP . In fact, one could
estimate also

∑
dimP=λ |εP | in a similar way when λ < s−1, but we do not need this. The

inductive hypothesis on kα ≤ (cn)2
O(m−α)

, s ≤ α ≤ m, and (64) imply that the coefficient

in HT0
(z) of the power zα does not exceed (cn)2

O(m−α)

, s− 1 ≤ α ≤ m (actually, by the
inequality deg(HT −HT0

) ≤ s−1, the coefficients of the powers zα for s ≤ α ≤ m are less

than c). In particular, the coefficient of the power zs−1 does not exceed (cn)2
O(m−s+1)

.
Denote HT − HT0

= ηzs−1 + · · · . When constructing T0, we add (s − 1)-cones to it

ts−1 = η(s− 1)! times. Hence, ts−1 ≤ (cn)2
O(m−s+1)

. This justifies the inductive step for
ts−1.

We prove that ks−1 ≤ (cn)2
O(m−s+1)

. We observe that, for each (s− 1)-cone P added
to T0, either every one of its predecessors is contained in a cone of dimension at least s, or
some predecessor is an (s−1)-cone. In the former case, |P | ≤ (maxs≤α≤m kα+1)(n−s+1)
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(by (63)), while in the latter case, |P | is greater by 1 than the degree of that predecessor.
Thus, ks−1 ≤ (maxs≤α≤m kα+1)(n−s+1)+ts−1. Finally, we use the inductive hypothesis
for km, . . . , ks and the inequality on ts−1 obtained above.

To complete the proof of the proposition, it suffices to observe that for any vector in
the basis V treated as a 0-cone, each of its predecessors of the form (62) for s = 0 is
included in an appropriate r-cone occurring in the above construction, whence the degree
of V does not exceed (max0≤α≤m kα + 1)n, again by (63) (cf. above). �
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