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COMPLEXITY OF A STANDARD BASIS OF A D-MODULE

D. YU. GRIGORIEV AND A. L. CHISTOV

ABSTRACT. A double-exponential upper bound is obtained for the degree and for
the complexity of constructing a standard basis of a D-module. This generalizes
a well-known bound for the complexity of a Grobner basis of a module over the
algebra of polynomials. It should be emphasized that the bound obtained cannot be
deduced immediately from the commutative case. To get the bound in question, a
new technique is developed for constructing all the solutions of a linear system over
a homogeneous version of a Weyl algebra.

INTRODUCTION
Let A be the Weyl algebra F[X7, ..., X, %, R 8%] (or the algebra of differential
operators F(X,... ,Xn)[aixl, ce, a%]). For brevity, we denote D; = %, 1<i<n.

Any A-module is called a D-module. It is well known that an A-module that is a
submodule of a free finitely generated A-module has a Janet basis (if A is a Weyl algebra,
it is often called a standard basis, but in this paper it is natural and convenient to call
it a Janet basis also in that case). Historically, it was first introduced in [9]. In the
more recent time of developing computer algebra, Janet bases were studied in [B] 14}, [10].
The Janet bases generalize the Grébner bases, which were widely used in the algebra
of polynomials (see, e.g., [3]). For the Grébner bases, a double-exponential complexity
bound was obtained in [12, [6] with the help of [I]. Later, sharper results on the same
subject (with independent and self-contained proofs) were obtained in [4].

Surprisingly, no complexity bound for Janet bases has been established so far. The
reason is clear: the problem is not easy. In the present paper we fill this very essential
gap and prove a double-exponential upper bound for complexity. On the other hand, a
double-exponential complexity lower bound for Grébner bases [12, [I5] provides by the
same token a bound for Janet bases.

Notice also that there has been a folklore opinion that the problem of construct-
ing a Janet basis reduces easily to the commutative case by considering the associated
graded module, and, on the other hand, in the commutative case [6] (12 [4], the double-
exponential upper bound is well known. But this turns out to be a fallacy! From a
known system of generators of a D-module, no system of generators (even not necessar-
ily a Grébner basis) of the associated graded module can be obtained immediately. The
main problem here is to construct such a system of generators of the graded module. It
may have elements of degrees (dl)QO("); see the notation below. Then, indeed, to the last
system of generators of large degrees, one can apply the result known in the commutative
case and get the bound ((d)2°")2°™ = (d1)2”"”. Thus, some new ideas specific to the
noncommutative case are needed.
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710 D. YU. GRIGORIEV AND A. L. CHISTOV

We are interested in estimates for Janet bases of A-submodules of A'. A Janet basis
depends on the choice of a linear order on the monomials (we define them also for [ > 1).
In this paper we consider the most general linear orders on the monomials in A'. They
satisfy conditions (a) and (b) in §1 and are said to be admissible. If additionally a
linear order satisfies condition (c) in §1, then it is said to be degree-compatible. For any
admissible linear order, the reduced Janet basis is chosen canonically and it is defined
uniquely; see §1. We prove the following result.

Theorem 1. For any real number d > 2 and any admissible linear order on the mono-
mials in A', any left A-submodule I of A' generated by elements of degree less than d
(with respect to the filtration in the corresponding algebra; see §§1 and 9) has a Janet
basis with the degrees and the number of its elements less than

(1) (dl)

The same upper estimate (1) is valid for the number of elements of the reduced Janet
basis of the module I with respect to the linear order in question on the monomials.

If, moreover, this linear order is degree-compatible or it is an arbitrary admissible
order, but | = 1, then also the degrees of all the elements of the reduced Janet basis of
the module I are bounded from above by (1).

20(n)

We prove this theorem in detail for the case of the Weyl algebra A. The proof for the
case of the algebra of differential operators is similar. It is sketched in §9. Theorem 1
implies that the Hilbert function H (I, m), see §1, of the A-submodule from this theorem

is stable for m > (dl)Qo(") and that the absolute values of all coeflicients of the Hilbert
polynomial of I are bounded from above by (dl)2o(n); cf., e.g., [12]. This fact follows
directly from (11), Lemma 12 in Appendix 1, Lemma 2, and Theorem 2. We mention
that, in [7], a similar bound was established for the leading coefficient of the Hilbert
polynomial.

Now we outline the plan of our proof of Theorem 1. Below, the first occurrences
of some terms introduced in the paper are italicized. The main tool in the proof is
a homogenized Weyl algebra "A (or respectively, a homogenized algebra of differential
operators "B). Tt is introduced in §3 (respectively, in §9). The algebra "A (respectively,
hB) is generated over the ground field F by Xo,...,X,, D1,..., D, (respectively, over
the field F(Xy,...,X,) by Xo, D1,...,D,). Here Xj is a new homogenizing variable. In
the algebra "A (respectively, "B), relations (13) in §3 (respectively, (54) in §9) hold true
for these generators.

We define the homogenization " of the module I. It is an "A-submodule of "Al.
The main problem is to estimate the degrees of a system of generators of "I. These
estimates are central to the paper. They are deduced from Theorem 2 in §7. That
theorem is devoted to the problem of solving systems of linear equations over the ring
hA: we discuss this below in more detail.

The system of generators of "I gives a system of generators of the graded gr(A)-module
gr(I) corresponding to I. But gr(A) is a polynomial ring. Hence, using Lemma 12 in
Appendix 1, we get a double-exponential bound (dZ)QO(n) for the stabilization of the
Hilbert function of gr(I) and for the absolute values of the coefficients of the Hilbert
polynomial of gr(I). Therefore, there is a similar bound for the stabilization of the
Hilbert functions of I and the coefficients of the Hilbert polynomial of I; see §2.

But the Hilbert functions of the modules I and "I coincide; see §3. Hence, the last
bound serves also for the stabilization of the Hilbert functions of "I and the coefficients
of the Hilbert polynomial of "I. In §5 we introduce the linear order on the monomials
in "A! induced by the initial linear order on the monomials in A! (the homogenizing
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COMPLEXITY OF A STANDARD BASIS OF A D-MODULE 711

variable X is the least possible in this ordering). Next, we define the Janet basis of "I
with respect to the induced linear order on the monomials. Such a basis can be obtained
by homogenization of the elements of a Janet basis of I with respect to the initial linear
order; see Lemma 3 (iii).

For every element f € "A, denote by Hdt(f) € "4 the greatest monomial of the
element f; i.e., each monomial of f — Hdt(f) is less than Hdt(f) with respect to the
induced linear order on the monomials in "4. Let Hdt("I) = {Hdt(f) : f € "I} be the
set of all the greatest monomials of the elements of the module "I; see §4. Let I € “A’, see
84, be the module over the polynomial ring ‘A = F[Xy,..., X,, D1,...,D,] generated
by all monomials in Hdt("T) (they are viewed now as elements of °4'). Then the Hilbert
functions of the modules "I and I coincide. Thus, we have the same double-exponential
estimate as above for the stabilization of the Hilbert function of “I and the coefficients of
the Hilbert polynomial of ¢I. Now, using Lemma 13, we get the estimate (dZ)QO(n) for the
monomial system of generators of /. This gives a bound for the degrees of the elements of
the reduced Janet basis of "I, and hence, by Lemma 11, also the bound from Theorem 1
for the required Janet basis (respectively, in the case where the initial order is degree-
compatible, for the reduced Janet basis) of I. Estimation of the degrees of the elements
of the reduced Janet basis in the case where | = 1 requires special considerations; see §8.

Remark 1. The question as to whether there is a double-exponential upper bound for
the degrees of the elements of the reduced Janet basis with respect to an arbitrary
admissible linear order on monomials in the case where [ > 1 remains open. Note the
following description of all admissible linear orders on the monomials in A': each linear
order corresponds to a rooted tree. But we do not need this description in the present
paper.

The problem of solving systems of linear equations over the homogenized Weyl algebra
is central to this paper; see Theorem 2. It is studied in §§5-7. A similar problem over
the Weyl algebra (without homogenization) was considered in [7]. The principal idea
is to try to extend the well-known method of [§], which was developed for the algebra
of polynomials, to the homogenized Weyl algebra. There are two principal difficulties
with this approach. The first is that in the method from [§] the use of determinants is
essential, which should be avoided when we deal with noncommutative algebras. The
second is that a kind of Noether normalization theorem is needed in the current situation.
Therefore, the analog of the method of [8] requires choosing the leading elements with
the smallest possible order ordx,, where X, is a homogenizing variable; see §3.

The bound obtained for the degree of a Janet basis implies a similar bound for the
complexity of its construction. Indeed, by Corollary 1 (it is formulated for the case of a
Weyl algebra, but a similar statement is true for the case of the algebra of differential
operators), one can compute the linear space of all the elements z € I of degrees bounded
from above by (dl)2o("). Hence, by Theorem 1, a Janet basis of I can be computed by
solving linear systems over F of size bounded from above by (dl)Qo(") (merely with
the help of enumeration of all monomials of degrees at most (dl)2o(n) that are possible
elements of Hdt(I)). After that, within time polynomial in (dl)2o(") and in the size of
the input, by solving linear systems over F' one can obtain the reduced Janet basis of
I, provided that the upper bound (dl)zo(n)
Theorem 1.

To make our text self-contained, in Appendix 1 (see Lemma 12) we give a short proof
of the double-exponential estimate for stabilization of the Hilbert function of a graded
module over a graded polynomial ring. The converse of Lemma 12 is also true; see
Lemma 13 in Appendix 1. This fact is essential for us. The proof of Lemma 13 involves

for the degrees of its elements is known; see
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712 D. YU. GRIGORIEV AND A. L. CHISTOV

the classical description of the Hilbert function of a homogeneous ideal in F[X, ..., X,]
in terms of the Macaulay constants b,43,...,b; and the constant by introduced in [4].
In Appendix 2, we give an independent and instructive proof of Proposition 1, which is
similar to Lemma 13. In a sense, Proposition 1 is even stronger than Lemma 13, because
to apply it one does not need a bound for the stabilization of the Hilbert function. Of
course, a reference to Proposition 1 can be used in place of Lemma 13 in our paper.

§1. DEFINITION OF A JANET BASIS

Let A= F[Xy,...,Xn,D1,...,Dyp], n > 1, be a Weyl algebra over a field F. So, A is
determined by the following relations:

(2) X, X, =X,X,, D,Dy, =D,D,, D,X,—X,D, =1, XDy = Dy X,, v#w.
By (2), any element f € A admits a unique representation in the form
(3) f= > Firvosingign X0 XJnDJ* - DI,

U1 yeeesin, 150500 20

where all f;, i, ..., belong to F and only a finite number of the f;, . are

nonzero. For brevity, we denote Zy = {z € Z: z > 0} and

S5tnsJ1s--dn

L= (ila"'vin)’ ]: (jla"'vjn)a fi,j :fil,...,i",jl,...,jnv
0 X = Xi X, DD D, f= Y XD
%,J
li|] =414 4in, t4+7=(14+7G1, - sin~+ Jn)-
Thus, 4,j € Z' are multi-indices. By definition, the degree of f is

deg f =degy, . x, p,.. p, f=max{li|+[j] : fi;j #0}.

Let M be a left A-module given by its generators my,...,my, I > 0, and relations
(5) Z (RTINS 1<v <k,
1<w<l

where £ > 0 and all a,,, are in A. We assume that dega, ,, < d for all v, w, where
d > 2. By (5), we have the exact sequence

(6) AP L5 AV S M -0
of left A-modules. Denote I = 1(A¥) C AL, If I = 1, then I is a left ideal of A and
M = A/I. In the general case, I is generated by the elements
(@p1y--e ) € Al 1<v<k.
For an integer m > 0, put
(7) Ay ={a:dega<m}, M, =n(A), I,=InA.

So, now A, M, I are filtered modules with filtrations A,,, M,,, Ln, m > 0, respectively,
and the sequence of homomorphisms of vector spaces

0—1I, = A, — M, =0

induced by (6) is exact for every m > 0. The Hilbert function H(M,m) of the module
M is defined by the formula

H(M,m) =dimp M,,, m>0.

Each element of A’ can be uniquely represented as an F-linear combination of elements
evij = (0,...,0,X"D7,0,...,0), where i,j € Z" are multi-indices, see (4), and the

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



COMPLEXITY OF A STANDARD BASIS OF A D-MODULE 713

nonzero monomial X*DJ is at the position v, 1 < v < [. Thus, every element f € A’ can
be represented in the form

(8) f= Z foij€vig,  foij € F.
V,,7
The elements e, ; ; will be called monomials.
Consider a linear order < on the set of all the monomials e, ; ; or, what is the same,
on the set of triples (v,4,5), 1 <v <1, 4,5 € Z%. If f #0, we put

(9) o(f) = max{(v,i,5) : fui; # 0}
see (8). Set
0(0) = —oo < o(/f)
for every 0 # f € A. The leading monomial of an element 0 # f € Al is defined by the
formula
HAt(f) = fu,i,j€v,ij:
where o(f) = (v,4,7). Put Hdt(0) = 0. Hence, o(f — Hdt(f)) < o(f) if f # 0. For
f1, f2 € AL if o(f1) < o(fa), we shall write f; < fo. We shall require additionally that
(a) for all multi-indices ¢, j, ¢/, j/ and all 1 < v < I, if 44 < @),...,i, < i), and
jl S .717 .. a.jn S .7;1) then (Uai7j) S (Uaila.jl);
(b) for all multi-indices i, 7,4, j',¢",j"” and all 1 < v,v" < I, if (v,i,5) < (v',7, '),
then (v,i+1d",j+j") < (v',@" +i",j" + j").
Conditions (a) and (b) imply that, for all f;, fo € A' and every nonzero a € A, if f; < fa,
then afi < afa; i.e., the linear order under consideration is compatible with the product.
Any linear order on the monomials e, ; ; satisfying (a) and (b) will be called admissible.
Consider additionally the condition
(c) for all multi-indices 4, j, ¢/, 5/ and all 1 < v, v <, if |i| + [§] < |¢'| + [4/], then
(v,2,5) < (", 57).
Any linear order on the monomials e, ; ; satisfying (c) will be called a degree-compatible
order (in what follows all the degree-compatible linear orders that we consider will also
be admissible, i.e., satisfying (a) and (b)).
For every subset E C A! we put Hdt(E) = {Hdt(f) : f € E}. In particular,

Hdt(I) = {Hdt(f) : f € I}.

Thus, Hdt(I) is a subset of A'. By definition, a family fi,..., f,, of elements of I is a
Janet basis of the module I if and only if

1) Hdt(I) = Hdt(Af,) U--- UHdt(Afy).

Next, the Janet basis f1, ..., fi, of I is reduced if and only if the following conditions are
fulfilled.
2) fi,..., fm does not contain a smaller Janet basis of I.

3) Hdt(f1) > -+ > Hdt(fom).

4) The coefficient from F of every monomial Hdt(f,), 1 < a <m, is L.

5) Let fo = Zw‘,j fa,v,ij€v,i,; be the representation (3) for f,, 1 < o < m. Then
foralll <a < g <m,all 1 <wv <1, and all multi-indices %, j, the monomial
faw,i,j€v,i,; does not belong to HAt(Afs \ {0}).

Let C' denote the ring of polynomials in Xy,...,X,, D1,..., D, with coefficients in F'
(we can take C' = gr(A); see the next section). For every f € A!, the monomial Hdt(f)
can be viewed as an element of C'. To avoid ambiguity, we denote it by Hdtc(f) € C*.
Now, fi,..., fm is a Janet basis of the module I if and only if the C-submodule of C"
generated by Hdtc(fy), 1 < a < m, contains all the elements Hdte(f), f € A. Since the
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714 D. YU. GRIGORIEV AND A. L. CHISTOV

ring C' is Noetherian, the module I under consideration admits a Janet basis. Moreover,
the reduced Janet basis of I is uniquely determined.

§2. THE GRADED MODULE CORRESPONDING TO A D-MODULE

Put A, =1, =M, =0 for v < 0 and
gr(4) = P An/An-1, gr(l) = P In/In—1,  gr(M) = D) My /M.
m>0 m>0 m>0

The structure algebra on A induces the structure of a graded algebra on gr(A). Thus,
gr(A) = F[X1,...,X,,D1,...,D,] is an algebra of polynomials with respect to the
variables X1,..., X, Di,...,D,. Next, gr(I) and gr(M) are graded gr(A)-modules.
Using (7), we get the exact sequences

(10) 0= In/Im-1 — (Am/Am_1)' = My /My 1 — 0, m >0.
The Hilbert function of the module gr(M) is defined as follows:
H(gr(M),m) =dimp My, /Mpy—1, m>0.
Obviously,
(11)  H(M,m)= Z H(gr(M),v), H(gr(M),m)=H(M,m)— H(M,m —1)

0<v<m

for every m > 0.
For arbitrary a € M, we denote by gr(a) € gr(M) the image of a in gr(M).

Lemma 1. Assume that by,...,bs is a system of generators of I. Let v; = deghb;,
1 <i<s. Suppose that
(12) Im:{ Z Coby 1y € A, dege, <m — vy, 1§i§8}

1<v<p

for every m > 0. Then gr(by),...,gr(bs) is a system of generators of the gr(A)-module
gr(l).

Proof. This is straightforward. O

§3. HOMOGENIZATION OF THE WEYL ALGEBRA

Let Xy be a new variable. Consider the algebra "4 = F[Xg, X1,..., X,,, D1, ..., D,]

given by the relations
XoXw = XXy, DyD, =D,D, forall v w,
13
(13) DX, - X,D,=X3, 1<v<n, X,Dy,=D,X, forall v#w.

The algebra "4 is Noetherian, like the Weyl algebra A. By (13), any element f € "4 can
be uniquely represented in the form

_ o XL i, DI
(14) f= E : Jiororinsd1rerin X0 Xy Dy Djr,
20,81 5000380 5J15-50n 20

where all fi, . 4. 41,5, are in F' and only finitely many of f;, ;. . j. are nonzero.
Let i,j be multi-indices; see (4). Denote for brevity

i=(i1,--stn), J= (1, 20n)s  fiosii = Jioresinitsmsins

(15) F=3" fiigXP XD,

10,%,J
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By definition,
deg f =degy, . x,p,.. p,f=max{io+[i]+|j| : fi,i; # 0},
deng,...,D" f= max{|j| : in,i’j # 0}»
degp_ f=max{ja : fipu; #0}, 1< a<n,
degyx, f=max{is : fi,i; #0}, 1<a<n.
Set ord 0 = ordy, 0 = +o0. If 0 # f € "A, then we put
(16) ord f = ordx, f = p <= f € Xt("A)\ Xt ("A), u>o0.
For every z = (21,...,2) € "Al, put

ordz = 1r£111rgll{ord zi}, degz= llgl?gl{deg zi}.

The quantities ord b and deg b are defined similarly for an arbitrary (k x I)-matrix b with
coefficients in "A. More precisely, here b is viewed as a vector with kl entries.

An element f € "A is homogeneous if and only if f;, ; ; # 0 implies o +|i|+|j| = deg f,
i.e., f is a sum of monomials of the same degree deg f. The homogeneous degree of a
nonzero homogeneous element f is its degree. The homogeneous degree of 0 is not defined
(0 belongs to all the homogeneous components of "A; see below).

Next, for every integer m, the mth homogeneous component of "4 is the F-linear
space

("A),, = {z¢€ "A . 2 is homogeneous and degz =m or z =0 }.

Now "4 is a graded ring with respect to the homogeneous degree. By definition, the ring
hA is a homogenization of the Weyl algebra A.

We shall consider the category of finitely generated graded modules G over the ring
"4. Such a module G = D.n>m, Gm is a direct sum of its homogeneous components
Gy, where m, mg are integers. Every G, is a finite-dimensional F-linear space, and
("A) G C Gpym for all integers p,m. Let G and G’ be two finitely generated graded
hA-modules; then ¢ : G — G’ is a morphism (of degree 0) of graded modules if and only
if ¢ is a morphism of "A-modules and ¢(G,,) C G, for every integer m.

An element z € "A (respectively, z € A) is called a term if and only if z = \z; - - - 2, for
some 0 # X\ € F, some integer v > 0, and z,, € {Xo,...,Xn, D1,...,Dn} (respectively,
Zw € {Xla-~-7Xn;D17~-~7Dn})7 1<w< .

Let z = Zj z; € A be an arbitrary element of the Weyl algebra A represented as
a sum of terms z;, and let degz = max;degz;. For example, here we can take the
representation (3) for z. Then we define the homogenization "z € "A by the formula

h, ydeg z—deg z;
z = E 2; X, .
J

By (2) and (13), the right-hand side of this relation does not depend on the choice of a
representation of z as a sum of terms. Hence, "z is well defined. If z € "4, then % € A
is obtained by substituting Xy = 1 in z. Hence, for every z € A we have ™z = z, and for
every z € "A we have z = "2 X}, where y = ord 2.

For an element z = (21,...,2) € Al, we put deg z = max;<;<;{deg z;} and
hy = (hlegengdegzl, cey hlegengdegzl ) € hal,

The degree dega and the homogenization "a can be defined similarly for an arbitrary
(k x )-matrix a = (@yw)i<v<k,1<w<i With coefficients in A. More precisely, here a
is viewed as a vector with kl entries. Hence, if b = (byw)1<v<k 1<w<i = "a, then

deg a—deg ay,w

b’L),’LU = hav,wXO for all v, Ww.
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716 D. YU. GRIGORIEV AND A. L. CHISTOV

Next, the mth homogeneous component of *A! is
(hAl)m:{hz :z¢ A and degz =m orz=0}.

For an F-linear subspace X C A!, we let "X be the smallest linear subspace of A
containing the set {"z : z € X}. If X is an A-submodule of A!, then "X is a graded
submodule of "A!. The graduation on "X is induced by that of "A’.

For an element z = (z1,...,2) € "Al, put % = (%1,...,%;) € Al. For a subset
X C "AY put °X = {% : z € X} C Al If X is an F-linear space, then “X is also an
F-linear space. If X is a graded submodule of "A!, then %X is a submodule of A’.

Now, "I is a graded submodule of "4!, and ™I = I. Let ("I),, be the mth homogeneous
component of "I. Then

(17) ") = @ (", m=>0,
0<j<m
(18) (("Dm) = I, m >0,

and (18) induces an isomorphism ¢ : ("I),, — I, of linear spaces over F. Set "M =
hAl/PI. Then "M is a graded "A-module, and we have the exact sequence

(19) 0 — " — hAl — " — 0.
Now, for the mth homogeneous component ("M),, of "M we have
(20) (M) = ("4 ) 1) = AL /L,
by the isomorphism ¢. We have the exact sequences
(21) 0= (") — ("4, — ("M),, >0, m>0.
By definition, the Hilbert function of the module "M is
H("M,m) = dimp("M),,, m > 0.
By (20), we have H(M,m) = H("M,m) for every m > 0; i.e., the Hilbert functions of
M and "M coincide.

Lemma 2. Let by,...,b, be a system of homogeneous generators of the "A-module ™.
Then

gr(%y), ..., gr(,) € gr(A)!
is a system of generators of the gr(A)-module gr(I).

Proof. By (18), we have %("),,) = I,,. Now the claim follows from Lemma 1. The
lemma is proved. O

§4. THE JANET BASES OF A MODULE AND OF ITS HOMOGENIZATION

Each element of "4’ can be uniquely represented as an F-linear combination of ele-
ments e, ;. = (0,...,0,X0°X?D3,0,...,0), where 0 < iy € Z, i,j € Z" are multi-
indices, see (4), and the nonzero monomial Xé"XiDj is at the position v, 1 < v < [.
Therefore, every element f € "A! can be written in the form

(22) [= Z Jvjioii€vio,is  Jvio,ij € F)
V,20,2,]
and only a finite number of f, ;,;; are nonzero. The elements e, ;, ;; will be called
monomials.
In §1, everywhere after the definition of the Hilbert function, we can replace the ring
A, the monomials e, ; j, the multi-indices ¢, 7', ¢, the triples (v,4,j) and (v,%’,j’), the
module I, and so on by the ring "4, the monomials €v,i0,i,j» the pairs (ig,7), (i,1'),
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(iy,4") (they are used without parentheses), the quadruples (v,1g,1%,75), (v,i,4, '), the
homogenization "I, and so on, respectively. This gives us the definitions of o(f), Hdt(f)
for f € "Al) new conditions (a) and (b) that define admissible linear orders on the
monomials of "A!, a new condition (c) and the definition of the degree-compatible linear
order, new conditions 1)-5), and the definitions of the set Hdt("I), the Janet basis, and
the reduced Janet basis of "I. For example, 0(0) = +o0, Hdt(0) = 0, and if 0 # f € "4l
then

o(f) = max{(v,i0,%,5) : fuio.ij 7 0},
Hdt(f) = fu.io,ij€uvio,ijs Where o(f) = (v,io,1,7),
Hdt("1) = {Hdt(f) : f € "1},

while the new conditions (a) and (b) look like this:

(a) for all indices g, 14, all multi-indices 4, 7,7, j', and all 1 < v < [, if 49 < i,
i1 <.ty <dlyand Gy < g1, ... g < g1, then (v,dg,14,7) < (v,40,4,5);
(b) for all indices i, ig, g, all multi-indices 14, j,¢',5’,4",7"”, and all 1 < v,v" <[, if
(v,do, i, 4) < (v'sig, 7, '), then (v, dio+ig, i+1", j+j") < (v, ig+ig, ' +i", j'+5").
The existence of a Janet basis of "I and the uniqueness of the reduced Janet basis with
respect to an admissible linear order are proved much as the existence of a Janet basis
of I and the uniqueness of the reduced Janet basis of I; see §1. The Janet basis of "I is
homogeneous if and only if it consists of homogeneous elements of "A!. Since the module
I is homogeneous, the family of homogeneous components of any Janet basis of "I is
a homogeneous Janet basis of "I. Hence, the reduced Janet basis of "I is homogeneous
(here we leave the details to the reader).

Let < be an admissible linear order on the monomials in A', or, what is the same, on
the triples (v,i,7); see §1. Thus, this order satisfies conditions (a) and (b). We define a
linear order on the monomials e, ;, ; j, or, what is the same, on the quadruples (v, 7o, 7, j).
This linear order is induced by < on the triples (v,4, j) and will be denoted again by <.
Namely, for two quadruples (v, ig,1,j) and (v',if,4, j') we put (v,ig,,5) < (v, 45,47, 5)
if and only if (v,4,j) < (v',4,j"), or (v,4,7) = (V',4,7") but ig < iy. Observe that this
induced linear order satisfies conditions (a) and (b) (in the new sense).

Remark 2. If f1,..., fm is a Janet basis of I (respectively, a homogeneous Janet basis
of ") satisfying 1)-4), then there are unique c, 5 € A (respectively, homogeneous ¢, 5 €
hA4), 1 < a < B < m, such that the elements

fot Y capfs, 1<a<m,

a<fB<m

form a reduced Janet basis of I (respectively, a reduced homogeneous Janet basis of "I);
cf. [3].

Obviously, an admissible linear order < on the monomials in A’ (respectively, in
hAl) is degree-compatible if and only if for any two monomials zi,z, the inequality
deg z1 < deg zo implies z1 < 25.

Lemma 3. The following assertions are true.

(i) Let f1,..., fm be a (reduced) Janet basis of I with respect to the linear order
< and suppose that the order < is degree-compatible. Then "f,,...."f s a
(reduced) homogeneous Janet basis of the module " with respect to the induced
linear order <.
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(ii) Conversely, suppose that the initial order < is degree-compatible, and g1, ..., gm
is a (reduced) homogeneous Janet basis of the module " with respect to the in-
duced linear order <. Then %,...,%,, is a (reduced) Janet basis of I with
respect to the linear order <.

(iii) Suppose that the initial order < is arbitrary admissible. Let g1,...,g9m be a
homogeneous Janet basis of the module " with respect to the induced linear or-
der <. Then %, ...,%,, is a Janet basis of I with respect to the linear order <.
Moreover, Mg, = g,, for all 1 < w < m.

Proof. This follows immediately from the definitions. O

Let f € "A!, and let the module "I be as above. We show that there is a unique
element g € "A! such that

(23) 9= Z Guig,irjCvsioyinis  Guioyii € F,

,30,%,]
f—g€eM, and if g4, # 0, then e,,.i; ¢ Hdt("I). Indeed, if there are two such
elements g # ¢/, then 0 # g — ¢’ € ™, but Hdt(g — ¢') ¢ Hdt("I), and we get a
contradiction. To prove the existence of g, we may assume without loss of generality
that f is homogeneous and show additionally that the sum on the left in (23) is taken
over (v,1ig,1,7) such that ig + |i| + |j| = deg f. We can write

[= Z fvsiosij€vioigs  Juioij € F, o+ i+ |j] = deg f.
V,10,2,]
We use induction on the number v(f) of quadruples (v, i, ,7) in the last sum such that
€vig.ij € HAL("T) and e, .4, < HAt(f). If v(f) > 0, then there is a homogeneous z € "I
such that Hdt(z) = Hdt(f), degz = deg f. Then v(f —z) < v(f). The required assertion
is proved.

The element g as in (23) is called the normal form of f with respect to the module 1.
We denote g = nf("I, f). Obviously, nf("I, ("A!),,) c ("A'),, is a linear subspace, and

2
dimp nf(", (*AD),) = z(m; ”) —H(",m) = H"A/",m).
n
Let ‘A = F[Xo,...,X,,D1,...,D,] denote the polynomial ring in the variables
Xo,..., Xp,D1,...,Dy. Each monomial e, ;, ;; can also be viewed as an element of

¢Al. Hence, Hdt(f) can be viewed as an element of “A! for every f € "Al. To avoid
ambiguity, we shall denote it by Hdtc(f) € A'. Put Hdtc(™I) = {Hdtc(f) : f € "}. So,
the sets Hdt("I) and Hdtc("I) are in one-to-one correspondence.

We denote by I C °A! the graded submodule of A’ generated by Hdtc("I). It is easily
seen that the set of monomials from the module I coincides with Hdtc("I) \ {0}. Next,
for every m > 0, the F-linear space “I,, of homogeneous elements is generated by the
monomials e, ;, ; ; such that there is 0 # f € "I, with o(f) = (v, o, , ). For the Hilbert
function, we have

H(I,m)=dimp{(21,...,2) €T : Vi(degz; =mor z, =0)},

me 2”) — H(T, m).

H(A /T, m) = l< on

Let f € “A!, and let the module I be as above. Then there is a unique element g € °A!
such that

9= E Gu,io,i,j€vsiosinis  vsioying € L

v,30,%,J

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



COMPLEXITY OF A STANDARD BASIS OF A D-MODULE 719

f—g €, andif g,;,.i; # 0, then e, ;, ;; & Hdtc("I) (the proof is similar to that of the
existence and uniqueness of g in (23)). The element g is called the normal form of f with
respect to the module “I; see [4]. We denote g = nf(“I, f). Obviously, nf(<, (°A!),,) C
(¢AY),, is a linear subspace, and

m+ 2n

2n
Since, by the definitions given above, the F-linear spaces nf (I, (°A"),,) and nf ("I, (*A1),,,)
are generated by the same monomials, for every m > 0 we have
dimp nf (1, (°A"),,) = dimp nf ("1, ("AY),,),
H("AYM, m) = H(CA )T, m), H("I,m) = H(I,m).

dimp nf (7, (¢A"),,) = z( ) — H(I,m) = H(°A' /I, m).

Therefore, see §3,

(24) H(I,m)=H(1I,m), m>0.

§5. BOUND FOR THE KERNEL OF A MATRIX OVER THE HOMOGENIZED WEYL ALGEBRA

Lemma 4. Letk > 1 andl > 1 be integers. Let b = (b; j)i1<i<k,1<j<i be a matriz, where
b;j € hA are homogeneous elements for all i,j. Suppose deg bij <d,d>2, foralli,j.
Assume that there are integers d; >0, 1 <1i <k, and d; >0,1<j<I, such that

(25) deg bi,j = di — d;
for all nonzero b; j, and that, moreover, the d;- are chosen to be minimal possible (this

means that there are no integers CE,JQ stmilar to di,d;- such that 67; < d;- for all 1 <

j < 1 and at least one of the inequalities is strict). Then d; < min{k + 1,i}d and
dy < min{k,l —1}d for all i, j.

Neat, assume that k = | — 1. Then there are homogeneous elements zi, ...,z € "A
such that (z1,...,2z1) # (0,...,0) and
(26) > bijz=0, 1<i<l-L
1<5<

There is an integer u > 0 such that, for all 1 < j < 1 —1, if z; # 0, then degz; =
o+ d;», and hence, all nonzero b; jz; have one and the same degree depending only on i.
Furthermore,

(27) degz; < (2n+ 1)1 lrgagck{di} <@n+1)Pd, 1<j<l

Moreover, if all b;; do not depend on X, (i.e., they can be represented as sums of
monomials that do not contain X,,), then the elements z1, ...,z can be chosen so as to
satisfy additionally the same property. Finally, dividing by an appropriate power of X,
we can assume without loss of generality that min{ord z; : 1 <i <1} =0.

Proof. First, we prove that d; < min{k + 1,l}d and dj < min{k,l — 1}d for all i, j and
arbitrary k,l > 1. We define an equivalence relation on the set of pairs P = {(v,w) :
1<v<k,1<w<lI, and by, # 0} as follows. Put (v, w) ~ (v',w’) if and only if in P
there is a sequence of pairs (v1,w1), ..., (vy,w,), v > 1, such that

1) (an> = (Ulawl)a (’11/711}/) = (Ul/awu)a

2) Vg = Va1 OF Wy = Waqq for every 1 <a <wv—1.
Let m C P be an equivalence class with respect to ~. Then there is a pair (p,q) € m such
that d’q = 0, because the numbers d; are chosen to be minimal possible. Moreover, for
all (v,w), (v',w') € 7, a sequence (v1,w1),..., (v, w,) as above can always be chosen so
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as to possess the following five properties:

3) (VasWa) # (Vat1,Wat1) for every 1 < a <v —1;

4) if vy = Va41, then waqp1 = ways for every 1 < a < v — 2;

5) if We = Wat1, then vy = vaio for every 1 <a<v —2;

6) foralll <a,B <w,if B & {a—1,a,a+ 1}, then vg # v,;

7) foralll <a,B<v,if & {a—1,a,a+ 1}, then wg # wqy
(we leave the details to the reader). Now conditions 1)-7) imply that the number of pairs
satisfies

#{(wa, Wat1) + Wo # War1 &l <a<v—1} <min{k,l - 1}.

Next, if wq # Wai1, then va11 = v4 and |d/wa+1 —d,, | = |degby,, wayr —degby, w,| <
d. Hence, d;, < min{k,l —1}d + d;,,. For (vi,w;) = (p,q) and an arbitrary (v,w) =
(vp,wy) € ™ we get d,, < min{k,l — 1}d. Finally, degb, ., = d, — d,, < d implies

d, < min{k + 1,1}d. The required inequalities are proved. O

Now, suppose that degb; ; = degb for all nonzero b; ; and k = [ — 1. We prove the
existence of zy,...,2 and obtain an estimate for deg z; in this case. Consider the linear
mapping

(hA)infdegb — (hA)irzla

(28) (21,...72’[)'—)( Z b@ij) .
1<i<l—1

1<5<
If
m —degb+ 2n m+ 2n
2 l -1
(20) (") s (M),
then the kernel of (28) is nonzero. But (29) is true provided
degb l
(30) IT (1+ )<
1<w<zn m+ w — degb !

Next, (30) is true if (1 4+ degb/(m — degb))?® < I/(I — 1). The last inequality follows
from m > (2n + 1) degb/ log(l/(l — 1)), and hence, also from m > (2n + 1)l degb. Thus,
the existence of z1,..., 2 is proved, and moreover, all the nonzero z; have one and the
same degree ((2n+ 1)l — 1) degb, which does not depend on j. Observe that, in the case
under consideration we have proved a stronger inequality: degz; < ((2n+ 1)l — 1)d for
all 1 <j <l

Finally, let £ = | — 1 and suppose that the degrees degb; ; are arbitrary but satisfy

(25). Multiplying the ith equation in (26) by Xénaxw‘{dw}fdi, we may assume without

’

loss of generality that all d; are equal. We substitute szgj for z; in (26). Now the
degrees of all the nonzero coefficients of the resulting system are equal to max;<;<x{d;}
and are less than Id. If, in the case of degb; ; = degb considered above, we replace
the bound d by max;<;<x{d;} < ld, we get the required z1,...,2 such that degz; =
((2n+ 1)l — 1) max;<i<k{di} + d; or z; = 0 for all 1 < j <, together with the estimate

. — . /4 . 2
degz; < (2n+1)I—1) lrél%xk{dz} +d: < (2n+ 1)l lléliaéxk{dz} < (2n+1)l°d

for all j.
Suppose that aq, ..., a; do not depend on X,,. We represent z; = Zj zi’jX,];, 1<i<lI,
where all 2; ; do not depend on X,,. Let a = max;{degy,  2;}. Obviously, in this case we

can replace (z1,...,2) by (21,a5---,21,). The lemma is proved. O
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Remark 3. Lemma 4 remains true if condition (26) in its statement is replaced by

(31) > zbi; =0, 1<i<i-L
1<5<i

The proof is similar.

Remark 4. Let the elements b; ; be as in Lemma 4. Notice that there are integers §; > 0,
1<i<k,and §; >0, 1< j <1, such that

deg b@j = 5j — 5;

for all nonzero b; j, and mini<;<x{0;} = 0. Namely, ¢; = —d; + maxi<;<p{d;}, 0; =
—d; + maxlgigk{di}.

Remark 5. Let b; j € hA, 1 <i <k, 1< j<I, be homogeneous elements. Suppose there
are integers dl, 1<i<k, and d’ 1 < j <1, such that degb; ; = d — d for all nonzero
b; ;. Then there are integers d; 2 0,1<i<k, and d’ >0,1<5<], such that (25) is
fulfilled for all nonzero b; ;.

§6. REDUCING A MATRIX WITH COEFFICIENTS IN "4 TO A TRAPEZOIDAL FORM

Let b be a matrix as in Lemma 4, and let integers k,I > 1 be arbitrary. Thus, (25)
is true. Let b = (by,...,b;), where by,...,b; € "A* be the columns of the matrix b
(note that in Lemmas 1 and 2 all b; are rows of size [, so that now we change the
notation). By definition, by, ..., b are linearly independent over "A from the right (or
linearly independent if this will not lead to ambiguity; in what follows in this paper, if
it is not stated otherwise, “linearly independent” will mean “linearly independent from
the rlght”) if and only if for all 21, ...,z € "A the relation b1z 4 - - + bjz; = 0 implies

z1 = - =z = 0. By (25), in thls definition we may con81der only homogeneous
Zlyeey 2. From an arbitrary family by,...,b; as in Lemma 4 (with arbitrary k,1) we
can choose a maximal subfamily b;,,...,b; , linearly independent from the right. By

Lemma 4, we have r < k. It turns out that r does not depend on the choice of a
subfamily. More precisely, the following statement is true.

Lemma 5. Let ¢; = Y . bizij, 1 < j < ri, where z,; € hA are homogeneous
elements. Suppose that there are integers d}’, 1 <7 < r, such that, for alli,j, degz; ; =
di —dj if zi; # 0. Assume that c;, 1 < j <1, are linearly independent over hA from
the right. Then ry < r, and if 1y < r, then there are ¢y 11,...,¢ € {biy,...,b;.} such
that the c¢j, 1 < j <, are linearly independent over hA from the right.

Proof. The proof is similar to the case of vector spaces over a field, and we leave it to
the reader. O

We denote r = rankr{by,...,b} and call this number the rank from the right of

b1,...,b;. In a similar way we can define the rank from the left of bq,...,b;, denoting
it by rankl{by,...,b}. It is not difficult to construct examples when rankr{by,..., b}
# rankl{by,...,b;}. Our aim in this section is to prove the following result.

Lemma 6. Let b be a matriz with homogeneous entries in "A and satisfying (25); see
above. Suppose that d > 2 and degb; ; < d for alli,j. Let Iy = rankr{by,...,b;}, and let
bi,..., by, be linearly independent. Hence, 0 <13 <1 and k > 11. Then there is a matrix
(zj,r)1<jr<ty (3f l1 = 0, then this matriz is empty) with homogeneous entries z;, € hy,
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and a square permutation matriz o of size k, with the following properties:
(i) There are integers d!, 1 < r < Iy, such that for all 1 < j,r < I3 we have

deg z;, = d;» —d! or zj, = 0, and hence, all the nonzero elements b; ;z;,,
1 < j <1y, have one and the same degree d; — d/! depending only on i,r. Next,
(32) degz;r < (2n+ 1)l 1rila<xk{di} < (2n+1)id.
(i) Introduce the matriz e = (€; j)1<i<k,1<j<i, = 0(b1,..., b, )z, where (by,... by )

s the matriz formed by the first Iy columns of the matriz b. Then

e/
e =
el/ I

where e = diag(e} ..., €, ;) is a diagonal matriz with l; columns, and each
e},j’ 1< j <y, is nonzero.
(ili) orde;; > orde}j forall1<i<k,1<j<lI.
Moreover, if all a; j (and hence, allb; ;) do not depend on X, (i.e., they can be represented
as sums of monomials that do not contain X,), then the z; . can be chosen so as to possess
the same property. Finally, dividing by an appropriate power of Xy, we may assume
without loss of generality that min{ordz;, : 1 <j <Il;} =0 for every 1 <r <.

Proof. First, we show how to construct z, e, and o satisfying (ii) and (iii). We shall use
a kind of Gauss elimination and Lemma 4. Namely, we transform the matrix e. To start
with, we put
e=(er,...,e) = (br,...,by).

We shall perform some "A-linear transformations of columns and permutations of rows
of the matrix e and replace e each time by the resulting matrix. These transformations
will not change the rank from the right of the family of columns of e. At the end, we get
a matrix e satisfying the required properties (ii), (iii).

We have rankr(e) = I;. If Iy = 0, i.e., if e is an empty matrix, then this is the end
of the construction: z is an empty matrix. Suppose that [; > 0. We choose indices
1 <ip < kand1l < jy <l such that orde;, j, = minj<;j<;, {orde;}. Permuting rows
and columns of e, we may assume without loss of generality that (ig,jo) = (1,1).

By Lemma 4, we get elements w; 1,w;; € "A of degree at most (2n + 1)4d such
that €1,1W1,; = €1,;Wi4, 1 S 7 S ll, and ordwm- = 0 for every 1 S 7 S ll. Set w’ =
(—wi,2,...,—wiy ), and let w” = diag(ws,2, ..., wy, 1,) be the diagonal matrix. Let

1w
w = 0 w

be the square matrix with {; rows. We replace e by ew. Now

e — €1,1 0
Eyq1 Eas)’

where F 9 has [; — 1 columns, and

(33) 1gljlgnll{ord b]-} =orde;; = énjlgnzl{ord ej}

(for the new matrix e).

We apply recursively the described construction to the matrix Ep 5 in place of e. So,
using only linear transformations of columns with indices 2,...,l; and permutation of
rows with indices 2, ..., k, we transform e to

er 9 10
/ /
oer = E2’1 Ez’2 , T = 0 )
Ey, Ej ’
2,1 2,2
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where o is a permutation matrix and 7’ is a square matrix with Iy —1 rows (it transforms
FEs ), the matrix Ej 5 = diag(ez 2, - . -, €, 1, ) is a diagonal matrix with /; —1 > 0 columns,
and all the elements ez2,...,¢e,,1, € hA are nonzero. We shall assume without loss of
generality that o = 1 is the identity matrix. We replace e by er. Condition (iii) is fulfilled
for the resulting matrix e, and moreover, by (iii) applied recursively to (a2, E5 o, F5 5)
in place of (e,e’,e”), and by (33), the same equalities in (33) are satisfied for the new

matrix e.

Let E5; = (e2,1,.--,€;,,1)", where t denotes transposition. By Lemma 4, there are
nonzero elements vy 1,...,v;,,1 € h4 of degrees at most
(34) (2n + 1) (max{dege; ; : 1 <i<ly, j=1,i} + 1)I}
such that e; 1911 = €;,;v;1 and min{ordwvy; : 1 <i<[;} =0foralll1 <i<l; —1. Let
v = (—v2,1,...,—v;,,1)", and let v” be the identity matrix of size [; — 1. Put

V= V1,1 0
v o)

We replace e by ev and put z = wrv. Recall that, without loss of generality, c = 1 is the
identity permutation. We have e = (by,...,b;,)z. These Gauss elimination transforma-
tions of e do not change the rank from the right of the family of columns of e. This can
be proved easily by using recursion on /; cf. Lemma 8 below. Now the matrix e satisfies
the required conditions (ii) and (iii), and o = 1.

Now we change the notation. We denote the matrix z obtained so far by z’. Let 2/ =
(#1,...,2,), where 2/ is the jth column of 2’. Our aim now is to prove the existence of
a matrix z satisfying (i)—(iii). By Lemma 4, for every 1 < r < [;, there are homogeneous
elements z;, € hA, 1 < j <y, such that (21,,...,2,.0) # (0,...,0), degzj, = d. + pr
or zj, =0forall 1 <j <,

(35) Z bijzjr =0 forevery 1<i<l, i#r,

1<5<h
and estimates (32) for the degrees are true. Put z = (2j,)1<jr<i, and d! = —pu,. Let
z=(z1,...,2,), where z; is the jth column of z. Hence, z; = (21,,..., 2, ;)"

Lemma 7. For every 1 <r <l we have
(36) > bz #0,
1<i<h
and for every 1 < r < l; there are nonzero homogeneous elements g., g, € "A such that
YA,
ZrGr = ZrQr-

Proof. Consider the matrix (2/, z,.) with Iy rows and I; + 1 columns. Using Lemma 4, we
see that there are homogeneous elements h1, ..., h;, +1 € "A (depending on r) such that
(hi,... by 11) # (0,...,0) and the following is fulfilled. Denote h = (h1,...,h;,+1)" and
R = (hy,...,hy,)t. Then

(37) 2'h + 2oy 1 =0

(at present, we do not need any estimate on degrees from Lemma 4; we only need the
existence of h). Denote by b” the submatrix formed by the first I3 rows of the matrix
(b1,...,by,). Multiplying (37) by b” from the left, we get

(38) V2B A+ by, 41 = 0.

But "2’ is a diagonal matrix with nonzero elements on the diagonal; see (ii) (with 2z’ in
place of z). Hence, by (35) and (38), h; = 0 for every j # r.
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Now suppose that h, = 0. Then A’ = 0. Since z, # 0, we have h;, 11 = 0 by (3.7).
Hence, h = (0,...,0), a contradiction.

Suppose that h;, 1 = 0. Then by (38) we have h, = 0. Hence h = (0,...,0)" and
again we get a contradiction.

Thus, h, # 0 and hj, 11 # 0. Now (38) implies (36). Put ¢g. = h, and g, = —hy,+1.
We have z.g/. = z.g, by (37). The lemma is proved. O

T

We return to the proof of Lemma 6. Now (i)—(iii) are satisfied by Lemma 7. The last
assertions of Lemma 6 are proved much as those in Lemma 4. Lemma 6 is proved. [

§7. AN ALGORITHM FOR SOLVING LINEAR SYSTEMS WITH COEFFICIENTS IN "4

Let u = (uy,...,u;) € "A'. Suppose that all nonzero u; are homogeneous elements
of degree —d; + p for an integer p, and that —dj + p < d’ for an integer d’ > 1. Let
b= (bij)1<i<k,1<j<i be a matrix as in Lemma 6, having k rows and [ columns (but now k
and [ are arbitrary). So, degb; j = d;—d; < dforall4,jand d > 2. Let Z = (Z1,..., Zy)
be unknowns. Consider the linear system

(39) Y Zibij=uj, 1<j<l,
1<i<k
or, what is the same,
Zb = u.
Denote

(40) ordu = lrggl{ord u; b

Similar notation will be used for other vectors and matrices. In this section we describe
an algorithm for solving linear systems over "A and prove the following theorem for an
infinite field F (for a finite field F' this theorem reduces easily to the case where F is
infinite, but we shall not use this theorem for a finite field F' in this paper).

Theorem 2. Suppose that system (39) has a solution over "A. Then the set of all
solutions of (39) over "A can be represented in the form

J+ z",

where J C "Al is an "A-submodule of all the solutions of the homogeneous system cor-
responding to (39) (i.e., system (39) with all u; = 0) and z* is a particular solution of
(39). Moreover, the following assertions hold true.

(A) The solution z* can be chosen so that ord z* > ordu — v, where v > 0 is an
O(n)

integer bounded from above by (dl)?>"". The degree deg z* is bounded from above

by d + (d1)2”".

(B) J admits a system of generators of degrees bounded from above by (dl)
The number of elements of this system of generators is bounded from above by
k(d)2°™

The constants in O(n) in (A) and (B) are absolute. Moreover, if all b; ; and u; do not
depend on X, (i.e., they can be represented as sums of monomials that do not contain
X,), then z* and all the generators of the module J also possess this property.

Proof. Let I = rankr(by,...,b). If Iy = 0, then u = (0,...,0), J = "A¥ and we can
take z* = (0,...,0). So, in what follows we shall assume that I; > 0. Then 1 <1; < k
by Lemma 4. Permuting equations of (39), we may assume without loss of generality
that (b1,...,b;,) are linearly independent from the right over "4. Let o, z, e, €/, €”
be the matrices occurring in Lemma 6. As in the proof of Lemma 6, we shall assume

90(n)
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without loss of generality that ¢ = 1. Denote by o’ the submatrix of b formed by the
first Iy columns of b, i.e., b’ = (by,...,b;,). By Lemma 4, there are nonzero homogeneous
elements ¢ 1,..., g1, of degrees at most

(2n + 1)(max{dege;; : 1 <i <[} + 1)}
such that €1 1¢1.1 = €;¢;,; and min{ord ¢, ; : 1 <4 <lI;} = 0. We introduce the diagonal

matrix ¢ = diag(q1,1,---, ¢, ). Let vy = ordeq 1¢1,1. Then ord(b'zq) > vy by Lemma 6
(iii). Let X;°6 = b'zq. Then § is a matrix with coefficients in "4, and

6/
6 = (8ij)1<i<k,1<i<l = (5//) ;

where ¢ = diag(d1,1,...,0,,,1,) is a diagonal matrix with homogeneous coefficients from
kA and such that all the elements on the diagonal are nonzero and equal, i.e., 055 ="011
for every 1 < j < l3. Also, ordd1 = 0. Next, 8" = (8 j)1,+1<i<k,1<j<i,- We have
ord(uzq) > vy because, otherwise, system (39) has no solutions. Obviously, ordu <
ord(uzq). Denote v’ = (u},...,uj ) = Xg"uzq € "A". Then ordw' > ord(u) — vo.

By Lemma 6 (i), and since ¢ is a diagonal matrix with nonzero homogeneous entries
on the diagonal, there are integers d}' , 1 < j <y, such that for all i, j we have

(41) deg 5i7j = dz — d;/
or 0; ; = 0. Besides that, for the same reason there is an integer p’ such that deg u; =

—d;-’ +p or u; =0 for all 1 < j < (here we leave the details to the reader).
Consider the linear system

(42) Zs=u'.

Lemma 8. Suppose that system (39) has a solution over "A. Then the linear system
(42) is equivalent to (39), i.e., the sets of solutions of systems (42) and (39) over "A
coincide.

Proof. The system Zb'z = uz is equivalent to (39) by Lemma 5. System (42) is equivalent
to Zb'z = uz because the ring "A has no zero divisors. The lemma is proved. O

Remark 6. We have rankr(by,...,b;) = [;. Hence, by Lemma 6, for every I; + 1 <
j < 1 there are homogeneous zjj,z1,...,21,; € "A such that z;; # 0, bjz;; +
> 1<r<i, brzrj =0, and all deg z; ;, deg 2, ; are bounded from above by (2n+1)(l;+1)d.
Put7u§: Ujzj i+ D1 <pey, Urzrgs 1 +1 < j < 1. Then system (39) has a solution if and
only if system (42) has a solution and v} = 0 for all /; +1 < j < [. This follows from
Lemmas 8 and 5. But in what follows for our aims it suffices to use only Lemma 8.

Remark 7. Assume that degy, b;; < 0 for all 4,7, i.e., the elements of the matrix b do
not depend on X,,. Then by Lemmas 4 and 6 and by our construction, all the elements
of the matrices b, z, ¢, 6, d’, 6" also do not depend on X,,.

By Lemma 4 and Remark 3, for every l; +1 < i < k, there are homogeneous elements
giirgij € "A, 1 < j <ly, such that
9i,i0i5 = gi,j011, 1<j <1y,
all the degrees degg; i, degg j, 1 < j <1, are bounded from above by
(2n +1)(1; + 1)*(max{degd; ; : 1 <j <k} + 1),

and min;<j;<;, {ord g;;,ordg; j} = 0. Therefore, ordg;; = 0 for every I; +1 < i < F,
because ord 411 = 0.

We need an analog of the Noether normalization theorem from commutative algebra;
cf. also Lemma 3.1 in [7].
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Lemma 9. Let h € "A be an arbitrary nonzero element, and let degh = €. There is a
linear automorphism o of the algebra MA,

(7 hA — hA, Oé(Xl) = Z (al,i,ij + a2,i,ij);
1<j<n

Ot(Dz) = Z (ag)i,ij + 0!471'7ij)’ OC(X()) = X(), 1< < n,

1<j<n

such that all o ; ; are in F' and degp «(h) = e. Moreover, one can choose o so that,
additionally, for every H € MA, if degy H =0, then degx a(H) = 0.

Proof. To start with, it is not difficult to construct a linear automorphism § such that
B(XO) = XO, ﬂ(Xn) = X’n.; ﬁ(Dn) = Dn7

B(Xi) = B1iXi + B2, Di,  B(Ds) = B3, X + BaiDi, 1<i<mn,

and B(h) contains a monomial aih.__,inDil vooo, Dl withag,, ;. #0and iy +---+i, =&,
ie,e=degp, p, B(h). After that, we can find an automorphism ~ such that v(Xo) =
XO)

YXi) =Xi, (D) =D;+vD,, 1<i<n-—1,

1<i<n—1
wherey; € Fforall 1 <i <n—1,and (yof)(h) contains a monomial aD;, with 0 # a € F.
Put @ = v o 3. Obviously, if H € "A and degyx, H = 0, then degy, a(H) = 0. The
lemma is proved. O

Put h = 91,190 +1,1+191,42,,42 " 9k,k- Then h € kA is a nonzero homogeneous
element and ordh = 0. By Lemma 9, we obtain an automorphism «. Applying a to
the coefficients of system (42), we get a new linear system. Again by Lemma 9, if all
the coefficients of system (42) do not depend on X,,, then all the coefficients of the new
system also do not depend on X,,. In what follows, to simplify the notation, we shall
assume without loss of generality that a = 1. Thus, h contains a monomial aD; with
0 # a € F, where € = degh. Then

(43) degp 011 =degdi 1, degp gii=deggii, L+1<i<k

Let z = (21,...,2k) € "A* be a solution of (42). Then (43) implies that we can uniquely
represent z; in the form

(44) =g+ Y. zeDh L+1<i<k,
0<r<degg;,:

where z{,2;, € hA, and degp, 2ir <0 foralll{ +1<i<k 0<r< degp, gii- Again
by (43), we can uniquely represent v in the form

I " / .
wp=ufsia+ ) u; Dy, 1<) <,
0<s<degdi,1

where uff,u; € k4, and degp, uj, < 0forall 1 <j <l 0<s<degp, gi; Finally,
by (43), for all ly +1 <4 <k, 1 <j <1, and 0 < r < degp, g;,i, there is a unique
representation
Dy,6ij = 6irjo11+ Z Oirj.s Dy
0<s<degdi,1
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where 8;,.;,0irj.s € "A, and degp 8; ;s < 0 for all the i,7, j, s involved. Put

T={0Gr):1+1<i<k&0<r<deggy},
‘7:{(]75)1§J§ll&1§8<deg5171}

Therefore,
(45) Zj = Z Zzl‘gi,j — Z zi,réimj + u;/, 1 S ] S ll,
1 4+1<i<k (¢,r)ET
(46) Z Zi,rdi,r,j,s = u;',sa (]7 8) S '.7

(i,r)ET

We introduce new unknowns Z; ,., (i,7) € Z. By (44)—(46), system (39) reduces to the
linear system

(47) Z Ziyrdimj;s = u;’,s? (], 8) € j

(i,r)ET

More precisely, any solution of system (39) is given by (44), (45), where the 2] € "A are
arbitrary and z; , is a solution of system (46) over hg (we emphasize that this solution z; ,
may depend on D,,, although we can restrict ourselves to solutions z; , that do not depend
on D,,). Note that all §; , ; s and u;,s are homogeneous elements of hA. Put diy =d;+r,
(i,r) € T and dj , = dj +s, (j,s) € T, p = p', where d;,d}, p are as introduced above;
see (41). Then degd; ;. j,s = d;r — d;s or 0; ;s =0, and deg U’;',s = —d;-,s +por u}s =0,
for all (i,7) € Z, (j,s) € J. This follows immediately from our construction (we leave
the details to the reader).

Now all the coefficients of system (47) do not depend on D,,. As we have proved, if
the coefficients of (39) do not depend on X,,, then the coefficients of (47) also do not
depend on X,,, and hence, in this case they do not depend on X, D,,.

If the coefficients of (47) depend on X,,, we perform an automorphism X, — D,
D, —X,, X;— X;, D;—~ D;, 1 <i<n-—1. Now the coefficients of system (47) do
not depend on X,, (but depend on D,,).

After that, we apply our construction recursively to system (47). Here, we need to
lean upon Remark 5, because the integers d} , are not necessarily positive.

More precisely, denote "A = A(™) for brevity. As the input of the step in question we
have system (39) over the ring A Now, as the input of the next recursive step we
have system (47) over A where n/ = n if at least one of the coefficients of system
(39) depends on X,,, and n’ =n — 1 if all the coefficients of system (39) do not depend
on X, (thus, n is replaced by n’, and it reduces after each two steps of recursion; n’ is
a new value of n for the input of the recursive step). Let J’ be the module of solutions
of the homogeneous system corresponding to (47) over the ring A™) . Then, obviously,
hAJ’ is the module of solutions of the same homogeneous system over "A. Each system
of generators of J' over A s a system of generators of "A.J" over "A. Similarly, a
particular solution of system (47) over A(™) is a particular solution of system (47) over
hA.

At the final step of the recursion, at least one of the following conditions is fulfilled:

e [; = 0 for the newly obtained system (in place of (39));
e n = 0 (although in the statement of the theorem we have n > 1, see §1, we are
interested only in Weyl algebras).

If I; = 0, we get the required z* and J at this recursive step immediately; see above. If
n =0, then Z = J = &. Hence, using (45) for n = 0, we get the required z* and J for
n = 0.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



728 D. YU. GRIGORIEV AND A. L. CHISTOV

Thus, using the recursive assumption, we get a particular solution Z; , = 2 s (i,r) €
T, of system (47), an integer v (in place of v from assertion (A)) satisfying the inequality

48 min {ordz’ } > min {ordu’  } — v,
(a9 i ford =} > min fordu}— v

and a system of generators

(49) (Zoz,i,r )(i,r)EI’ 1<a< 57
of the module J’ of solutions of the homogeneous system corresponding to (47). Put
Z; = — Z Z;ré’i,’fvj —|—1L;»/, 1<j5 <1,
(i,7)ET
=Y #.Dy h+1<i<k,
0<r<degg;,;
2= (2, 2).

Then z* is a particular solution of (39). Put

Zaj = — Z ZayirOirg, 1<J <1, 1<a<B,
(¢,r)ET
Zai= Y. ZaqsDi, L+1<i<k 1<a<p,
0<s<deggi,:
28-1144,5 = 0, h+1<4,j<k j#i,
28—l +ii = Giis Lh+1<i<k,

28-ly4ij = —Gij, 1<J<lh, 1+1<i<k.

Then J = ElgagﬁJrk—ll "A(zanys ..oy zak). Hence, (za1,.--2ak), L <a < B+k—1li, is
a system of generators of the module J. By (48) and the definitions of u’, v}, and v/ ,
we have ord z* > ord(u) — vy — v1. Put v =y + 1.

Lemma 10. All the degrees deg 0; ;, deg g;:, deg g j, deg d; rj, degds ;s and the num-
ber vy, see above, are bounded from above by (nld)°™M); the degrees deg u’;, degulf, degu;
are bounded from above by d’ + (nld)®™M). Next, ord u;, orduf, and ordu} ; are bounded
from below by ordu—vg. Finally, in system (47) the number #J of equations is bounded
from above by (nld)®Y), and the number #I of unknowns is bounded from above by

k(nld)°M),
Proof. This follows immediately from the construction. O

We return to the proof of Theorem 2. Applying Lemma 10 and, recursively, assertions
(A) and (B) for the formulas giving z* and J, we get (A) and (B) from the statement of
the theorem. The last claim (related to the case where all b; ; and u; do not depend on
D,,) has already been proved. The theorem is proved. (Il

68. PROOF OF THEOREM 1 FOR WEYL ALGEBRAS

We start with showing that it suffices to prove the theorem for an infinite field F.
Indeed, let F; be an infinite field such that F; D F. Let fi1,..., f;, be a Janet basis of
the module I ® F; with all the degrees deg f,,, 1 < w < m, bounded from above by
@2°™ . There is a finite extension F5 D F such that for all v,4,j and all 1 < w < m the
coefficient in f, of the monomial e, ;; belongs to the field 5. Let aq, 1 < a < p, be
the basis of the field F; over F'. Then we can write f,, = Zl<a<# G fow, where all fq o,
belong to I. Now deg fo . < deg fy, and fop, 1 <w <m, 1 < a < p, is a Janet basis of
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the module I. Moreover, the reduced Janet basis of the module I remains the same after
an arbitrary extension of scalars. The required assertion is proved. Thus, extending the
ground field F', we may assume without loss of generality that F' is infinite.

Let a be a matrix as in §1. There is no loss of generality in assuming that the vectors
(@i, a:1), 1 <1 <k, are linearly independent over F'. We have dega; ; < d. This
implies k < l(dgjn).

Put b = "a. We define graded submodules of "I:

Jo="AMra, .. b)) o PAbR g, - b)),
Jy=Jo: (X)) ={z€mA": 2X] € Jp}, v>1
We have the following exact sequence of graded "A-modules:
hak — Jy — 0.

Next, we have J, C J,41 C "I for every v > 0, and "I = |, 5 J,- Since "A is Noetherian,
there exists N > 0 such that "I = Jy. Therefore, to construct a system of generators
of ", it suffices to compute the smallest N such that "I = Jy and to find a system of
generators of Jy.

Lemma 11. "I = Jy for some N bounded from above by (dl)2o(n). There is a system of
generators by, ..., bs of the module Jy such that s and all the degrees degb,, 1 < v < s,
are bounded from above by (dl)QO(").

Proof. We show that Jy11 C Jy for N > v. Let u € Jy41. Consider system (39). By
assertion (A) of Theorem 2, there is a particular solution z* of (39) such that ord z* > 1.
Hence, u € XoJn C Jn. The claim is proved. Thus, hr=17,.

We replace (ug,...,u;) in (39) by (U1X{,..., U XY), where Uy,...,U; are new un-
knowns. Then, applying statement (B) of Theorem 2 to this new homogeneous linear

system with respect to the unknowns Ui, ..., U;, Zy,..., Z, we get the required esti-
mates for the number of generators of J, and for the degrees of these generators. The
lemma is proved. O

Corollary 1. Let (a;1,...,a:;), 1 <i <1, be as at the beginning of the section, and let
the integer N be as in Lemma 11. Then, for every integer m > 0, the F-linear space

(50) Apan(ar g, ... a10) + -+ Apan(ag, ..., a1) includes I,.
Proof. By Lemma 11, we have (Jo)msn D X&' (IN)m = X ("),,. Taking the affine
parts yields (50). The corollary is proved. a

Now everything is ready for the proof of Theorem 1. By Lemmas 11 and 1, there is a
system of generators of the module gr(I) with degrees bounded from above by (dl)zo(").
By Lemma 12 (see Appendix 1), the Hilbert function H(gr(I),m) is stable for m >
(d)2°™. By (11) (see §2), the Hilbert function H(I,m) is stable for all m > (d1)2”".

Consider the linear order < on the monomials in *A’ that is induced by the linear order
< on the monomials in A’; see §4. Then the monomial (i.e., generated by monomials)
submodule I C ©A! is well defined, see §4, where °A = F[Xy,..., X,,, D1,..., D,] is the
polynomial ring. By (24), the Hilbert function H(°I,m) is stable for all m > (d1)2”"
Hence, all the coefficients of the Hilbert polynomial of I are bounded from above by
(dl)go("). Therefore, by Lemma 13, the module “I has a system of generators with degrees
(dZ)QO(n). We can assume without loss of generality that this system of generators of I
consists of monomials. The sets of monomials in ¢/ and in Hdt(") are in a natural
degree-preserving one-to-one correspondence; see §4. Therefore, see §4, the degrees of
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all the elements of a Janet basis of "I with respect to the induced linear order < are
bounded from above by (dl)zo("). Since the ideal "I is homogeneous, the same bound
is valid for the degrees of all the elements (they are homogeneous) of the reduced Janet
basis of "I. Hence, by Lemma 3 (iii) (see §4), the same is true for some Janet basis
fis--+, fm (respectively, by Lemma 3 (ii), for the reduced Janet basis in the case where
the initial order < is degree-compatible) of the module I with respect to the linear order
< on the monomials in A,

It remains to consider the case where | = 1 and an admissible linear order < is
arbitrary. We need to obtain estimates for the reduced Janet basis of I in this case.
In the case in question, the linear order < is given on the set of pairs of multi-indices
(4,4), 4,5 € Z. Now (see, e.g., [I3, p. 58]), there is a real ordered field R and a linear
form L € R[Y1,...,Yn,Z1,...,Z,] with positive coefficients such that, for all pairs (i, ),
(7', 7") of multi-indices, (¢',5’) < (4,7) if and only if

L(i_ilvj_j/):L(il_7;/17~~~77;n_i;17j1_jia‘”ajn_j;) >0

in the real ordered field R.

Let ¢ < --- < 9, be all the monomials in Xy,...,X,,D1,...,D, with nonzero
coefficients in the elements fi,..., fin, and let (i), jM) < ... < (i(®) (@) be the
corresponding pairs of multi-indices. Let € > 0 be an infinitesimal with respect to the
field R. Now

(51) LY =) ) — e > e 1<s<a—1,

in the field R(e). Let U = Y, <n(UwYw + vwZy) be a generic linear form in the
variables Y1, ..., Yy, Z1, ..., Zy; i.e., the family {uy,, vy }1<w<n Of coefficients of U has the
transcendency degree 2n over R(e). Consider the following system of linear inequalities
with coefficients in Q[e] with respect to wy, vy, 1 < w < n,

U@EETY — () 56+ 56y > ¢ 1<s<a—1,
(52) Uy > €, 1<w<mn,
Uy = E, 1<w<n.

Let K. be the set of solutions of system (52) in R(¢)?". By (51), and since all the
coefficients of the linear form L are positive, system (52) has a solution in R(g)?". The
left-hand sides of the inequalities in (52) are linear forms in uy,, vy, 1 < w < n, with
integral coefficients. We denote them by Q1,...,Qu, 4 = a — 1+ 2n. Observe that the
absolute values of the coefficients of the linear forms @1,...,Q, are bounded from above
by d2”".

We show that there are indices 1 < w; < -+ < wy < p and s < 2n such that
Z(Quy — €y, Qu, — ) C K, (here Z(Qu, —&,...,Qq, — €) is the set of all common
zeros of the polynomials Qy,, —¢, . . . , Qu, —¢ in R()*") and the linear forms Q.,,, - - . , Qu,
are linearly independent over Q. Indeed, we can construct @, , ..., Qw, recursively, by
choosing subsequently @, , @ > 1, such that Z(Q,, — ¢) has a nonempty intersection
with the boundary of Z(Q., —¢&, ..., Qu,._, —€)N K. (we leave the details to the reader).

Solving the linear system Q,, —¢ = -+ = Qu, — € = 0, we see that there is a
point (u},, v}, )1<w<n € K. such that u), = a,e/c and v], = by,e/c, where all ay, by, c
are positive integers with absolute values bounded from above by 27" Put e = 1,
uk = ay/c and v = by/c, 1 < w < n. We view (52) as a linear system with respect

to all w,,v, and e. Then u}, v and € > 0 is a solution of (52) in Q*"*1. Set

wr rw

L* =X cpen (WY + 05 Z,).
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Now L* € Z|Y1,..., Y0, Z1,...,Zy,] is a linear form with positive integral coefficients
bounded from above by @2”" and such that

(53) LHEEH) — () 56+ 5y 500 1<s<a—1.

We assume without loss of generality that Hdt(f1), ..., Hdt(f,,) is the family of leading
monomials of the reduced Janet basis fi,..., f/, of the module I with respect to the
linear order <, and Hdt(fy) > --- > Hdt(f,,). For any g € A, put A(g) = L*(4, ), where
Hdt(g) = g, ;X'D7, 0 # ¢;; € F. Then inequality (53) and the definitions show that
A fw) = A(f]) for all 1 < w < m. Hence, all A(f],)) are bounded from above by a2’
But, obviously, deg f/, < A(f/,), 1 < w < m. Theorem 1 is proved for Weyl algebras.

§9. THE CASE OF AN ALGEBRA OF DIFFERENTIAL OPERATORS

Extending the ground field F', we may suppose without loss of generality that the field
F is infinite. We denote by B = F(X1,...,X,)[D1,...,D,] the algebra of differential
operators. Recall that A C B, so that relations (2) are satisfied. Next, each element
f € B can be uniquely represented in the form

f= 2 fuea DU D= fiD

J1seerdn 20 jezy

where all f;, ;. = f; belong to F(Xy,...,X,) and F(Xi,...,X,) is the field of
rational functions over F. Everywhere in §§1 and 2, we replace A, X'D7, degf =
degXl,...,X,,,,Dl,...,D,,, fa dimp M7 €v,i,js fv,i,j € Fa and (U7i7j)7 (i’j)v (i/’j/)v (i//aj//) by Bv
DI, deg f = degp,  p, [, dimpx, . x.) M, evj, fo; € F(X1,...,X,), and (v,]), 7,
7', 7", respectively. This leads to the definition of the Janet basis and all other objects
occurring in §1 for the case of the algebra of differential operators.

The definition of the homogenization "B of B is similar to that of "A4; see §3. Namely,
hB = F(X1,...,X,)[Xo,D1,...,Dy,] is given by the relations

Xin = Xin, DZDJ = DjDi, for all i,j,

4
(5 ) DZXZ - XZDZ = Xo, 1 < ) < n, XiDj = D]Xz for all 1 75 ]

The further considerations are similar to the case of the Weyl algebra A with minor
changes. We leave them to the reader. For example, Theorem 2 for the case of the
algebra of differential operators is the same. One need only to replace A, "4, and X,,
by B, "B and D,, everywhere, respectively. Thus, Theorem 1 can be proved in the case
where A is an algebra of differential operators (but now it is B). Theorem 1 is proved
completely.

One can consider a more general algebra of differential operators. Let F be a field
with n derivatives Dy,...,D,. Then K, = F[Dy,...,D,] is an algebra of differential
operators, and its homogenization "k, can be defind as before, by means of adding a
variable X satisfying the relations

D;D; = D;D;, XoD;=D;Xo, Dif —fD;= fp,Xo

for all 7, j and all elements f € F, where fp, € F denotes the result of an application of
D; to f. Following the proof of Theorem 1, we can deduce the statement below.

Remark 8. Bounds similar to those in Theorem 1 hold true for K, (in place of the algebra
of differential operators A).
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APPENDIX 1: DEGREES OF GENERATORS OF A GRADED MODULE
OVER A POLYNOMIAL RING, AND ITS HILBERT FUNCTION

We give a short proof of the following result; cf. [I,[12,[6l4]. Let A = F[Xo,...,X,] be
a graded polynomial ring. The homogeneous elements of A are homogeneous polynomials
in Xo,...,Xn.
Lemma 12. Let I C A! be a graded A-module with a system of generators fi,..., fm of
degrees less than d, where d > 2. Then the Hilbert function H(A'/I,m) = dimp(A'/I),,
is stable for m > (dl)QO("H)
of AY/I are bounded from above by (dl)

. Furthermore, all the coefficients of the Hilbert polynomial

90(n+1)

Proof. Extending the ground field F', we may suppose without loss of generality that the
field F is infinite. Denote M = A'/I. Let L € F[Xy,...,X,] be a linear form in general
position. Let K stand for the kernel of the morphism M — M of multiplication by L.
Wehave K = {2 € A" : Lz =", .. fizi, z; € A}. Hence, solving a linear system over
A, we see that K has a system of generators gy, ..., g, with degrees bounded from above
by (dl)2o(n+1). Let B be an arbitrary associated prime ideal of the module M such that
B # (Xo,...,X,). Since L is in general position, we have L ¢ B. Therefore, 3 is not
an associated prime ideal of K. Consequently, K = 0 for all sufficiently large N. So,
XiNgj € I for sufficiently large N and all 4,j. Hence, g; = Z1§z‘§m yj,ifi, where y;,; €
F(X;)[Xo,...,Xy]. Solving a linear system over the ring F(X;)[Xo,..., Xn], we get a
bound on the denominators from F[X;] of all y;;. Since all g; and f; are homogeneous,
we may assume without loss of generality that all the denominators are X}¥. Thus, we
get an upper bound for V. Namely, N is bounded from above by (dl)Qo("H).
Therefore, the sequence

(55) 0—> My = My — (M/LM)pyy1 — 0
is exact for m > (dl)Qo(nH). But M/LM = A'/(I + LA!) is a module over a polynomial
ring F[Xo,...,X,]/(L) ~ F[Xy,...,X,_1]. Hence, by the inductive assumption, the
Hilbert function H(A'/(I + LA"),m) is stable for m > (dl)2o("). Now (55) implies that
the Hilbert function H(A'/I,m) is stable for m > (dl)ZO(n“).

Obviously, for m < (dl)zo(n+l) the values H(A!/I,m) are bounded from above by

)ZO(HU. Using the Newton interpolation, we conclude that all the coefficients of
20(71+1)

(dl
the Hilbert polynomial of A'/I are bounded from above by (dl) . The lemma is
proved. O

We also need a converse to Lemma 12.

Lemma 13. Let I C A’ be a graded A-module. Assume that the Hilbert function
H(AY/I,m) = dimp(A!/I),, is stable for m > D and that all absolute values of the co-
efficients of the Hilbert polynomial of the module A'/I are bounded from above by D, for

some integer D > 1. Then I has a system of generators f1, ..., fm with degrees D2ty

Proof. Let fi,..., fm be the reduced Grobner basis of I with respect to an admissible
linear order < on the monomials in A’; cf. the definitions in §§1 and 4. The degree of a
monomial from A’ is defined as in §§1 and 4. We assume additionally that the linear order
under consideration is degree-compatible; i.e., for any two monomials z1, zo, if deg z; <
deg zy, then z; < z. For every z € A!, the greatest monomial Hdt(z) is defined. The
monomial module Hdt(7) is generated by all Hdt(z), z € I. Now, Hdt(f1), ..., Hdt(f,) is
a minimal system of generators of Hdt(I), and deg f; = deg Hdt(f;) for every 1 <i < m.
The values of the Hilbert functions H(A'/Hdt(I),m) = H(A'/I,m) coincide for all

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



COMPLEXITY OF A STANDARD BASIS OF A D-MODULE 733

m > 0; cf. §4. Thus, replacing I by Hdt(7), we shall assume in what follows in this proof
that I is a monomial module.

For every 1 < i < [, denote by A; C A! the ith direct summand of A'. Put I; = INA;,
1 <4¢ <! Then I ~ EBKK[ I; because I is a monomial module. Next, for every
1 < a < mthereis 1 < i < such that f, € I;. We identify A4; = A. Then I; C A is
a homogeneous monomial ideal. The case where I; = A for some ¢ is not excluded. For
Hilbert functions, we have

(56) H(AYI,m) = ZKM H(A/I;,m), m>0.

If (A/L)p = 0 for some 4, then (A/I;),, =0 for every m > D. In this case the ideal I;
is generated by ZO<m<D(I) Hence for m > D we can omit this index ¢ in the sum
on the right in (56). Therefore, in this case the proof reduces to a smaller {. So, we may
assume without loss of generality that (A/I;)p # 0, 1 < i < [. Next, we use an exact
description of the Hilbert function of a homogeneous ideal; see [4, §7]. Namely, there are
unique integers b; g > b; 1 > - -+ > b; py2 = 0 such that

m+n+1 m—>b;;+j—1
57 H Iiv = —1-— ’ .
67) nm = (") s 2 (M
1<j<n+1
for all sufficiently large m and
(58) bio =min{d : d > b;; and for all m > d, (57) is true }.
This description (without the constants b; o) dates back to the classical paper [II]. The
integers b; g, ..., b; nt2 are called the Macaulay constants of the ideal I;. We have
1 b1

(59)  h(i,m) = H(A/L,m) — (m+”+ ) w1 Y (m A ) >0

n+1 ‘ J

1<j<nt1

for every m > b; 1; see [ §7]. By Lemma 7.2 in [], for all 1 < o < m, if f, € I;, then
deg fo < b; 0. Hence, it suffices to prove that all b; o, 1 < ¢ <, are bounded from above

by DQO(n+1)

By (56) and (57), the coefficient of m™~7, 0 < j < n, in the Hilbert polynomial of
AT is
(60) n+1 CES] Z bin+1—-j + Z Z n+1 ,N]v(bi,n-i-l—v)a

1<4i<i 0<v<j— 11<z<l

where 0 # p; is an integer, and p;, € Z[Z], 0 < v < j — 1, is a polynomial with inte-
gral coefficients and deg 5, = j — v + 1. Moreover, |u;| and the absolute values of the
coefficients of all the polynomials j;, are bounded from above by, say, 20(n*) | Denote
bj = > << biy, 0 < j < n+2. By the condition of the lemma, the coefficients of
the Hilbert polynomial of A!/I are bounded from above by D. Hence, via (60), we can
)20(”1), 0 <7 <n. Con-
sequently, by = (ID) . Observe that b; ; < maxi<;<;b;1 < by for every 1 <i < m.

Now, let m > maxi<;<; b;1. By (59), if h(i,m) # 0 for some 1 <4 <[, then m < D;
i.e., m is less than the bound D for the stabilization of the Hilbert function of A'/I.
Thus, b; o < max{b;1,D} by (58). Hence, b; ¢ is bounded from above by (ZD)2O("+1).

We have (A/I;)p # 0 for every 1 < i < [. This implies H(A!/I, D) > I. Let ¢; denote
the jth coefficient of the Hilbert polynomial of the module A'/I. Now |¢;|D7 > 1/(n+1)
for at least one j. Hence, D"*1(n + 1) > [ by the condition of the lemma. This implies
that 12°"" is bounded from above by Doy Therefore, b; ¢ is bounded from above
by D2’ The lemma is proved. (I

recursively estimate b,41,by,...,b1. Namely, b,41_; = (2”21D
90 (n+1)
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APPENDIX 2: BOUND FOR THE GROBNER BASIS OF A MONOMIAL MODULE
IN TERMS OF THE COEFFICIENTS OF ITS HILBERT POLYNOMIAL

We denote by C; = Z%} U --- U Z?} the disjoint union of ! copies of the semigroup
7% ={(i1,...,in) €Z" :i; > 0,1 < j <n}. A subset of C; that intersects each disjoint
copy of Z} by a semigroup closed with respect to addition in Z' is called an ideal of Cj.
Clearly, I corresponds to a monomial submodule M in the free module (F[X1, ..., X,])".
Any ideal I in C; has a unique finite Grobner basis V' = V} corresponding to the Grobner
basis of M. Denote T'= C; \ I. The degree of an element u = (k;i1,...,i,) € C;,1 <
k <1, is defined as |u| = i1 + -+ + i,. The degree of a subset in C; is defined as the
supremum of the degrees of its elements. The Hilbert function Hr(z) is equal to the
number of vectors u € T such that |u| < z. Hence, Hr(2) = Y o< sepm Cs2°, 2 > 20, for a
suitable zy and integers ¢y, ..., ¢y, where m < n. Let ¢ = maxog_sg_m les|s! + 1.

Proposition 1 (cf. [6, 12| 4]). The degree of V' does not exceed (cn)Qo(m).
Proof. By an s-cone, 0 < s < n, we shall mean a subset of the kth copy of Z in Cj for
some 1 < k < of the form

(61) P={Xj, =i1,...,Xj,_. =in_s}

for suitable 1 < j1,...,jn—s < n. We define the degree of the s-cone (61) as |P| =
i1+ - +in—s (note that this definition is different from that in [4]). By a predecessor of
(61) we mean each s-cone in the same kth copy of Z of the type

(62) {Xj, =i, X, =ip-1, X, =ip — L, X = ipg1se o, Xy, = in—s)t

for some 1 < p < n—s, provided that i, > 1. We fix an arbitrary linear order on s-cones
compatible with the predecessor relation.

Using inverse recursion on s, we gradually fill T’ (as a union) by s-cones with 0 < s < m.
We start with s = m. Assume that a current union Ty C T of m-cones is already
constructed (at the very beginning we put Ty = @) and that an m-cone of the form (61)
with s = m is the smallest one (with respect to the fixed linear order on m-cones) that
is contained in 7' and not contained in Ty. Observe that each predecessor of this m-cone
was added to Ty at earlier steps of its construction. Since the total number of m-cones
added to Ty does not exceed ¢,,m! < ¢, we see that the degree of every such m-cone is
less than ¢,;,,m! (we use the fact that the first m-cone added to Ty has degree 0).

For the recursive step, assume that the current T is a union of all possible m-cones,
(m — 1)-cones, ..., (s+ 1)-cones and perhaps, some s-cones. This can be expressed as
deg(Hr — Hr,) < s. Again, as in the base, we take the smallest s-cone of the form (61)
that is contained in 7" and not contained in Ty. Observe that each predecessor of the
type (62) of this s-cone is contained in an appropriate r-cone @, r > s, such that @ was
added to Tj at earlier steps of its construction and @ C {X, = i, — 1}. Hence,

(63) Qf = ip — 1.

This construction terminates when Ty, = 1. We denote by ¢ the number of s-cones added
to Ty and by ks the maximum of their degrees. We have already seen that t,,, k,, < c.
Now, we use inverse induction on s to prove that t4, ks, < (cn)Qo(m_s). For this, we
introduce a special semilattice on the set of cones. Let C = {Ca}a,p, 0 < B < 7a,
be a family of cones of the form (61), where dimCy g = a. By an a-piece we call an
a-cone that is the intersection of some cones in C. All the pieces constitute a semilattice
L with respect to intersection with the maximal elements in C. We treat £ also as a
partially ordered set with respect to inclusion. Clearly, the depth of £ is at most n 4 1.

Our nearest purpose is to estimate the size of £ from above. To simplify the bound,
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we assume (and this will suffice for our goal in the sequel) that 7, < (cn)2o(m_a) for
s < a<mand v, =0 when a < s, although in the general case the required bound
can be obtained in the same way. Moreover, we assume that the constant in O(...) is
sufficiently large. In what follows all the constants in O(...) coincide.

Lemma 14. Suppose that v, < (cn)2o(m7“) forall s < a < m; see above. Then the num-

. . O(m—a) O(m—s)(q_
ber of a-pieces in L does not exceed (cn)? L fors < a < m, or(cn)? (s—at1)+1
for a < s.

Proof. For each a-piece, we choose its arbitrary irredundant representation as the in-
tersection of cones in C. Let 6 be the minimal dimension of those cones. Then this
intersection contains at most 6 —a + 1 cones. Therefore, the number of possible a-pieces

does not exceed oom_s)
§ : (cn)2 (6—0¢+1)7

max{a,s}<s<m
which proves the lemma. O

Now we return to estimating ts, ks by inverse induction on s. In the construction
described above, let the current T be the union of all added m-cones, (m —1)-cones, . ..,
s-cones. We denote this family of cones by C and consider the corresponding semilattice
L (see above). Our next purpose is to represent Ty as a Z-linear combination of pieces
in £ via a kind of the inclusion-exclusion formula. We assign the coefficients of this
combination by recursion in £. As a base, we assign 1 to each maximal piece, i.e., the
elements of C. At a recursive step, if for some piece P € L the coefficients are already
assigned to all the pieces greater than P, then we assign to P the coefficient ep in such
a way that the sum of the coefficients assigned to P and to all greater pieces equals 1.

Therefore,
Ty = Z epP,
peLl
where the sum is understood in the sense of multisets. Consequently,
z —|P| 4+ dim P
(64) Hr,(2) =) €P< dim P )

PeLl

for sufficiently large z. We recall that deg(Hr — Hp,) < s — 1.
Now we estimate the coefficients |ep| with the help of induction in the semilattice L.

The inductive hypothesis on ¢, < (Cn)QO(""“)

Z lep| < (cn)go(mﬂ), s—1<A<m,
dim P=X

,8 < a<m, and Lemma 14 imply that

in accordance with inverse induction on A and the definition of ep. In fact, one could
estimate also ), p_, |€p| in a similar way when A < s—1, but we do not need this. The
inductive hypothesis on k, < (cn)2o(m_&), s < a <m,and (64) imply that the coefficient

in Hr,(2) of the power z® does not exceed (cn)Qo(m*a)7 s —1 < a <m (actually, by the

inequality deg(Hr — Hr,) < s—1, the coefficients of the powers z* for s < o < m are less
than ¢). In particular, the coefficient of the power 2°~! does not exceed (cn)zo(m_s+l).
Denote Hr — Hr, = nz°"! 4 ---. When constructing T, we add (s — 1)-cones to it

)QO(HHSH). This justifies the inductive step for

ts—1 = n(s —1)! times. Hence, t;_1 < (cn
ts—1.

We prove that ks_1 < (cn) . We observe that, for each (s — 1)-cone P added
to Tj, either every one of its predecessors is contained in a cone of dimension at least s, or

some predecessor is an (s—1)-cone. In the former case, |P| < (maxs<q<m ka+1)(n—s+1)

20(771—s+1)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



736 D. YU. GRIGORIEV AND A. L. CHISTOV

(by (63)), while in the latter case, | P| is greater by 1 than the degree of that predecessor.
Thus, ks—1 < (MaXs<a<m ka+1)(n—s+1)+ts_1. Finally, we use the inductive hypothesis
for kp,, ..., ks and the inequality on t;_; obtained above.

To complete the proof of the proposition, it suffices to observe that for any vector in
the basis V treated as a O-cone, each of its predecessors of the form (62) for s = 0 is
included in an appropriate r-cone occurring in the above construction, whence the degree
of V does not exceed (maxo<a<m ko + 1)1, again by (63) (cf. above). O
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