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EQUIVARIANT GRÖBNER BASES AND THE GAUSSIAN

TWO-FACTOR MODEL

ANDRIES E. BROUWER AND JAN DRAISMA

Abstract. Exploiting symmetry in Gröbner basis computations is difficult
when the symmetry takes the form of a group acting by automorphisms on
monomials in finitely many variables. This is largely due to the fact that the
group elements, being invertible, cannot preserve a term order. By contrast,
inspired by work of Aschenbrenner and Hillar, we introduce the concept of
equivariant Gröbner basis in a setting where a monoid acts by homomorphisms
on monomials in potentially infinitely many variables. We require that the
action be compatible with a term order, and under some further assumptions
derive a Buchberger-type algorithm for computing equivariant Gröbner bases.

Using this algorithm and the monoid of strictly increasing functions N → N

we prove that the kernel of the ring homomorphism

R[yij | i, j ∈ N, i > j] → R[si, ti | i ∈ N], yij �→ sisj + titj

is generated by two types of polynomials: off-diagonal 3× 3-minors and pen-
tads. This confirms a conjecture by Drton, Sturmfels, and Sullivant on the
Gaussian two-factor model from algebraic statistics.

1. Introduction and results

Equivariant Gröbner bases. Algebraic varieties arising from applications often
have many symmetries. When analysing such varieties with tools from compu-
tational algebra, it is desirable to do so in an equivariant manner, that is, while
keeping track of those symmetries, and if possible exploiting them. The notion of
Gröbner basis, which lies at the heart of computational algebra, depends heavily on
choices of coordinates and of a term order, which is a well-order on monomials in the
coordinates. It is therefore natural, at least from a computational point of view, to
study symmetries of ideals that preserve both the coordinates and the term order.
Now the term symmetry is usually reserved for certain invertible maps, but it is
easy to see that an invertible map cannot preserve a well-order; see Remark 2.1.
Hence we are led to relax the condition that symmetries be invertible. On the other
hand, if a non-invertible map is to preserve the restriction of the term order to the
set of coordinates, then that set better be infinite, in contrast with the usual set-up
in computational commutative algebra.
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1124 A. E. BROUWER AND J. DRAISMA

In fact, there is another, more compelling reason for allowing infinitely many
variables: many varieties from applications come in infinite families, and it is con-
venient to pass to a suitable limit. For example, the variety of symmetric n × n-
matrices of rank 2 has a well-defined projective limit for n tending to infinity, and
so does the closely related two-factor model that we study in this paper. In both
cases, the limit is not only stable under the union of all symmetric groups, Sn,
simultaneously permuting rows and columns, but also under the monoid Inc(N) of
all strictly increasing maps from N to itself. And while the union of the symmetric
groups does not preserve any term order, the monoid Inc(N) does preserve such an
order; this fundamental observation allows us to do computations in Section 3.

This discussion leads to the following set-up, which we believe will have ap-
plications to numerous other problems. Let X be a potentially infinite set, whose
elements we call variables. The free commutative monoid generated byX is denoted
Mon; its elements are called monomials. Suppose that we have

EGB1. a term order, i.e., a well-order ≤ on Mon such that m ≤ m′ ⇒ mm′′ ≤
m′m′′ for all m,m′,m′′ ∈ Mon; and

EGB2. a monoid G, i.e., a (typically non-commutative) semigroup with identity,
acting on Mon by means of monoid homomorphisms Mon → Mon preserv-
ing the strict order: π(1) = 1, π(mm′) = π(m)π(m′), and m < m′ ⇒
πm < πm′ for all π ∈ G, m,m′ ∈ Mon.

Example 1.1. The setting that Aschenbrenner and Hillar study in [1] fits into this
framework, and indeed inspired our set-up. There X = {x1, x2, . . .} and G is the
monoid Inc(N) of all strictly increasing maps π : N → N acting on X by πxi = xπ(i)

and on Mon by multiplicativity. As a term order one can choose the lexicographic
order with xi > xj if i > j. Aschenbrenner and Hillar have turned their proof of
finite generation of Inc(N)-stable ideals in K[x1, x2, . . .] into an algorithm; see [2].

Let K be a field and let K[X] = KMon be the polynomial K-algebra in the
variables X, or, equivalently, the monoid K-algebra of Mon. Then G acts naturally
on K[X] by means of homomorphisms. A G-orbit is a set of the form Gz = {πz |
π ∈ G}, where z is in a set on which G acts. The fact that G acts by monoid
homomorphisms on Mon implies that the ideal generated by a union of G-orbits in
K[X] is automatically G-stable, that is, closed under the action of G.

We use the notation lm(f) for the leading monomial of f , i.e., the ≤-largest
monomial having non-zero coefficient in f . By the requirement that G preserve the
order, we have lm(πf) = π lm(f). Given an ideal I of K[X], lm(I) is an ideal in the
monoid Mon, that is, lm(I) is closed under multiplication with any element from
Mon. If I is G-stable, then so is lm(I).

Definition 1.2 (Equivariant Gröbner basis). Let I be a G-stable ideal in K[X]. A
G-Gröbner basis of I is a subset B of I for which lm(GB)(= {lm(πb) | b ∈ B, π ∈
G}) generates the ideal lm(I) in Mon. If G is fixed in the context, we also call B an
equivariant Gröbner basis. If G = {1}, then we call B an ordinary Gröbner basis.

Remark 1.3. At MEGA 2009, Viktor Levandovskyy pointed out to the second
author that our equivariant Gröbner bases are a special case of Gröbner S-bases
in the sense of [8], which were invented for analysing certain two-sided ideals in
free associative algebras. The focus of the present article is on getting exactly the
right set-up for doing machine computations of equivariant Gröbner bases in the
commutative setting.
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EQUIVARIANT GRÖBNER BASES 1125

It is easy to see that if B is a G-Gröbner basis of I, then GB generates I as an
ideal; see Lemma 2.2.

Example 1.4. Let X = {yij | i, j ∈ N}, let k be a natural number, and let I be
the ideal of all polynomials in the yij that vanish on all N × N-matrices y of rank
at most k. Order the variables yij lexicographically by the pair (i, j), where i is the
most significant index; so for instance y3,5 > y2,6 > y2,4 > y1,10. The corresponding
lexicographic order on monomials in the yij is a well-order. LetG := Inc(N)×Inc(N)
act on X by (π, σ)yij = yπ(i),σ(j); this action preserves the strict order. The G-orbit
of the determinant D of the matrix (yij)i,j=1,...,k+1 consists of all (k+1)× (k+1)-
minors of y, which by the results of [12] form a Gröbner basis of the ideal I. As a
consequence, {D} is a G-Gröbner basis of I.

A G-stable ideal need not have a finite G-Gröbner basis. Indeed, if one requires
that every G-stable ideal I in K[X] has a finite G-Gröbner basis, then this must, in
particular, be true formonomial ideals. This implies that Mon does not have infinite
antichains relative to the partial order on Mon defined by m � m′ :⇔ ∃π ∈ G :
πm|m′. Observe that this is, indeed, a partial order: transitivity is straightforward,
and antisymmetry follows from the fact that π(m)|m ⇒ π(m) ≤ m; while on the
other hand, π(m) ≥ m for all π,m; see Remark 2.1. Conversely, if (Mon,�) does
not have infinite anti-chains, then every ideal has a finite G-Gröbner basis. This is
the case in the set-up of Example 1.1, which is generalised in [11]; there equivariant
Gröbner bases are called monoidal Gröbner bases.

Remark 1.5. We have not yet really used that Mon is the free commutative monoid
generated by X. So far, we could have taken Mon as any commutative monoid
equipped with EGB1 and EGB2. This viewpoint, and a generalisation thereof, is
adopted in [11]. However, for doing computations we need that Mon has more
structure; see conditions EGB3 and EGB4 below. This is why we have restricted
ourselves to free monoids Mon.

The set {y12y21, y12y23y31, y12y23y34y41, . . .} in the polynomial ring of Exam-
ple 1.4 is an infinite �-antichain of monomials, hence the Inc(N)-stable ideal gener-
ated by it does not have a finite Inc(N)-Gröbner basis. But even in such a setting
where not all G-stable ideals have finite G-Gröbner bases, ideals of interesting G-
stable varieties may still have such bases. We will derive an algorithm for computing
equivariant Gröbner bases under the following two additional assumptions:

EGB3. for all π ∈ G and m,m′ ∈ Mon we have lcm(πm, πm′) = π lcm(m,m′); and
EGB4. for all f, h ∈ K[X] the set Gf × Gh is the union of a finite number of G-

orbits (where G acts diagonally on K[X]×K[X]), and generators of these
orbits can be computed effectively.

Note that EGB3 is automatically satisfied if G stabilises the set X of variables.
Although this is the only setting that we will need for the application to the two-
factor model, future applications may need the greater generality where X is not
G-stable. Condition EGB4 is of computational importance, as will become clear in
Section 2. There we also show in Examples 2.6 and 2.7 that these requirements are
not redundant.

Theorem 1.6. Under conditions EGB1, EGB2, EGB3, and EGB4 there exists an
algorithm that takes a finite subset B of K[X] as input and that returns a finite
G-Gröbner basis of the ideal generated by B, provided that it terminates.

Licensed to Johannes Kepler University. Prepared on Mon Sep 28 09:48:23 EDT 2015 for download from IP 193.170.37.5.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1126 A. E. BROUWER AND J. DRAISMA

There is some overlap in definitions and results by Aschenbrenner, Hillar, and
Sullivant [1, 2, 11], by Cohen and his student Emmott [3, 4], and by ourselves;
but the three groups pursued distinct goals. In particular, in Section 2 we derive
the algorithm from Theorem 1.6 in the non-Noetherian situation where the partial
order� is not necessarily a well-quasi-order. This generality is essential in Section 3,
where we apply our algorithm to a conjecture concerning a statistical model to be
discussed now.

The Gaussian two-factor model. The Gaussian k-factor model with n observed
variables consists of all covariance matrices of n jointly Gaussian random variables
X1, . . . , Xn, the observed variables, consistent with the hypothesis that there exist
k further variables Z1, . . . , Zk, the hidden variables or factors, such that the joint
distribution of the Xi and the Zj is Gaussian and such that the Xi are pairwise
independent given all Zj . This set of covariance matrices turns out to be

Fk,n := {D+ SST | D ∈ Mn(R) diagonal and positive definite, and S ∈ Mn,k(R)},
where Mn,k(R) is the space of real n× k-matrices, and Mn(R) is the space of real
n × n-matrices. In [9] this model is studied from an algebraic point of view. In
particular, the ideal of polynomials vanishing on Fk,n is determined for k = 2, 3
and n ≤ 9. The case where k = 1 had already been done in [6]. The authors of [9]
pose some very intriguing finiteness questions. In particular, one might hope that
for fixed k the ideal of Fk,n stabilises, as n grows, modulo its natural symmetries
coming from simultaneously permuting rows and columns. For k = 1 this is indeed
the case, and for arbitrary k it is true in a weaker, set-theoretic sense [7]. In this
paper we prove that the ideals of F2,n stabilise at n = 6. To state our theorem we
denote by yij the coordinates on the space of symmetric n × n-matrices; we will
identify yji with yij . Recall from [9] that the ideal of F2,5 is generated by a single
polynomial

P :=
1

10

∑

π∈Sym(5)

sgn (π)yπ(1),π(2)yπ(2),π(3)yπ(3),π(4)yπ(4),π(5)yπ(5),π(1),

called the pentad. The normalisation factor is important only because it ensures
that all coefficients are ±1; indeed, the stabiliser in Sym(5) of each monomial in the
pentad is a dihedral group of order 10. We consider P an element of Z[yij | i ≥ j].
The ideal of F2,6 contains another type of equation: the off-diagonal minor,

M := det(y[{4, 5, 6}, {1, 2, 3}]) ∈ Z[yij | i ≥ j],

the determinant of the square submatrix of y sitting in the lower left corner of y.
If f is any polynomial in R[yij | i ≥ j] that vanishes on F2,n and if we regard
f as an element of R[yij | i > j][y11, . . . , ynn], then each of the coefficients of
the monomials in the diagonal variables yii is a polynomial in the off-diagonal
variables that vanishes on F2,n, as well. Therefore, the following theorem settles
the conjecture of Drton, Sturmfels, and Sullivant, that pentads and off-diagonal
minors generate the ideal of F2,n for all n; see [9, Conjecture 26].

Theorem 1.7. For any field K and any natural number n ≥ 6 the kernel In(K)
of the homomorphism K[yij | 1 ≤ j < i ≤ n] → K[s1, . . . , sn, t1, . . . , tn] determined
by yij 
→ sisj + titj is generated, as an ideal, by the orbits of P and M under the
symmetric group Sym(n).
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EQUIVARIANT GRÖBNER BASES 1127

Remark 1.8. In [10] it is proved that F2,n equals the set of all positive definite
matrices with the property that every principal 6×6-minor lies in F2,6. Theorem 1.7
implies an analogous statement for the Zariski closures of F2,n and F2,6.

We sketch the proof of Theorem 1.7, which appears in Section 3. We put a
suitable elimination order on the monomials in yij , i, j ∈ N, i ≥ j, and report on
a computation that yields a finite Inc(N)-Gröbner basis for the determinantal ideal
generated by all 3× 3-minors of y. Intersecting this Inc(N)-Gröbner basis with the
ring in the off-diagonal matrix entries gives Theorem 1.7.

2. An algorithm for equivariant Gröbner bases

We retain the setting of the Introduction: X is a potentially infinite set and
Mon is the free commutative monoid generated by X, equipped with a term order
(EGB1) preserved by the action of a monoid G (EGB2) which also preserves least
common multiples (EGB3). Condition EGB4 will be needed only later.

Remark 2.1. Note that G acts by injective maps on Mon by EGB2. It is essential
that we allow G to be a monoid rather than a group. Indeed, the image of G in the
monoid of injective maps Mon → Mon contains no other invertible elements than
the identity: If π ∈ G and m ∈ Mon, then πm ≥ m since otherwise m > πm >
π2m > . . . would be an infinite strictly decreasing chain. But then if (the image
of) π is invertible, we have π(m) > m > π−1(m) > π−2(m) > . . ., another infinite
decreasing chain.

We set out to translate familiar notions from the setting of ordinary Gröbner
bases to our equivariant setting. In what follows the coeffient in f of lm(f), the
leading coefficient, is denoted lc(f), and lt(f) = lc(f)lm(f) is the leading term of
f .

Lemma 2.2. If I is G-stable and B is a G-Gröbner basis of I, then GB = {πb |
π ∈ G, b ∈ B} generates the ideal I.

Proof. If not, then take an f ∈ I \ 〈GB〉 with lm(f) minimal. Take b ∈ B and
π ∈ G with lm(πb)|lm(f). Subtracting (lt(f)/lt(πb))πb from f yields an element in
I \ 〈GB〉 with leading term strictly smaller than that of f , a contradiction. �

Algorithm 2.3 (Equivariant remainder). Given f ∈ K[X] and B ⊆ K[X], proceed
as follows: if πlm(b)|lm(f) for some π ∈ G and b ∈ B, then subtract the multiple
(lt(f)/lt(πb))πb of πb from f , so as to lower the latter’s leading monomial. Do this
until no such pair (π, b) exists. The resulting polynomial is called a G-remainder
(or an equivariant remainder, if G is fixed) of f modulo B.

This procedure is non-deterministic, but necessarily finishes after a finite number
of steps, since ≤ is a well-order. Any potential outcome is called an equivariant
remainder of f modulo B.

Definition 2.4 (Equivariant S-polynomials). Consider two polynomials b0, b1 with
leading monomials m0,m1, respectively. Let H be a set of pairs (σ0, σ1) ∈ G ×G
for which Gb0 × Gb1 =

⋃
(σ0,σ1)∈H{(πσ0b0, πσ1b1) | π ∈ G}. For every element

(σ0, σ1) ∈ H we consider the ordinary S-polynomial

S(σ0b0, σ1b1) := lc(b1)
lcm(σ0m0, σ1m1)

σ0m0
σ0b0 − lc(b0)

lcm(σ0m0, σ1m1)

σ1m1
σ1b1.
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1128 A. E. BROUWER AND J. DRAISMA

The set {S(σ0b0, σ1b1) | (σ0, σ1) ∈ H} is called a complete set of equivariant S-
polynomials for b0, b1. It depends on the choice of H. Under condition EGB4, H
can be chosen finite.

Theorem 2.5 (Equivariant Buchberger criterion). Under the assumptions EGB1,
EGB2, and EGB3, let B be a subset of K[X] such that for all b0, b1 ∈ B there exists
a complete set of S-polynomials each of which has 0 as a G-remainder modulo B.
Then B is a G-Gröbner basis of the ideal generated by GB.

We will first prove this for ordinary Gröbner bases, and from that deduce the
theorem for equivariant Gröbner bases. The proof for the ordinary case is identical
to the proof in the case of finitely many variables. We include it for completeness,
and also because we have no reference where the result is stated for infinitely many
variables.

Proof of Theorem 2.5 in the case G = {1}. We may and will assume that all ele-
ments of B are monic. Let I denote the ideal generated by B. If lm(B) does not
generate the ideal lm(I) in Mon, then there exists a polynomial of the form

f =
∑

b∈B

fbb

with only finitely many of the fb non-zero, for which lm(f) is not in the ideal
generated by lm(B). We may choose the expression above such that first, the
maximum m of lm(fbb) over all b for which fb is non-zero is minimal and second, the
number of b with lm(fbb) = m is also minimal. The maximum is then attained for
at least two values b0, b1 of b, because otherwise m would be the leading monomial
of f . Write mi := lm(bi) for i = 0, 1, and let t0, t1 be such that lcm(m0,m1) =
t0m0 = t1m1. Now m = lm(fb0)m0 = lm(fb1)m1 is a multiple of both m0 and m1,
and therefore lm(fb0) is divisible by t0; set

A :=
lt(fb0)

t0
.

Next consider
S := S(b0, b1) = t0b0 − t1b1,

where we have used that b0 and b1 are monic. As 0 is a remainder of S modulo B
by assumption, we can write S as a sum

∑
b∈B sbb with only finitely many non-zero

terms that, moreover, satisfy lm(sbb) ≤ lm(S) < lcm(m0,m1) for all b. Then we
may rewrite f as

f = f −A(S −
∑

b

sbb) =
∑

b

(fb + f ′
b + f ′′

b )b

where f ′
b = Asb and

f ′′
b =

⎧
⎪⎨

⎪⎩

−lt(fb0) if b = b0,

lc(fb0)lm(fb1) if b = b1,

0 otherwise.

For all b ∈ B we have

lm((Asb)b) = lm(Asbb) <
lm(fb0)

t0
lcm(m0,m1)

= lm(fb0)m0 = m,
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EQUIVARIANT GRÖBNER BASES 1129

so for all b we have lm(f ′
bb) < m. Moreover, lm((fb0 + f ′′

b0
)b0) is strictly smaller

than m. Finally, lm(f ′′
b1
b1) = m. We conclude that either maxb lm((fb + f ′

b + f ′′
b )b)

is strictly smaller than m, or else the number of b for which it equals m is smaller
than the number of b for which lm(fbb) equals m. This contradicts the minimality
of the expression chosen above. �

Proof of Theorem 2.5 using the ordinary Buchberger criterion. We prove that GB
is an ordinary Gröbner basis of the ideal that it generates. By the ordinary Buch-
berger criterion it suffices to verify that for all b0, b1 ∈ B and π0, π1 ∈ G the S-
polynomial S(π0b0, π1b1) has 0 as a remainder modulo GB. By assumption there
exists a triple (σ0, σ1, π2) for which S(σ0b0, σ1b1) has 0 as a G-remainder mod-
ulo B—which means that it has 0 as an ordinary remainder modulo GB—and for
which (π0b0, π1b1) = (π2σ0b0, π2σ1b1). Since G preserves least common multiples
(EGB3), we have

S(π2σ0b0, π2σ1b1) = π2S(σ0b0, σ1b1),

and applying π2 to the entire reduction of S(σ0b0, σ1b1) to 0 modulo GB yields a
reduction of S(π0b0, π1b1) to 0, as claimed. �

The following example shows that EGB3 is not a redundant assumption in The-
orem 2.5.

Example 2.6. Suppose that X = {x, y, z1, z2, . . .} and that the monoid G is gen-
erated by Inc(N) acting by πzi = zπi and trivially on x, y, together with a single ho-
momorphism σ : Mon → Mon determined by πx = x, πy = xz1, and πzi = zi+1 for
all i. Then G preserves the lexicographic order on Mon for which zi+1 > zi > y > x
for all i. Now consider the set B = {y + 1}. We have

G(y + 1)×G(y + 1) = G(y + 1, y + 1) ∪G(y + 1, xz1 + 1) ∪G(xz1 + 1, y + 1),

so we may take H from Definition 2.4 equal to

{(1, 1), (1, σ), (σ, 1)}.
The S-polynomial S(y + 1, y + 1) is zero, and the S-polynomials S(y + 1, xz1 + 1)
and S(xz1+1, y+1) reduce to zero modulo y+1 and σ(y+1) = xz1+1. Hence we
have a complete set of S-polynomials of y + 1 with itself that all G-reduce to zero
modulo B. Nevertheless, B is not a G-Gröbner basis of the G-stable ideal that it
generates, since that ideal also contains S(xz1 + 1, xz2 + 1) = z2 − z1, which does
not G-reduce to zero modulo B.

Here is an example where EGB4 is not fulfilled.

Example 2.7. Let X = {x, y}, let G be the multiplicative monoid of the positive
integers, where m acts by x 
→ xm and y 
→ ym. Now

Gx×Gy = {(xi, yj) | i, j ∈ Z>0},
while the diagonal G-orbit of the pair (xi, yj) equals {(xai, yaj) | a ∈ Z>0}. Hence
Gx×Gy is not the union of finitely many G-orbits.

However, if we do assume EGB4, then every pair (b0, b1) has a finite and com-
putable complete set of S-polynomials and we have the following theoretical algo-
rithm, alluded to in Theorem 1.6. We do not claim that it terminates, but if it
does, then it returns a finite equivariant Gröbner basis by Theorem 2.5.
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1130 A. E. BROUWER AND J. DRAISMA

Algorithm 2.8 (Equivariant Buchberger algorithm).

Input: a finite subset B of K[X].
Output (assuming termination): a finite equivariant Gröbner basis of the

ideal generated by GB.
Procedure:

(1) P := B ×B;
(2) while P �= ∅ do

(a) choose (b0, b1) ∈ P and set P := P \ {(b0, b1)};
(b) compute a finite complete set S of equivariant S-polynomials for

(b0, b1);
(c) while S �= ∅ do

(i) choose f ∈ S and set S := S \ {f};
(ii) compute a G-remainder r of f modulo B;
(iii) if r �= 0 then set B := B ∪ {r} and P := P ∪ (B × r);

(3) return B.

Note the order in which B and P are updated: one needs to add (r, r) to P , as
well. The proof of correctness of this algorithm is straightforward and omitted.

Remark 2.9. If the partial order � on Mon defined in the introduction does not
admit infinite antichains, then the equivariant Buchberger algorithm always termi-
nates. Indeed, suppose that the algorithm would not terminate, and let r1, r2, r3, . . .
be the sequence of remainders added consecutively to B. Then for all i < j we have
lm(ri) �� lm(rj) since rj is G-reduced modulo ri. Using the fact that decreasing
�-chains are finite, one finds an infinite subsequence ri1 , ri2 , . . . with i1 < i2 < . . .
such that ria �� rib holds not only for a < b but also for a > b. This sequence
contradicts the assumption that � does not have infinite antichains.

3. An equivariant Gröbner basis for the two-factor model

Theorem 1.7 will follow from the following result. Let X = {yij | i, j ∈ N, i ≥ j}
be a set of variables representing the entries of a symmetric matrix. We consider
the lexicographic monomial order on Mon in which the diagonal variables yii are
larger than all variables yij with i > j, and apart from that yij ≥ yi′j′ if and only
if i > i′ or i = i′ and j ≥ j′. So, for instance, we have

y2,2 > y1,1 > y5,2 > y4,3.

Note that this monomial order is compatible with the action of the monoid Inc(N)
of all increasing maps N → N. For any polynomial p ∈ K[X] let l(p) denote the
largest index of p, i.e., the largest index appearing in any of the variables in any of
the monomials of p.

Theorem 3.1. For any field K, let JN(K) be the ideal in K[X] generated by all
3×3-minors of the matrix y (recall that we identify yji for j < i with yij). Relative
to the monomial order ≤ the ideal JN(K) has an Inc(N)-Gröbner basis B consisting
of 42 polynomials. The intersection B ∩K[yij | i > j] is an Inc(N)-Gröbner basis
of JN(K) ∩K[yij | i > j] consisting of 20 polynomials. The largest indices and the
degrees of the elements in these bases are summarised in Table 3.1.

Remark 3.2. The polynomial with largest index 5 in the Inc(N)-Gröbner basis
B∩K[yij | i > j] is the pentad P . The five degree-3 polynomials with largest index 6
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Table 1. Degrees of polynomials in the Inc(N)-Gröbner basis B of
JN(K), grouped according to largest index. The first row records
the largest index, the second row the number of polynomials in B
with that largest index, the third row their degrees with multiplic-
ities written as exponents, the fourth row counts the number of
polynomials containing only variables yij with i > j, and the fifth
row records their degrees.

l(p) 3 4 5 6 7 8 9
#p ∈ B 1 6 11 10 8 5 1
degrees 31 36 31051 3555 58 55 51

#p ∈ B ∩K[yij | i > j] 1 5 8 5 1
degrees 51 35 58 55 51

in that Gröbner basis form the Sym(N)-orbit of the off-diagonal minor M . All 19 re-
maining polynomials are already in the Inc(N)-stable ideal generated by these poly-
nomials; this latter statement also follows from the result in [9] that at least up to
n = 9 the ideal of the two-factor model is generated by pentads and off-diagonal mi-
nors. The complete basis B is available from http://www.win.tue.nl/~jdraisma/

index.php?location=publications.

Remark 3.3. A Gröbner basis of the ideal of the two-factor model F2,n relative to
circular term orderswas already found in [14]. The proof involves general techniques
for determining the ideal of secant varieties, especially of toric varieties; see also [13].
The Gröbner basis found there, however, does not stabilise as n grows—and indeed,
circular term orders are not compatible with the action of Inc(N). It would be
interesting to find a direct translation between Sullivant’s Gröbner basis and ours.

Theorem 3.1 implies Theorem 1.7.

Proof of Theorem 1.7. It is well known that the (k + 1) × (k + 1)-minors of the
symmetric matrix (yij)i,j=1,...,n generate the ideal of all polynomials vanishing on
all rank-k matrices (for a recent combinatorial proof of this fact, see [13, Example
4.12]; in characteristic 0 this fact is known as the Second Fundamental Theorem for
the orthogonal group). Hence the ideal In(K) of Theorem 1.7 is the intersection
of the ideal Jn generated by the 3× 3-minors of (yij)i,j=1,...,n with the ring K[yij |
i > j]. Theorem 3.1 implies that one obtains a Gröbner basis of Jn, relative to the
restriction of the monomial order on K[yij | i, j ∈ N, i ≥ j] to K[yij | 1 ≤ j < i ≤ n]
by applying all increasing maps {1, . . . , l(p)} → {1, . . . , n} to all p ∈ B ∩ K[yij |
i > j] with l(p) ≤ n. Such an increasing map can be extended to an element of
Sym(n), and Remark 3.2 concludes the proof. �

We conclude with some remarks on the computation that proved Theorem 3.1.
First we need to verify EGB4.

Lemma 3.4. For all b0, b1 ∈ K[yij | i, j ∈ N, i ≥ j] the set (Inc(N)b0)× (Inc(N)b1)
is the union of a finite number of Inc(N)-orbits.

Proof. Consider all pairs (S0, S1) of sets S0, S1 ⊆ N with |Si| = l(bi) for which
S0 ∪ S1 is an interval of the form {1, . . . , k} for some k, which is then at most
l(b0) + l(b1). Note that there are only finitely many such pairs (S0, S1). For each
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such pair let (π0, π1) be a pair of elements of Inc(N) such that πi maps {1, . . . , l(bi)}
onto Si; it is irrelevant how π acts on the rest of N. Then we have

Inc(N)b0 × Inc(N)b1 =
⋃

(S0,S1)

Inc(N)(π0b0, π1b1),

where the union is over all pairs (S0, S1) as above. �

Computational proof of Theorem 3.1. The 42 polynomials of B were constructed
by computing a Gröbner basis for J9(Q) with Singular and retaining only those
polynomials p for which the set of indices occurring in their variables form an
interval of the form {1, . . . , k} with k ≤ 9. All elements of B are monic and have
integral coefficients (in fact, equal to ±1 except for the 3 × 3-minor with largest
index 3, which has a coefficient 2). By the equivariant Buchberger criterion and
the proof of Lemma 3.4, we need only Inc(N)-reduce modulo B all S-polynomials
of pairs (π0b0, π1b1) with b0, b1 ∈ B and πi : {1, . . . , l(bi)} → N increasing and such
that imπ0∪imπ1 = {1, . . . , k} for some k. For instance, for b0 = b1 = b equal to the
polynomial in B with largest index 9, we have to Inc(N)-reduce S(π0b, π1b) modulo
B for all increasing maps π0, π1 : {1, . . . , 9} → {1, . . . , 18} whose image union is an
interval {1, . . . , k}. However, if k = 17 or k = 18, then π0b and π1b turn out to
have leading monomials with gcd 1, so these cases can be skipped. This reduces
the theorem to a finite computation involving polynomials with largest indices up
to 16, which we have implemented directly in C. Finally, to deduce the result for
all base fields—and to speed up the computation—we used the following argument.
Since Inc(N)B ∩K[yij | 1 ≤ j ≤ i ≤ n] is a subset of the ideal of 3× 3-minors, it is
a Gröbner basis if and only if the ideal generated by lm(B) has the same Hilbert
series as the ideal generated by 3 × 3-minors. Since this Hilbert series is known
and does not depend on the field [5], we may do all our computations over one
field and conclude that it holds over all fields. We have verified the equivariant
Buchberger criterion over F2, which made the computation slightly faster than
working over Q. �
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